Mutual Funds as Lenders of Last Resort

Ricardo Barahona ¹ Sergio Mayordomo ¹ Emanuele Tarantino ²

 1 Banco de España 2 Luiss, EIEF and European European Commission

November, 2025

The views expressed are those of the authors and do not necessarily reflect those of the Banco de España or the European Commission.

- Non-bank financial intermediaries have played an increasing role over financial intermediation in the last 2 decades.
- In 2023, these institutions controlled 50% of global financial assets – an increase from 40% in 2008 representing over \$100 trillion in absolute growth (FSB, 2024).
- Mutual funds are a key element of NBFIs:
 - By the end of 2024, mutual funds domiciled in Spain managed a total of €406 billion in assets of which almost €200 billion come from fixed income funds.
 - This compares to €541 billion of the credit stock that Spanish banks have granted to non-financial corporations.

This paper

- We document that mutual funds play a significant role in financing distressed firms in Spain by purchasing newly issued debt from these firms.
- This is not a generalized finding, rather it depends on the fund's pre-existing exposure to the distressed firms.
- This is driven by fund's incentive to avoid losses on existing holdings but also on yield premium associated to the participation of exposed funds.

Competing hypotheses

Hypothesis 1: Banks as Superior Relationship Lenders

- Information advantage of banks as "inside debt" holders can aleviate information asymmetries during distress periods.
 Diamond (1984), Petersen and Rajan (1994).
- Mutual Funds have arms length relationships with firms and may face pressures liquidate holdings in stress periods and avoid distressed firms. Chevalier and Ellison (1997), Manconi et al. (2012).

Competing hypotheses

Hypothesis 2: Mutual Funds as Lenders of Last Resort

- Unlike banks, mutual funds are unburdened by strict capital requirements allowing for regulatory arbitrage opportunities. Hanson et al. (2011).
- Portfolio theory suggests mutual funds have incentives to invest in distressed firms: they hold diversified asset portfolios capable of absorbing firm idiosyncratic risk. Shleifer and Vishny (2010).

Data

- Firms: 104 debt issuing firms headquartered in Spain
- Funds' portfolios: Monthly holdings, purchases at the security level from CNMV (Spanish securities regulator).
- Credit registry: Monthly credit information, bank-firm level.
- Fixed-income securities: Market debt issuance by each firm group.
- Other Data: Fund characteristics, bank characteristics, firm characteristics, and firms' business group structure.
- Sample Period: 2013–2019.

Analysis roadmap

- Document firms substituting credit for debt securities
- Investigate mutual fund purchases of distressed debt securities
- Delinquent credit repayment

Firm debt financing during distress

- Defining distress: firm's are considered distressed when one of the following conditions is met:
 - Delinquent credit observed with any bank
 - Negative book equity
 - ullet Negative interest coverage ratio or <1 for two consecutive years
- How do firms refinance debt when facing these conditions?

Bank debt during distress

We study bank credit during firm distress both at the bank-firm and at the aggregate firm level:

$$\Delta Credit_{i,b,t} = \beta Distress_{i,t} + \delta' Controls_{i,t-1} + \epsilon_{i,b,t}$$

	(1)	(2)	(3)	(4)	(5)
		△ Credi	t (i,b,t)		Δ Credit (i,t)
Distress (i,t-1)	-0.091**	-0.108**	-0.091**	0.015	-0.074*
	[0.043]	[0.052]	[0.044]	[0.248]	[0.039]
Distress (i,t-1) × Bank Cap (b,t-1)	-	0.220		-	
		[0.422]			
Distress (i,t-1) × Bank Liq (b,t-1)			0.001		
			[0.019]		
Distress (i,t-1) × Bank Size (b,t-1)				-0.004	
				[0.010]	
Observations	30,424	30,424	30,424	30,424	2,400
R-squared	0.212	0.212	0.212	0.212	0.380
Controls	Yes	Yes	Yes	Yes	Yes
Industry - Time FE	Yes	Yes	Yes	Yes	Yes
Bank-Time FE	Yes	Yes	Yes	Yes	No
Firm FE	Yes	Yes	Yes	Yes	Yes

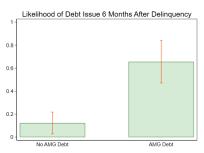
Bank debt during distress

We study bank credit during firm distress both at the bank-firm and at the aggregate firm level:

$$\Delta Credit_{i,t} = \beta Distress_{i,t} + \delta' Controls_{i,t-1} + \epsilon_{i,b,t}$$

	(1)	(2)	(3)	(4)	(5)
		Δ Credi	t (i,b,t)		Δ Credit (i,t)
Distress (i,t-1)	-0.091** [0.043]	-0.108** [0.052]	-0.091** [0.044]	0.015	-0.074* [0.039]
Distress (i,t-1) \times Bank Cap (b,t-1)	[0.0.0]	0.220	[0.011]	[0.2.10]	[0.003]
$Distress\; (i,t\text{-}1) \times Bank\; Liq\; (b,t\text{-}1)$			0.001 [0.019]		
Distress (i,t-1) \times Bank Size (b,t-1)				-0.004 [0.010]	
Observations	30,424	30,424	30,424	30,424	2,400
R-squared	0.212	0.212	0.212	0.212	0.380
Controls	Yes	Yes	Yes	Yes	Yes
Industry - Time FE	Yes	Yes	Yes	Yes	Yes
Bank-Time FE	Yes	Yes	Yes	Yes	No
Firm FE	Yes	Yes	Yes	Yes	Yes

Debt issuance through capital markets


- If banks cut credit, where do firms find liquidity?
- Do firms use market debt as a substitute for bank credit?

$$Issuance_{i,t \to t+T} = \beta \Delta Credit_{i,t-1} + \delta' Controls_{i,t-1} + \epsilon_{i,t}$$

	(1)	(2)	(3)
	$Issuance_{i,t o t+3}$	$Issuance_{i,t+3 o t+6}$	$Issuance_{i,t o t+6}$
$\Delta log(Credit_{i,t-1})$	0.046	-0.280***	-0.282**
	[0.081]	[0.092]	[0.110]
ROE (i,t-1)	-2.666*	-2.933**	-3.170*
	[1.357]	[1.343]	[1.583]
Leverage (i,t-1)	-13.428***	-13.955***	-11.758**
	[4.334]	[3.926]	[5.069]
log(Total Assets) (i,t-1)	3.685***	3.548***	3.341***
	[0.505]	[0.438]	[0.495]
Industry - Time FE	Yes	Yes	Yes
Observations	325	320	320
R-squared	0.819	0.818	0.775

Who buys distressed issues?

- We investigate Spanish mutual fund activity in the bond primary market
- Given the information asymmetry of issuing debt through capital markets during distress, how do firms succeed?
- Firm debt issuance around default for firms with prior debt held by mutual funds:

Formal setup

- Formally, we investigate mutual fund purchases of debt securities in the primary market conditional on:
 - Firm distress
 - Whether the asset management group, g, of fund, f, holds debt of the issuing firm

$$\begin{aligned} \textit{Purchase}_{i,f,g,t} &= \beta_1 \textit{Distressed}_{i,t-1} \times \textit{AMGExp}_{i,g,t-1} \\ + \beta_2 \textit{Non} &- \textit{Distressed}_{i,t-1} \times \textit{AMGExp}_{i,g,t-1} + \gamma_{i,t} + \epsilon_{i,f,g,t} \end{aligned}$$

Bond purchase regressions

	Fund P	urchases	AMG Purchases		
	(1) (2)		(3)	(4)	
	Purchase = 1	log(Purchase)	Purchase = 1	log(Purchase)	
Distressed (i,t-1) \times AMG Exp (i,g,t-1)	0.018*** [0.004]	-0.066 [0.112]	0.085*** [0.014]	0.125 [0.207]	
Non-Distressed (i,t-1) \times AMG Exp (i,g,t-1)	0.026*** [0.002]	0.120* [0.063]	0.117*** [0.008]	0.286*** [0.106]	
AMG - Time FE	Yes	Yes	Yes	Yes	
Firm-Time FE	Yes	Yes	Yes	Yes	
Fund FE	Yes	Yes	No	No	
Observations	524,117	4,724	52,639	1,383	
R-squared	0.089	0.871	0.245	0.811	

Bond purchase regressions

	Fund P	urchases	AMG Purchases		
	(1) (2)		(3)	(4)	
	Purchase = 1	log(Purchase)	Purchase = 1	log(Purchase)	
Distressed (i,t-1) × AMG Exp (i,g,t-1)	0.018*** [0.004]	-0.066 [0.112]	0.085*** [0.014]	0.125 [0.207]	
$\begin{array}{c} \text{Non-Distressed (i,t-1)} \\ \times \text{ AMG Exp (i,g,t-1)} \end{array}$	0.026*** [0.002]	0.120* [0.063]	0.117*** [0.008]	0.286*** [0.106]	
AMG - Time FE	Yes	Yes	Yes	Yes	
Firm-Time FE	Yes	Yes	Yes	Yes	
Fund FE	Yes	Yes	No	No	
Observations	524,117	4,724	52,639	1,383	
R-squared	0.089	0.871	0.245	0.811	

Consequences of distressed debt purchases

- Issues with higher participation of exposed mutual funds have higher yields
 Bond pricing table
- Funds purchasing more distressed debt in the primary market have higher returns on average (but not when adjusted for risk)
- Distressed firms issuing credit through capital markets pay down their delinquent credit Distress resolution table

Conclusion

- We uncover that debt security issuance for distresed firms is enabled by mutual fund demand
- We identify two facts driving mutual fund demand for these issues:
 - Only mutual funds with prior exposure to the issuer display demand for distressed debt securities
 - Evidence that these distressed issues with higher exposed mutual fund purchases fetch higher returns
- Evidence points to an information channel rather than ever-greening motives, consistent with other evidence of firm debt repayment and higher mutual fund returns.

Bond pricing

When funds buy distressed debt, are their investors worse off or is there compensation for risk?

	Yield		Yield Spread		
	(1) (2)		(3)	(4)	
	Non-Distressed	Distressed	Non-Distressed	Distressed	
Pct Purch AMG (j,i,t)	-0.006	0.197***	0.093	0.168***	
(3,7,7)	[0.109]	[0.000]	[0.085]	[0.001]	
log(Maturity) (j,i,t)	0.565***	0.214***	0.363***	0.195***	
-, -, -,	[0.100]	[0.000]	[0.084]	[0.001]	
log(Issue Size) (j,i,t)	0.061	0.080***	0.010	0.065**	
	[0.051]	[0.001]	[0.046]	[0.003]	
Firm Controls	Yes	Yes	Yes	Yes	
Industry-Time FE	Yes	Yes	Yes	Yes	
Observations	294	80	287	80	
R-squared	0.840	0.739	0.802	0.748	

Magnitude: 1 standard deviation increase in the percentage of exposed asset managers buying the issue results in yields that are 50 basis points higher for distressed firms.

Mutual fund returns

Mutual fund returns when they purchase distressed debt securities in the primary market of firms to which they had previous exposure to:

	Monthly Return (f,t)		Monthly Alpha (f,t)	
	(1)	(2)	(3)	(4)
Distress Purchase (g,t-1)	-0.012 [0.015]	0.066*** [0.021]	-0.016 [0.012]	-0.007 [0.014]
log(TNA) (f,t-1)		-0.060***		-0.019
log(Number of Investors) (f,t-1)		[0.017] 0.033*** [0.012]		[0.012] -0.006 [0.009]
(Issuance + Redemptions)/TNA (f,t-1)		20.257		73.822
Liquidity / TNA (f,t-1)		[375.035] 0.032 [0.062]		[471.726] -0.025 [0.053]
Retial Fund (f,t-1)		-0.159		-0.020
Expense Ratio (f,t-1)		[0.103] -0.240*** [0.064]		[0.060] -0.062 [0.053]
Fund FE	No	Yes	No	Yes
Time FE	Yes	Yes	Yes	Yes
Observations	43,225	33,465	41,489	33,324
R-squared	0.429	0.459	0.271	0.302

Resolution of distress

Repayment of delinquent credit of distressed firms is positively associated to debt issuance in prior periods:

	(1)	(2)	(3)
	$\Delta DistressCredit_{i,b,t \rightarrow t+3}$	$\Delta DistressCredit_{i,b,t+3\rightarrow t+6}$	$\Delta DistressCredit_{i,b,t \rightarrow t+6}$
$Issuance_{i,t-6 o t}$	-0.003	-0.092***	-0.104***
,,	[0.040]	[0.025]	[0.033]
ROE (i,t-1)	0.881**	0.584	1.052**
	[0.369]	[0.359]	[0.516]
Leverage (i,t-1)	-6.792***	-3.745**	-8.222***
- ' '	[2.076]	[1.637]	[2.766]
log(Total Assets) (i,t-1)	-0.910***	0.086	-0.566**
	[0.252]	[0.199]	[0.238]
Bank - Time FE	Yes	Yes	Yes
Industry - Time FE	Yes	Yes	Yes
Observations	937	837	840
R-squared	0.761	0.713	0.746

Additional results: Same findings when collapsing this to the firm level. Back

