The Transmission of Foreign Shocks in a Networked Economy

Pablo Aguilar¹ Rubén Domínguez-Díaz² José-Elías Gallegos² Javier Quintana²

¹Banco de España & European Central Bank

²Banco de España

4th WS2 ChaMP Workshop¹

October 2024

¹Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views of Banco de España, the ECB, or the Eurosystem.

Motivation

- Recent wave of supply-side macroeconomic shocks with sectoral and international origins affecting inflation developments:
 - Energy price increases
 - Supply bottlenecks
 - Covid-19, risks of trade fragmentation , import tariffs ...
- We build a model that accommodates the disaggregated and international nature of macroeconomic shocks:
 - Global economy with multiple countries (may form part of currency unions)
 - Multi-sectoral productive structure with national and international production linkages

This Paper

- Focus on the effects and transmission of imported energy prices shocks in the Euro-Area
 - 1. Significant pass-through to core, increasing persistence of headline (Adolfsen et al., 2024)
 - 2. Contribution of input-output (IO) linkages:
 - No IO: headline $\approx 60\%$ of baseline, shorter lived, smaller pass-through to core
 - Upstream sectors drive short-run inflation, downstream long-run inflation

3. Cross-country heterogeneity:

- DE: more downstream industries and long production chains generate larger transmission to core and more persistent headline inflation
- ES: higher CPI energy weights increase headline on impact but shorter-lived

4. Implications for monetary policy:

- > Weaker response mon. pol. to inflation: IO duplicates increase in inflation volatility
- ...despite that IO reduces impact of *mon. pol. shocks* (Nakamura and Steinsson, 2010; Rubbo, 2023)

Model

Model

1. Model Overview

- 2. Households
- 3. Firms
- 4. Monetary Authority
- 5. Market Clearing

Model Overview

- Global economy with K countries
 - International financial markets incomplete
 - Monetary arrangements:
 - $K^{MU} \subset K$ countries form part of **monetary union** with a common central bank
 - Remaining countries have monetary autonomy
- Within each country $\mathbf{k} \in \mathbf{K}$
 - I sectors: multi-sector productive structure with national and international networks
 - Nominal rigidities on prices (heterogeneous across sectors) and wages (homogeneous across sectors)

Model

1. Model Overview

2. Households

- 3. Firms
- 4. Monetary Authority
- 5. Market Clearing

Households - Intertemporal Problem

• Representative households' problem in country $k \in K$:

$$\max_{C_{k,t}, \{B_{k,t}^l\}_{l=1}^K} \sum_{t=0}^{\infty} \beta^t \Biggl(\frac{C_{k,t}^{1-\sigma}-1}{1-\sigma} - \int_0^1 \frac{\mathscr{N}_{gk,t}^{1+\varphi}}{1+\varphi} dg \Biggr) Z_{k,t} \quad \text{s.t.}$$

$$P_{kC,t}C_{k,t} + \sum_{l=1}^{K} B_{k,t}^{l} \Big[1 - \Gamma(\mathscr{B}_{k,t}^{l}) \Big]^{-1} \mathscr{E}_{kl,t} \leq \sum_{l=1}^{K} B_{k,t-1}^{l} \mathscr{E}_{kl,t} (1 + i_{l,t-1}) + \int_{0}^{1} W_{gk,t} \mathscr{N}_{gk,t} dg + \Pi_{k,t} - T_{k,t} - \Xi_{k,t} \Big]^{-1} \mathscr{E}_{kl,t} = \sum_{l=1}^{K} B_{k,t-1}^{l} \mathscr{E}_{kl,t} (1 + i_{l,t-1}) + \int_{0}^{1} W_{gk,t} \mathscr{N}_{gk,t} dg + \Pi_{k,t} - T_{k,t} - \Xi_{k,t} \Big]^{-1} \mathscr{E}_{kl,t} = \sum_{l=1}^{K} B_{k,t-1}^{l} \mathscr{E}_{kl,t} (1 + i_{l,t-1}) + \int_{0}^{1} W_{gk,t} \mathscr{N}_{gk,t} dg + \Pi_{k,t} - T_{k,t} - \Xi_{k,t} \Big]^{-1} \mathscr{E}_{kl,t} = \sum_{l=1}^{K} B_{k,t-1}^{l} \mathscr{E}_{kl,t} (1 + i_{l,t-1}) + \sum_{l=1}^{1} W_{gk,t} \mathscr{N}_{gk,t} dg + \Pi_{k,t} - \Sigma_{k,t} - \Sigma_{k,t} \Big]^{-1} \mathscr{E}_{kl,t} = \sum_{l=1}^{K} B_{k,t-1}^{l} \mathscr{E}_{kl,t} (1 + i_{l,t-1}) + \sum_{l=1}^{1} W_{gk,t} \mathscr{N}_{gk,t} dg + \Pi_{k,t} - \Sigma_{k,t} - \Sigma$$

- $B_{k,t}^{l}$: Household holdings in country k of bonds issued by country l
- $\mathscr{E}_{kl,t}$: nominal exchange rate between country k and country l
- $\Gamma(\mathscr{B}_{k,t}^{l})$: portfolio adjustment costs to stabilize the model (Schmitt-Grohé and Uribe, 2003)

Households – Consumption Baskets

• Consumption C_k : aggregator of energy $(C_{kE,t})$ and non-energy $(C_{kM,t})$ baskets:

$$C_{k,t} = \left[\widetilde{\beta}_{k}^{\frac{1}{\gamma}} C_{kE,t}^{\frac{\gamma-1}{\gamma}} + (1 - \widetilde{\beta}_{k})^{\frac{1}{\gamma}} C_{kM,t}^{\frac{\gamma-1}{\gamma}}\right]^{\frac{\gamma}{\gamma-1}}$$

• Energy and non-energy: goods produced by energy and non-energy industries

$$C_{kE,t} = \left[\sum_{i \in I_E} \widetilde{\nu}_{ki}^{\frac{1}{\eta}} C_{ki,t}^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}, \quad C_{kM,t} = \left[\sum_{i \in I_M} \widetilde{\nu}_{ki}^{\frac{1}{t}} C_{ki,t}^{\frac{t-1}{t}}\right]^{\frac{t}{t-1}}$$

• Each energy and non-energy good combines varieties produced by different countries:

$$C_{ki,t} = \left[\sum_{l=1}^{K} \widetilde{\zeta}_{kli}^{\frac{1}{\delta}} C_{kli,t}^{\frac{\delta-1}{\delta}}\right]^{\frac{\delta}{\delta-1}}$$

Wage Setting

- In each country k, nominal wages are infrequently reset by a union (Erceg et al., 2000)
 - Wages are different across countries
 - But common across sectors within a country
- Wage NKPC for country k (log-linearized):

$$\pi_{wk,t} = \kappa_{wk} \left(\sigma \widehat{c}_{k,t} + \varphi \widehat{n}_{k,t} - \widehat{w}_{k,t} \right) + \beta \mathbb{E}_t \pi_{wk,t+1} + u_{k,t}^w$$

• Where $u_{k,t}^w$ is a wage cost-push shock that follows an AR(1) process

Model

- 1. Model Overview
- 2. Households
- 3. Firms
- 4. Monetary Authority
- 5. Market Clearing

Firms - Production I

• Firm f (sector i, country k) combines labor and intermediates:

$$Y_{fki,t} = A_{ki,t} \left[\widetilde{\alpha}_{ki}^{\frac{1}{\psi}} N_{fki,t}^{\frac{\psi-1}{\psi}} + \widetilde{\vartheta}_{ki}^{\frac{1}{\psi}} X_{fki,t}^{\frac{\psi-1}{\psi}} \right]^{\frac{\psi}{\psi-1}}$$

• Intermediates X_{fki} combines energy $X_{fkiE,t}$ and non-energy baskets $X_{fkiM,t}$:

$$X_{fki,t} = \left[\widetilde{\beta}_{ki}^{\frac{1}{\phi}} X_{fkiE,t}^{\frac{\phi-1}{\phi}} + (1 - \widetilde{\beta}_{ki})^{\frac{1}{\phi}} X_{fkiM,t}^{\frac{\phi-1}{\phi}}\right]^{\frac{\varphi}{\phi-1}}$$

· Energy and non-energy baskets: goods produced by energy and non-energy industries

$$X_{fkiE,t} = \left[\sum_{j \in I_E} \widetilde{\nu}_{kij}^{\frac{1}{\chi}} X_{fkij,t}^{\frac{\chi-1}{\chi}}\right]^{\frac{\chi}{\chi-1}}, \quad X_{fkiM,t} = \left[\sum_{j \in I_M} \widetilde{\nu}_{kij}^{\frac{1}{\xi}} X_{fkij,t}^{\frac{\xi-1}{\xi}}\right]^{\frac{\xi}{\xi-1}}$$

• Energy and non-energy goods combines varieties produced by different countries:

$$\mathbf{X}_{kij,t} = \left[\sum_{j=1}^{I} \widetilde{\boldsymbol{\zeta}}_{klij}^{\frac{1}{\mu}} \mathbf{X}_{klij,t}^{\frac{\mu-1}{\mu}}\right]^{\frac{\mu}{\mu-1}}$$

Aguilar, Domínguez-Díaz, Gallegos, Quintana: "The Transmission of Foreign Shocks in a Networked Economy" / Model

- Firms set prices à la Calvo in the **currency of destination** (local currency pricing paradigm, Devereux and Engel 2003)
- **Price NKPC** of sector *i* in country *k* **selling to foreign country** *l* (log-linearized):

$$\pi_{lki,t} = \kappa_{ki} (\widehat{\mathsf{mc}}_{ki,t} - \widehat{p}_{lki,t} - \widehat{q}_{kl,t}) + \beta \mathbb{E}_t \pi_{lki,t+1} + u_{ki,t}^p$$

- $\hat{q}_{kl,t}$ is the real exchange rate between country k and country l, equal to 1 if sold at home; $u_{ki,t}^p$ is a sectoral cost-push shock that follows AR(1) process
- mc_{ki}: marginal cost of sector *i* that will depend on:
 - Domestic wages w_k
 - Prices charged by domestic (p_{kj}) and international suppliers (p_{klj}) on intermediate goods
 - Costs of suppliers (wages, intermediate goods' prices...) through input-output linkages

• We assume there is an exogenous **price wedge** $\tau_{klij,t}$ between the price set by the exporting firm $\tilde{P}_{klj,t}$ and the actual price paid by the importing firm $P_{klij,t}$:

$$P_{klij,t} = \left(1 + \tau_{kli,t}\right) \widetilde{P}_{klj,t}$$

- τ_{lkij} : exogenous movements in import prices (e.g. energy) not triggered by changes in economic activity of the exporting country

$$\tau_{kli,t} = \rho_{1,kli}^{\tau} \tau_{kli,t-1} + \rho_{2,kli}^{\tau} \tau_{kli,t-2} + \varepsilon_{kli,t}^{\tau}$$

Model

- 1. Model Overview
- 2. Households
- 3. Firms
- 4. Monetary Authority
- 5. Market Clearing

• **Countries not members of a currency union**: Taylor rule that targets *domestic* headline inflation and domestic GDP:

$$i_{k,t} = \rho_{kr} i_{k,t-1} + (1 - \rho_{kr}) \phi_{k\pi} \pi_{k,t} + (1 - \rho_{kr}) \phi_{ky} \widehat{y}_{k,t} + \varepsilon_{k,t}^r$$
(1)

- Member countries of a currency union (K^{MU}):
 - Country $k^{MU} \in K^{MU}$ sets interest rates responding *union-wide* headline inflation and GDP:

$$i_{k^{\textit{MU}},t} = \rho_{\textit{MU}r} i_{k^{\textit{MU}},t-1} + \left(1 - \rho_{\textit{MU}r}\right) \phi_{\textit{MU}\pi} \pi_t^{\textit{MU}} + \left(1 - \rho_{\textit{MU}r}\right) \phi_{\textit{MU}y} \widehat{\mathcal{Y}}_t^{\textit{MU}} + \varepsilon_{\textit{MU},t}^r$$

- Remaining countries in K^{MU} peg their nominal exchange rate to k^{MU} :

$$\mathscr{E}_{k,k^{MU},t} = \mathscr{E}_{k,k^{MU}} \quad \forall k \in K^{MU}$$

Model

- 1. Model Overview
- 2. Households
- 3. Firms
- 4. Monetary Authority
- 5. Market Clearing

Market Clearing & GDP

• Labor market clears:

$$N_{k,t} = \sum_{i=1}^{I} N_{ki,t}$$

• Goods' market clears:

$$Y_{ki,t} = \sum_{l=1}^{K} \left(C_{lki,t} + \sum_{j=1}^{I} X_{lkji,t} \right) \quad \forall i \in I$$

• Bonds' market clears:

$$\sum_{l} B_{l,t}^{k} = 0, \quad \forall k \in K$$

• Nominal GDP $\mathscr{Y}_{k,t}$:

$$\mathscr{Y}_{k,t} = P_{kC,t}C_{k,t} + P_{k\mathsf{EXP},t}\mathsf{EXP}_{k,t} - P_{k\mathsf{IMP},t}\mathsf{IMP}_{k,t}$$

• Real GDP:

$$Y_{k,t} = \frac{\mathscr{Y}_{k,t}}{P_{kY,t}}$$

Calibration

Calibration – I

- Calibrate the model to **6 countries** (K = 6) and **44 sectors** within each country (I = 44):
 - Euro-Area: Spain (ES), Germany (DE), Italy (IT), France (FR), Rest of the Euro Area (REA)
 - Rest of the World
- Calibrate heterogeneous **price frequency adjustments** for each sector and country using data from Gautier *et al.* (2024)
- We linearize the model *by hand* so we can **read input-output matrix, labor shares, and consumption shares directly from the data** (ICIO Input-Output Tables, OECD; and Figaro, Eurostat)

Parameter	Description	Value	Target / Source
Households			
β	Discount factor	0.99	<i>R</i> = 4.5% p.a.
σ	Inv. Intertemp. Elast. Subs.	1	Standard Value
arphi	Inv. Frisch Elasticity	1	Chetty <i>et al.</i> (2011)
γ	Elast. Subst. E and M	0.4	Böhringer and Rivers (2021)
η	Elast. Subst. <i>E</i>	0.9	Atalay (2017)
ι	Elast. Subst. <i>M</i>	0.9	Atalay (2017)
δ	Trade Elasticity	1	Standard value
$\{\widetilde{eta}_k, \widetilde{ u}_{ki}, \widetilde{arepsilon}_{ki}, \widetilde{\zeta}_{kli}\}$	Quasi-shares consumption		ICIO tables (OECD)
θ_k^w	Calvo wage prob.	0.75	Christoffel <i>et al.</i> (2008)
Monetary Policy			
$ ho_{k,r}$	Interest Rate Smoothing	0.7	Standard Value
$\phi_{k,\pi}$	Reaction to Inflation	1.5	Galí (2015)
$\phi_{k,y}$	Reaction to real GDP	0.125	Galí (2015)

Parameter	Description	Value	Target / Source
Firms			
ψ_{ki}	Returns to scale	1	Constant returns to scale
ψ	Elast. Subst. N and X	0.5	Atalay (2017)
ϕ	Elast. Subst. E and M	0.4	Böhringer and Rivers (2021)
χ	Elast. Subst. M	0.2	Atalay (2017)
ξ	Elast. Subst. E	0.2	Atalay (2017)
μ	Trade Elasticity	1	Standard value
$\{\widetilde{\alpha}_{ki}, \widetilde{\vartheta}_{ki}, \widetilde{\beta}_{ki}, \widetilde{\nu}_{kij}, \widetilde{\upsilon}_{kij}, \widetilde{\zeta}_{kij}\}$	Quasi-shares production		ICIO tables (OECD)
\mathcal{M}_{ki}	Markups		Labor shares (Eurostat)
θ_{ki}^p	Calvo price prob.		Gautier <i>et al.</i> (2024)
Exogenous Shock Processes	•		
$ ho_{1kli}^{ au}$	Persistence price wedge shock	1.17	Brent crude oil
$\rho_{2,kli}^{\overline{\tau},m}$	Persistence price wedge shock	-0.2	Brent crude oil
$\sigma_{kli}^{ au}$	Std. Dev. price wedge shock	1	Standard Value

Results

The Transmission of an Increase of Energy Prices

Notes: IRFs to a 10% increase in import energy prices for Euro-Area wide variables.

- Energy shock: large spike of headline inflation on impact which dies out slowly
- Significant **pass-through to core inflation** ($\approx 20\%$ of headline) responsible for inflation persistence (Adolfsen *et al.*, 2024)

The Role of Production Networks - I

Notes: Cumulative IRF of headline (left panel) and core (right panel) inflation for the baseline and turning off the full, international, or national input-output structure. When turning off the IO structure, we always keep the use of energy as an intermediate input.

- Without IO: inflation dies much faster, responding $\approx 60\%$ (cumulative) of baseline with full IO
- International production networks (spillovers) important in driving the effects ($\approx 20\%$)

Aguilar, Domínguez-Díaz, Gallegos, Quintana: "The Transmission of Foreign Shocks in a Networked Economy" / Results

The Role of Production Networks - II

- For intuition: domestic currency pricing, fixed nominal exchange rates, and $\tau_{klijt} = \tau_{ljt}$.
- With sticky prices, intermediate goods' prices inherit persistence from past inflations and shocks, amplified through IO linkages:

$$\boldsymbol{p}_{t+h} = (\boldsymbol{I} - \boldsymbol{\Delta}\boldsymbol{\Omega})^{-1} \left[\boldsymbol{\Delta}\boldsymbol{\Omega}\boldsymbol{R}^{h}\boldsymbol{\tau}_{t} + (\boldsymbol{I} - \boldsymbol{\Delta}) \sum_{s=1}^{h} \boldsymbol{\pi}_{t+h-s} + \boldsymbol{\Delta}\boldsymbol{\alpha} \sum_{s=0}^{h} \boldsymbol{\pi}_{t+h-s}^{w} + \boldsymbol{\Delta}\boldsymbol{K}^{-1}\boldsymbol{\beta} \mathbb{E}_{t}\boldsymbol{\pi}_{t+h+1} \right]$$

 $\Omega\equiv$ input-output, $K\equiv$ Slope PC, $\Delta=(I-K)^{-1}K, \alpha\equiv$ labor share, $R\equiv$ Shock persistence,

- Rigidity-adjusted Leontief inverse $(I \Delta \Omega)^{-1}$ amplifies
 - The impact and **exogenous persistence** of shock $\Delta \Omega R^h au_t$
 - ...and the intrinsic persistence induced by staggered price- and wage-setting
- More persistent dynamics of prices feed into firms' marginal costs and hence inflation:

$$\widehat{\mathbf{mc}}_{t}^{n} = \boldsymbol{\alpha} \boldsymbol{w}_{t} + \boldsymbol{\Omega} \left(\boldsymbol{\tau}_{t} + \boldsymbol{p}_{t} \right)$$

The Role of Production Networks - III

Notes: Left panel: CIRF of headline inflation and contributions of upstream and downstream sectors (Antràs *et al.*, 2012). Right panel: contributions of upstream and downstream sectors as a percent of total headline inflation.

- · Short-run inflation dynamics are driven by upstream sectors, but decaying over time
- Downstream sectors drive the persistent increase of headline inflation over time, accounting for up to 80% of headline inflation

The Role of Production Networks - IV

Notes: CIRF of headline inflation in the baseline with IO minus the CIRF of headline inflation in the counterfactual without IO, and contributions to this difference of upstream and downstream sectors.

• Downstream sectors drive the majority of inflation amplification through production networks

Cross-Country Heterogeneity - I

Notes: Cumulative IRF of headline (left panel) and core (right panel) inflation for Spain (ES) and Germany (DE).

- **ES** strongest headline response on impact but dies out the quickest: *large weight of energy in CPI* but with more *upstream production structure* core inflation raises the least
- DE shows the opposite: less weight of energy in CPI but with downstream and long production chains

Cross-Country Heterogeneity - II

Notes: Cumulative IRF of headline inflation under common IO structure for Spain (ES) and Germany (DE).

- · Homogenizing the IO structure reduces the gap between headline inflation dynamics in ES vs. DE
- Remaining difference explained through (slightly) more flexible prices in DE

The Interaction Between Monetary Policy and Production Networks - I

Notes: Left panel: CIRF of headline inflation to a monetary policy shock (easing) in the baseline and without IO. Right panel: percent change in inflation volatility (conditional on energy price shocks) with a lower coefficient on inflation in the Taylor rule.

- Production networks amplify the increase of inflation volatility from a weaker mon. pol. response
- Despite production networks generating *more* monetary non-neutrality (Nakamura and Steinsson, 2010; Rubbo, 2023)

The Interaction Between Monetary Policy and Production Networks - II

Notes: Percent change in inflation volatility (conditional on energy price shocks) adding inflation expectations in the Taylor rule.

- Reacting to expected inflation reduces volatility by more under IO
- IO induces persistence in inflation, amplifying the sensitivity of expected inflation and policy rate

Conclusions

Conclusions

- We provide an international multi-sector macroeconomic model with input-output linkages that can accommodate the disaggregated and international nature of macroeconomic shocks
- We analyze the impact and transmission of rising imported energy prices:
 - Production networks important transmission channel to core inflation, increasing persistence of inflation dynamics
 - Heterogeneity in production structures gives rise to cross-country heterogeneity in inflation developments
 - Production networks amplify the increase in inflation volatility resulting from a weaker systematic response of monetary policy to inflation

- ADOLFSEN, J. F., FERRARI MINESSO, M., MORK, J. E. and VAN ROBAYS, I. (2024). Gas price shocks and euro area inflation. *Journal of International Money and Finance*, p. 103183.
- ANTRÀS, P., CHOR, D., FALLY, T. and HILLBERRY, R. (2012). Measuring the upstreamness of production and trade flows. *American Economic Review*, **102** (3), 412–16.
- ATALAY, E. (2017). How important are sectoral shocks? American Economic Journal: Macroeconomics, **9** (4), 254–280.
- BÖHRINGER, C. and RIVERS, N. (2021). The energy efficiency rebound effect in general equilibrium. Journal of Environmental Economics and Management, **109**, 102508.
- CHETTY, R., GUREN, A., MANOLI, D. and WEBER, A. (2011). Are micro and macro labor supply elasticities consistent? a review of evidence on the intensive and extensive margins. *American Economic Review*, **101** (3), 471–75.
- CHRISTOFFEL, K. P., COENEN, G. and WARNE, A. (2008). The new area-wide model of the euro area: a micro-founded open-economy model for forecasting and policy analysis.

References (2/3)

- DEVEREUX, M. B. and ENGEL, C. (2003). Monetary Policy in the Open Economy Revisited: Price Setting and Exchange-Rate Flexibility. *The Review of Economic Studies*, **70** (4), 765–783.
- ERCEG, C. J., HENDERSON, D. W. and LEVIN, A. T. (2000). Optimal monetary policy with staggered wage and price contracts. *Journal of Monetary Economics*, **46** (2), 281–313.
- GALÍ, J. (2015). Monetary policy, inflation, and the business cycle: An introduction to the new Keynesian framework and its applications: Second edition.
- GAUTIER, E., CONFLITTI, C., FABER, R. P., FABO, B., FADEJEVA, L., JOUVANCEAU, V., MENZ, J.-O., MESSNER, T., PETROULAS, P., ROLDAN-BLANCO, P. *et al.* (2024). New facts on consumer price rigidity in the euro area. *American Economic Journal: Macroeconomics*.
- NAKAMURA, E. and STEINSSON, J. (2010). Monetary Non-neutrality in a Multisector Menu Cost Model. *The Quarterly Journal of Economics*, **125** (3), 961–1013.
- RUBBO, E. (2023). Networks, phillips curves, and monetary policy. *Econometrica*, **91** (4), 1417–1455.

References (3/3)

SCHMITT-GROHÉ, S. and URIBE, M. (2003). Closing small open economy models. *Journal of International Economics*, **61** (1), 163–185.

The Role of Production Networks - AI

Notes: Cumulative IRF of headline (left panel) and core (right panel) inflation for the baseline and turning off the full, international, or national input-output structure. When turning off the IO structure, we always keep the use of energy as an intermediate input.