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Abstract

This paper shows how large-dimensional dynamic factor models are suit-
able for structural analysis. We establish sufficient conditions for identifica-
tion of the structural shocks and the associated impulse-response functions.
In particular, we argue that, if the data follow an approximate factor struc-
ture, the “problem of fundamentalness”, which is intractable in structural
VARs, can be solved provided that the impulse responses are sufficiently
heterogeneous. Finally, we propose a consistent method (and n, T rates
of convergence) to estimate the impulse-response functions, as well as a
bootstrapping procedure for statistical inference.

JEL subject classification : E0, C1

Key words and phrases : Dynamic factor models, structural VARs, identification,
fundamentalness
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Non Technical Summary

Agents and policy makers have access to rich information, coming from data
on different sectors of the economy. However, standard macro time series models
are typically based on few selected variables. Recent econometric literature has
introduced models that can exploit large data-sets and still retain simplicity (par-
simony). These models - known in the literature as dynamics factor models - are
based on the idea that the macroeconomy is driven by few shocks, common to all
variables. Since a robust empirical characteristics of macroeconomic time series
is that they exhibit strong co-movements, common shocks generate the bulk of
the observed dynamics in macro variables.

Dynamic factor models have been shown to be successful to forecast macroe-
conomic variables, but only few applications have considered these models for
identifying and estimating structural shocks, as, for example, it is done in the
VAR literature.

The aim of this paper is to develop the estimation and identification theory
needed to study structural shocks and their impulse response functions in dynamic
factor models.

The analysis of the paper and the empirical application we present show that
dynamic factor models are suitable for structural macroeconomic modelling and
constitute an interesting alternative to structural VARs. In particular, if the
information used by economic agents cannot be captured by the small set of
variables considered in a typical VAR, an econometric model based on large in-
formation can recover the structural shocks while the small VAR cannot. The
factor model framework is also useful when the aim is to study the effect of macro-
shocks on many variables in the economy, possibly sectoral and regional, rather
than studying the effect of these shocks to core macro variables only.
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1 Introduction

Recent literature has shown that large-dimensional approximate (or generalized)
dynamic factor models can be used successfully to forecast macroeconomic vari-
ables (Forni, Hallin, Lippi and Reichlin, 2005, Stock and Watson, 2002a, 2002b,
Boivin and Ng, 2003, Giannone, Reichlin and Sala, 2005). These models assume
that each time series in the dataset can be expressed as the sum of two orthog-
onal components: the “common component”, capturing that part of the series
which comove with the rest of the economy and the “idiosyncratic component”
which is the residual. The vector of the common components is highly singular,
i.e. is driven by a very small number (as compared to the number of variables)
of shocks (the ”common shocks” or ”common factors”) which generate comove-
ments between macro series. Indeed, evidence based on different datasets points
to the robust finding that few shocks explain the bulk of dynamics of macro data
(see Sargent and Sims, 1977 and Giannone, Reichlin and Sala, 2002 and 2005).
If the common component of the variable to be predicted is large, a forecasting
method based on a projection on linear combinations of these shocks performs
well because, while being parsimonious, it captures the relevant comovements in
the economy.

The present paper argues that the scope of dynamic factor models goes beyond
forecasting. Our aim is to open the black box of these models and show how
statistical constructs such as factors can be related to macroeconomic shocks and
their propagation mechanisms.

We define macroeconomic shocks those structural sources of variation that are
cross-sectionally pervasive, i.e. that significantly affect most of the variables of
the economy, while we call idiosyncratic the shocks that are specific to a single
variable or a small group of variables, hence capturing either sectoral-local dy-
namics (let us say ”micro” dynamics) or measurement error. This has a natural
formalization within large-dimensional approximate factor models. More pre-
cisely, we assume that a q-dimensional vector of macroeconomic shocks drives
the common components of a macroeconomic panel xxxt of size n, with n very large
with respect to q. Our aim is the identification of the macroeconomic shocks
and of the impulse response function of the common components of the x’s to uuut,
whereas the idiosyncratic components are disregarded.

Firstly, we claim that ideas and methods of structural VAR analysis can be
fruitfully imported in dynamic factor models. We start with the estimate of
an autoregression of the common-components vector. Thus an autoregression
of dimension n, the size of the panel, with a residual vector of dimension q,
the number of factors. Calling vvvt the estimated residual vector, the vector of
structural shocks, call it uuut, is then obtained as in structural VAR analysis (SVAR)
by linearly transforming vvvt in order to fulfill restrictions that derive from economic
theory. All the identification schemes proposed in the SVAR literature, such as
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long-run or impact effects can be imposed. The key difference is that the number
of shocks is smaller than the number of variables.

Secondly, we show that the fundamentalness problem, a weakness of VAR
analysis, finds a satisfactory solution within our approach. Let us recall that in
SVAR analysis, even when economic theory is sufficient to determine just one
linear transformation of the estimated residuals, still identification is achieved
by arbitrarily assuming that the structural shocks are fundamental with respect
to the variables included in the model, i.e. that they can be obtained as linear
combinations of present and past values of such variables. This assumption cannot
hold true if economic agents have larger information (on the fundamentalness
issue see Hansen and Sargent, 1991, Lippi and Reichlin, 1993 and 1994 and,
more recently, Chari, Kehoe and Mcgrattan, 2005, Fernandez-Villaverde, Rubio-
Ramirez and Sargent, 2005, Giannone and Reichlin, 2006).

The fundamentalness problem depends on a somewhat artificial feature of the
SVAR approach, namely that the number of variables used to estimate the struc-
tural vector uuut must be equal to the dimension of uuut, so that the space spanned
by present an past values of xxxt can be “too small” to recover uuut. This equal-
dimension constraint is relaxed in the structural dynamic factor model proposed
in this paper. We will argue that when the number of variables is large as com-
pared to the number of structural shocks, non fundamentalness of the structural
shocks is unlikely, since it would require economically meaningless homogeneity
restrictions on the impulse-response functions. The economic intuition of this
claim is that in the factor model present and past information used to recover uuut

is not confined to q variables, as in VAR models, but ranges over the set of all
available macroeconomic series, so that the ”superior information” argument no
longer holds (on the importance of this feature for monetary models, see Bernanke
and Boivin, 2003 and Giannone, Reichlin and Sala, 2002 and 2005).

Our work is closely related to the recently introduced FAVARmodel (Bernanke,
Boivin and Eliasz, 2005). The FAVAR approach consists in augmenting the VAR
by common factors precisely as a device to condition on a larger information set.
We go one step further and give the factors themselves a structural interpretation.

The factor model employed here should be distinguished from what studied
in the traditional factor literature (see Sargent and Sims, 1977, Geweke, 1977,
Geweke and Singleton, 1981, Altug, 1989, Sargent, 1989, Giannone, Reichlin and
Sala, 2006). Since our model is approximate and feasible for large panels we need
less stringent assumptions to identify the common from the idiosyncratic compo-
nent (we do not need to impose cross-sectional orthogonality of the idiosyncratic
residuals).

The paper is organized as follows. In Section 2, we define the model and dis-
cuss the conditions needed to recover the common components from the panel.
Section 3 develops the structural analysis by showing conditions needed for recov-
ering fundamental shocks and identify them uniquely. Section 4 studies consis-
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tency and rates of convergence for the estimation of the shocks and the impulse re-
sponse functions. Section 5 analyses an empirical example on US macroeconomic
data which revisits the results of King et al. (1991) in light of our discussion on
fundamentalness.

2 The Model

The dynamic factor model used in this paper is a special case of the generalized
dynamic factor model of Forni, Hallin, Lippi and Reichlin (2000) and Forni and
Lippi (2001). Such model, and the one used here, differs from the traditional
dynamic factor model of Sargent and Sims (1977) and Geweke (1977), in that the
number of cross-sectional variables is infinite and the idiosyncratic components
are allowed to be mutually correlated to some extent, along the lines of Cham-
berlain (1983), Chamberlain and Rothschild (1983) and Connor and Korajczyk
(1988). Closely related models have been recently studied by Stock and Watson
(2002a, 2002b), Bai and Ng (2002) and Bai (2003).

Denote by xxxT
n = (xit)i=1,...,n; t=1,...,T an n×T rectangular array of observations.

We make two preliminary assumptions:

PA1. xxxT
n is a finite realization of a real-valued stochastic process

XXX = {xit, i ∈ N, t ∈ Z , xit ∈ L2(Ω,F , P )}

indexed by N × Z, where the n-dimensional vector processes

{xxxnt = (x1t · · · xnt)
′, t ∈ Z}, n ∈ N,

are stationary, with zero mean and finite second-order moments ΓΓΓnk =
E[xxxntxxx

′
n,t−k], k ∈ N.

PA2. For all n ∈ N, the process {xxxnt, t ∈ Z} admits a Wold representation xxxnt =∑∞
k=0 Cn

kwwwn,t−k, where the full-rank innovations wwwnt have finite moments of
order four, and the matrices Cn

k = (Cn
ij,k) satisfy

∑∞
k=0 |Cn

ij,k| < ∞ for all
n, i, j ∈ N.

We assume that each variable xit is the sum of two unobservable components,
the common component χit and the idiosyncratic component ξit. The common
component is driven by q common shocks uuut = (u1t u2t · · · uqt)

′. Note that q is
independent of n (and small as compared to n in empirical applications). More
precisely:

FM0. (Dynamic-factor structure of the model) Defining χχχnt = (χ1t . . . χnt)
′ and

ξξξnt = (ξ1t . . . ξnt)
′, we suppose that

xxxnt = χχχnt + ξξξnt

= Bn(L)uuut + ξξξnt,
(2.1)
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where uuut is a q-dimensional orthonormal white noise vector.

Moreover, we assume that

Bn(L) = AnN(L), (2.2)

where (i) N(L) is an r×q absolutely summable matrix function of L, (ii) An

is an n× r matrix, nested in Am for m > n. Defining the r× 1 vector fff t as

fff t = N(L)uuut, (2.3)

(2.1) can be rewritten in the static form

xxxnt = Anfff t + ξξξnt (2.4)

In the sequel, we shall use the term static factors to denote the r entries
of fff t, whereas the common shocks uuut will be also referred to as dynamic
factors.

Note that under (2.2) all the variables χit, i = 1, . . . ,∞, belong to the finite
dimensional vector space spanned by fff t.

The common shocks uuut are assumed to be structural sources of variation.
Therefore the model (2.1), (2.3), (2.4) is a structural factor model. We will es-
tablish conditions under which uuut can be identified and estimated by means of
the observable variables xit. We start in this section by recalling the assumptions
necessary for identification and estimation of the common components χit.

FM1. (Orthogonality of common and idiosyncratic components) uuut is orthogonal
to ξiτ , i ∈ N, t ∈ Z, τ ∈ Z.

Indicate by Γχ
nk and Γξ

nk the k-lag covariance matrix of χχχnt and ξξξnt respectively.
Denote by µχ

nj and µξ
nj the j-th eigenvalue, in decreasing order, of Γχ

n0 and Γξ
n0

respectively.

FM2. (Pervasiveness of common dynamic and static factors)

(a) The matrix N(e−iθ) has (maximum) rank q for θ almost everywhere in
[−π π].

(b) There exists constants c1, c1, ..., cr, cr such that

0 < cr ≤ lim inf
n→∞

n−1µχ
nr ≤ cr < ... < c1 ≤ lim inf

n→∞
n−1µχ

n1 ≤ c1 < ∞

FM3. (Non-pervasiveness of the idiosyncratic components) There exists a real Λ
such that µξ

n1 ≤ Λ for any n ∈ N.
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FM3 limits the cross-correlation generated by the idiosyncratic shock. It
includes the case in which the idiosyncratic components are mutually orthogonal
with an upper bound for the variances. Mutual orthogonality is a standard,
though highly unrealistic assumption in factor models. Condition FM3 relaxes
such assumption by allowing for a limited amount of cross-correlation among the
idiosyncratic components.

Assumption FM2 implies that each common shock uit is pervasive in the sense
that it affects all items of the cross-section as n increases. Precisely, denoting by
λχ

nk(θ), k = 1, 2, . . . , n, the eigenvalues of the spectral density matrix Σχ
n(θ), in

decreasing order at each frequency, Assumption FM2 implies that λχ
nq(θ) → ∞ as

n → ∞, for θ a.e. in [−π π]. This implies that (I) the common components χit are
identified (see Chamberlain and Rothschild, 1983), (II) the number q is unique,
i.e. a representation (2.1)-(2.4) with a different number of dynamic factors is not
possible (see Forni and Lippi, 2001).

Note also that FM2(b) entails that, for n sufficiently large, A′
nAn/n has full

rank r. This, jointly with identification of the common components χit, implies
that the space spanned by the r static factors fff t is identified, or, equivalently,
that the r static factors fff t are identified up to a linear contemporaneous trans-
formation.

In conclusion, given a model of the form (2.1)-(2.4), then under FM0-FM3,
the integers q and r, the components χit and ξit, and the space spanned by the
static factors fff t are identified.

The following rational specification of model (2.1)-(2.4) provides a dynamic
representation which is parsimonious and fairly general. Assume that the entries
of Bn(L) are rational functions and let φjn(L), j = 1, . . . , q, be the least com-
mon multiple of the denominators of the entries on the j-th column of Bn(L).
Elementary polynomial and matrix algebra shows that

Bn(L) = Cn(L)Ψn(L),

where Cn(L) is a finite moving average n × q matrix and Ψn(L) is the q × q
diagonal matrix having

(
φ1n(L)−1 φ2n(L)−1 · · · φqn(L)−1

)

on the main diagonal. Further assumptions are needed to ensure that all the
variables χit belong to a finite dimensional vector space. These are:
(a) Cn(L) = Cn

0 + Cn
1 L + · · · + Cn

s Ls, i.e. there exists a maximum for the length
of the moving averages,
(b) Ψn(L) is independent of n and can therefore be denoted by Ψ(L), with φj(L)−1

denoting its (j, j) entry.
The rational specification of our model can then be written as
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xxxnt = Cn(L)Ψ(L)uuut + ξξξnt.
1 (2.5)

Model (2.5) can be tentatively put in the form (2.3)-(2.4) by setting r = q(s+1),
An = (Cn

0 Cn
1 · · · Cn

s ), fff t = (uuu′
t uuu′

t−1 · · · uuu′
t−s)

′ and

N(L) = (Ψ(L)′ Ψ(L)′L · · · Ψ(L)′Ls)
′
.

FM2(a) is trivially fulfilled. However, FM2(b) requires that the first q(s + 1)
eigenvalues µχ

nj diverge as n → ∞. If no restrictions hold for the entries of the
matrices Cn

h (assume for instance that they are independently drawn from the
same distribution), then FM2(b) is fulfilled, otherwise r is smaller than q(s + 1)
and the model for the static factors is less obvious. The following elementary
specification of (2.5), will help to understand the interplay between assumption
FM2(b) and the parameters q and r.

Example. Part A Suppose that s = 1, q = 1 and Ψ = 1, so that the common
components in (2.5) can be written as:

χit = ai(1 − ciL)ut

The number of static factors r depends on the heterogeneity in the panel:

(i) Assume that the restriction ci = c holds. In this case FM2(b) is fulfilled by
the first eigenvalue provided that

0 < a ≤ 1

n

n∑

i=1

a2
i ≤ a < ∞

as n → ∞, but not by the second. As a consequence r = 1, ft = (1 − cL)ut and

An = (a1 a2 · · · an)
′.

(ii) If no restriction holds, then also the second eigenvalue fulfills FM2(b) provided
that ci 6= cj for infinitely many couples (i, j). Thus r = 2, fff t = (ut, ut−1)

′ and

An =

(
a1 a2 · · · an

a1c1 a2c2 · · · ancn

)′

Note that in case (i), with r = q = 1, though the static factor ft = (1 − cL)ut

is identified, identification of ut would require an assumption on c. In Section

1We might assume that Ψ(L) = Φ(L)−1, where Φ(L) is any (not necessarily di-
agonal) invertible q × q finite order matrix polynomial. However, as Cn(L)Φ(L)−1 =
[Cn(L)Φad(L)] [Iq det Φ(L)−1], which is (2.5) after simplifying some of the roots of det Φ(L),
no gain in generality would be achieved.
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3 we will see that this difference between cases (i) and (ii) is crucial for the
identification of the structural shocks.

Our short analysis of both model (2.5) and the example suggest that the more
heterogeneous the dynamic responses of the χ’s to uuut, the bigger is r with respect
to q, i.e. the bigger is the number of static factors which is necessary to transform
representation (2.1) into (2.4).

To conclude this section, it only remains to observe that representation (2.3)-
(2.4) is not unique under FM0-FM3. Identification of the structural shocks uuut and
the coefficients of the filter Bn(L) calls for further informational and economic
assumptions and will be thoroughly discussed in the next section.

3 Identification of the structural shocks

3.1 Response heterogeneity, n large and fundamentalness

3.3.1 Let us begin by briefly recalling some basic notions on fundamental repre-
sentations of stationary stochastic vectors. Assume that the n stochastic vector
µµµt admits a moving average representation, i.e. that there exist a q-dimensional
white noise vvvt and an n × q, one-sided, square-summable filter K(L), such that

µµµt = K(L)vvvt. (3.6)

If vvvt belongs to the space spanned by present and past values of µµµt we say that
representation (3.6) is fundamental and that vvvt is fundamental for µµµt (the con-
dition defining fundamentalness is also referred to as the miniphase assumption;
see e.g. Hannan and Deistler, 1988, p. 25). With no substantial loss of generality
we can suppose that q ≤ n and that vvvt is full rank. Moreover, for our purpose,
we can suppose that the entries of K(L) are rational functions of L and that the
rank of K(z) is maximal, i.e. q, except for a finite number of complex numbers.
Then:

(F) Representation (3.6) is fundamental if and only if the rank of K(z) is q for
all z such that |z| < 1 (see Rozanov, 1967, Ch. 1, Section 10, and Ch. 2,
p. 76).

Assuming that (3.6) is fundamental, all fundamental white-noise vectors zzzt

are linear transformations of vvvt, i.e. zzzt = Cvvvt (see Proposition 2 below). Non
fundamental white-noise vectors result from vvvt by means of linear filters that
involve the so-called Blaschke matrices (see e.g. Lippi and Reichlin, 1994).

A fundamental white noise naturally arises with linear prediction. Precisely,
the prediction error

wwwt = µµµt − Proj(µµµt|µµµt−1, µµµt−2, . . .)

12
ECB 
Working Paper Series No 712
January 2007



is white noise and fundamental for µµµt. As a consequence, when estimating an
ARMA with forecasting purposes, the MA matrix polynomial is always chosen
to be invertible, which implies fundamentalness.

Fundamentalness plays also an important role for the identification of struc-
tural shocks in SVAR analysis. SVAR analysis starts with the projection of a
full rank n-dimensional vector µµµt on its past, thus producing an n-dimensional
full rank fundamental white noise wwwt. The structural shocks are then obtained
as a linear transformation Awwwt, the matrix A resulting from economic theory
statements, which is tantamount to assuming that the structural shocks are fun-
damental. Fundamentalness has here the effect that the identification problem
is enormously simplified. However, as pointed out in the literature mentioned in
the introduction, economic theory, in general, does not provide support for funda-
mentalness, so that all representations that fulfill the same economic statements
but are non fundamental are ruled out with no justification.

Our main point is that the situation changes dramatically if structural anal-
ysis is conducted assuming that n > q. Precisely, as we shall see below, non
fundamentalness is a generic property for n = q, while it is non generic for n > q.
Thus the question “why assuming fundamentalness?”, which is legitimately asked
when n = q, is replaced by “why should we care about non fundamentalness?”
when n > q.

An easy and effective illustration can be obtained assuming that q = 1, that
the entries of K(L) = (K1(L) K2(L) · · · Kn(L))′ are polynomials whose degree
does not exceed s, so that K(L) is parameterized in Rn(s+1). In this case, if
n = q = 1, non fundamentalness translates into the condition that no root of
K1(z) has modulus smaller than unity. Continuity of the roots of K1(z) implies
that non fundamentalness is generic, i.e. that if it holds for a point κκκ in the
parameter space it holds also within a neighborhood of κκκ.

On the other hand, if n > q, by (F), non fundamentalness implies that the
polynomials Kj(z) have a common root. As a consequence, their coefficients must
fulfill n − 1 equality constraints (see e.g. van der Waerden, 1953, p. 83). Non
fundamentalness is therefore non generic.

This analytic argument has a forceful economic counterpart. Suppose for ex-
ample that our variables are driven by two macroeconomic shocks, a monetary
and a technology shock, so that the structural white noise vvvt is 2-dimensional. Let
the first two variables in µµµt be the common components of aggregate output and
consumption. The fundamentalness problem is that, in general, we do not know if
vvvt can be recovered from present and past observations on output and consump-
tion. However, if µµµt contains other variables, say, the common components of
investment, employment, industrial production, etc., then non fundamentalness
of vvvt, with respect to µµµt, is possible only if the responses of all such variables to vvvt

are forced to follow very special patterns. Thus in a framework in which the num-
ber of variables is larger than the number of shocks, a reasonable heterogeneity in
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the way different variables respond to the shocks provides a sound motivation for
the fundamentalness assumption and for its consequences on identification (see
Section 3.2 for further details on this example).

3.1.2 The general discussion above will now be adapted to our specification of the
dynamic factor model. We have seen in Section 2 that under FM0 heterogeneity
of the dynamic responses implies that r is big as compared to q. Further analysis
of heterogeneity in the example of Section 2 and the rational model (2.5) will
provide support to the assumption that N(L) is left invertible, i.e. there exists a
one-sided square-summable q × r filter G(L) such that G(L)N(L) = Iq.

Example. Part B Still assuming

χit = ai(1 − ciL)ut,

heterogeneity of the dynamic responses (no restrictions) implies r = 2. In this
case fff t = N(L)ut takes the form

(
ut

ut−1

)
=

(
1
L

)
ut.

Obviously N(L) has the left inverse (1 0), so that ut is fundamental for fff t.
Moreover, since r = 2, FM2 implies that for n large enough there must be a
couple (i, j) such that ai 6= 0, aj 6= 0 and ci 6= cj. Then

ut =
ajcjχit − aiciχjt

aiaj(cj − ci)
,

so that ut is fundamental for the whole set of the χ’s (actually for the two-
dimensional vector (χit χjt)). Note that this result holds independently of the
values taken by the coefficients ci. It holds in particular even when ci > 1 for all
i, so that ut is not fundamental for any of the χ’s.

Conversely, the restriction ci = c, i.e. homogeneity, implies r = q = 1 and
fff t = N(L)ut takes the form

ft = (1 − cL)ut.

Here we are precisely in the VAR situation. The system is square. Either some
extra information is available to motivate the assumption that |c| < 1, or the
assumption that N(L) is invertible is ad hoc.

It is easily seen that the results obtained for the example, left invertibility
of N(L) in particular, generalize to model (2.5) in the case when no restrictions
hold. In that case the dynamic responses are most heterogeneous and therefore
r = q(s+1). As already seen in Section 2, N(L) = (Ψ(L)′ Ψ(L)′L · · · Ψ(L)′Ls)′.
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Setting G(L) = (Ψ(L)−1 0q · · · 0q), where 0q is a q × q matrix of zeros, we see
that G(L)N(L) = Iq. If restrictions hold among the entries of Bn(L), Cn(L)
in the rational case, obtaining N(L) is less obvious. We do not need a detailed
treatment of the problem. An example is the case ci = c above.

The above discussion motivates Assumption FM4 as a most likely consequence
of the heterogeneity of the dynamic responses to uuut. Proposition 1 shows that
FM4, jointly with FM2, imply fundamentalness.

(FM4) (Fundamentalness) There exists a q × r one-sided filter G(L) such that
G(L)N(L) = Iq.

Proposition 1 If FM0-FM4 are satisfied, uuut is fundamental for χχχnt for n suf-
ficiently large and therefore fundamental for χit, i = 1, . . . ,∞. Moreover, uuut

belongs to the space spanned by present and past values of xit, i = 1, . . . ,∞, i.e.
the shocks uht can be recovered as limits of linear combinations of the variables
xit.

Proof. As already observed, FM2 implies that A′
nAn is full rank for n sufficiently

large. Setting, Sn(L) = G(L) (A′
nAn)

−1 A′
n, where G(L) satisfies FM4, we have

Sn(L)xxxnt = Sn(L)χχχnt + Sn(L)ξξξnt. Now

Sn(L)χχχnt = G(L) (A′
nAn)

−1
A′

nAnfff t = G(L)fff t = G(L)N(L)uuut = uuut.

Therefore uuut lies in the space spanned by present and past values of χχχnt. Moreover,
Sn(L)ξξξnt = G(L) (A′

nAn)
−1

A′
nξξξt converges to zero in mean square by assumptions

FM2 and FM3. Q.E.D.

Consider now the orthogonal projection of fff t on the space spanned by its past
values:

fff t = Proj(fff t | fff t−1, fff t−2, . . . , ) + wwwt,

where wwwt is the r-dimensional vector of the residuals. Under our assumptions, wwwt

has rank q. Moreover, by the same argument used to prove Proposition 2 (see
the next subsection), wwwt = Ruuut, where R is a maximum-rank r× q matrix. It can
be remarked that:
(a) For model (2.5), with Ψ(L) = Iq and no restrictions, the projection above
requires only one lag. The intuition is that when r > q and the panel dynam-
ics are very heterogenous, information contained in lagged values of fht can be
substituted by cross-sectional information (just the same reason motivating fun-
damentalness).
(b) If we relax the assumption Ψ(L) = Iq, as the reader can easily check, the
orthogonal projection requires only a finite number of lags, one lag being sufficient
if the order of the polynomials appearing in the denominators of Ψ(L) is not
greater than s + 1.
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As a consequence, a specification of FM4 as

fff t = F1fff t−1 + · · · + Fmfff t−m + Ruuut

does not seem to cause a dramatic loss of generality, even when m = 1. In the
sequel we will adopt the VAR(1) specification:

(FM4)′ (Fundamentalness: VAR(1) specification) The r-dimensional static factors
fff t admit a VAR(1) representation

fff t = Ffff t−1 + Ruuut (3.7)

where F is r × r and R is a maximum-rank matrix of dimension r × q.

Summing up, a large n and heterogeneity of the dynamic responses of the
χ’s to uuut makes fundamentalness of uuut with respect to the χ’s most plausible. In
our model dynamic heterogeneity implies that r > q and that, most likely, N(L)
is invertible, which implies fundamentalness. Lastly, with no significant loss of
generality, the model for fff t can be written as a VAR(1).

3.2 Economic conditions for shocks identification

Proposition 1 ensures that under Assumptions FM0-FM4 uuut is fundamental for
the common components χit and can be recovered by using past and present
values of the observable variables xit. Our next result shows that under the same
assumptions uuut is identified up to a static rotation.

Proposition 2 Consider the common components of model (2.1):

χχχnt = Bn(L)uuut. (3.8)

If
χχχnt = Cn(L)vvvt (3.9)

for any n ∈ N, where vvvt is a q-dimensional fundamental orthonormal white noise
vector, then representation (3.9) is related to representation (3.8) by

Cn(L) = Bn(L)H (3.10)

vvvt = H ′uuut,

where H is a q × q unitary matrix, i.e. HH ′ = Iq.

Proof. Projecting vvvt entry by entry on the linear space Ut spanned by the present
and the past of uht, h = 1, . . . , q we get

vvvt =
∞∑

k=0

Hkuuut−k + rrrt, (3.11)
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where rrrt is orthogonal to uuut−k, k ≥ 0. Now consider that Ut and the space
spanned by present and past of the χit’s, call it Xt, are identical, because the
entries of χχχt−k, k ≤ 0, belong to Ut by equation (3.8), while the entries of uuut−k,
k ≤ 0, belong to Xt by condition FM4. The same is true for Xt and the space
spanned by present and past of the vht’s, call it Vt, so that Ut = Vt. Hence rrrt = 0.
Moreover, serial non-correlation of the uht’s imply that

∑∞
k=1 Hkuuut−k must be

the projection of vvvt on Ut−1, which is zero because Ut−1 = Vt−1. It follows that
vvvt = H0uuut. Orthonormality of vvvt implies that H0 is unitary H0H

′
0 = I. QED

Since fundamentalness of the structural shocks can be assumed in the dynamic
factor model framework, identification is reduced to the choice of a matrix H
such that economically motivated restrictions on the matrix Bn(L)H are fulfilled.
For instance, identification can be achieved by maximizing or minimizing an
objective function involving Bn(L)H (see, for example, Giannone, Reichlin and
Sala, 2005). An alternative is to impose zero restrictions either on the impact
effects Bn(0)H or the long-run effects Bn(1)H0 or both. In this case we have to
impose q(q−1)/2 restrictions (since orthonormality entails q(q+1)/2 restrictions).
Notice that, once the conditions FM0-FM4 are satisfied, the number of economic
identification restrictions we need to identify the shocks depend on q and not on
n. This is an advantage for structural analysis, since, provided q is small, we need
few restrictions for identification while we are not limited on the informational
assumptions (size of the panel).

A comparison with identification in SVAR analysis is in order here. To sim-
plify the presentation, suppose, like in the example at the end of Section 3.3.1,
that q = 2, that we are interested in the impulse-response functions of the first
two common components to the structural shocks u1t and u2t, and that our eco-
nomic restrictions are sufficient to identify the matrix H. We have χχχnt = Bn(L)uuut,
with (

χ1t

χ2t

)
= B2(L)

(
u1t

u2t

)
(3.12)

being the subsystem of interest. Now, (u1t u2t)
′ is fundamental with respect to

χχχnt, but, as already noted in Section 3.1, is not necessarily fundamental with
respect to (χ1t χ2t)

′, i.e. representation (3.12) is not necessarily fundamental. By
contrast, if a VAR were estimated for the vector (χ1t χ2t)

′,

A(L)

(
χ1t

χ2t

)
=

(
v1t

v2t

)
,

the resulting MA representation,
(
χ1t

χ2t

)
= A(L)−1

(
v1t

v2t

)
,

would be fundamental by definition. As a consequence, if B2(L) were not funda-
mental, applying the same economic restrictions to rotate (v1t v2t)

′ would never
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allow recovering the structural shocks (u1t u2t)
′. This point is further illustrated

in Section 5, where an important empirical example of non-fundamentalness of
the subsystem of interest is presented.

4 Estimation

Going back to equation (2.4) it is easily seen that the static factors fff t are identified
only up to pre-multiplication by a non-singular r × r matrix. Hence we cannot
estimate fff t. However, we can estimate the common-factor space, i.e. we can
estimate an r-dimensional vector whose entries span the same linear space as the
entries of fff t. Such vector can be written as gggt = Gfff t, were G is a non-singular
matrix.

The static factor space can be consistently estimated by the first r principal
components of the panel xxxnt as in Stock and Watson, 2002a and 2002b2.

Precisely, the estimated static factors will be

ĝggt =
1√
n

W T
n

′
xxxnt, (4.13)

where W T
n is the n×r matrix having on the columns the eigenvectors correspond-

ing to the first r largest eigenvalues of the sample variance-covariance matrix of
xxxnt, say ΓxT

n0 . We do not normalize the factors to have unit variance. The esti-
mated variance-covariance matrix of ĝggt is the diagonal matrix having on the diag-
onal the normalized eigenvalues of ΓxT

n0 in descending order, 1
n
ΛT

n = 1
n
W T

n
′
ΓxT

n0 W T
n .

The corresponding estimate of the common components is obtained by regressing
xxxnt on the estimated factors to get

χχχT
nt = W T

n W T
n

′
xxxnt. (4.14)

Having an estimate of gggt, we have still to unveil the leading-lagging relations
between its entries, in order to find out the underlying dynamic factors (or, better,
a unitary transformation of such factors vvvt = Huuut, with HH ′ = Iq). This can be
done in our dynamic factor model by projecting gggt on its first lag. This approach
is also followed in Giannone, Reichlin and Sala (2002, 2005).

4.1 Population formulas

By equation (3.7), any non-singular transformation of the common factors gggt =
Gfff t has the VAR(1) representation

gggt = GFG−1gggt−1 + εεεt = Dgggt−1 + εεεt. (4.15)

2Alternative (n, T ) consistent estimators proposed in the literature are Forni and Reichlin
(1998), Boivin and Ng (2003) and Forni, Hallin, Lippi and Reichlin (2005).
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Note that
D = Γg

1 (Γg
0)

−1
, (4.16)

where Γg
h = E(gggtggg

′
t−h), and

var(εεεt) = Γg
0 − DΓg

0D
′. (4.17)

By (3.7), the residual εεεt can be written as

εεεt = GRuuut = (GRH ′)Huuut = KMHuuut, (4.18)

where

(i) M is the diagonal matrix having on the diagonal the square roots of the first
q largest eigenvalues of the variance-covariance matrix of εεεt, i.e. the matrix
GRR′G′ = Γg

0 −DΓg
0D

′, in descending order.

(ii) K is the r × q matrix whose columns are the eigenvectors corresponding to
such eigenvalues.

(iii) H is a q × q unitary matrix;

By inverting the VAR we get

gggt = (I −DL)−1KMHuuut.

On the other hand, by equations (2.1) and (2.4)

χχχnt = Bn(L)uuut = Anfff t = AnG
−1gggt = Qngggt, (4.19)

where
Qn = E(χχχntggg

′
t) = E(xxxntggg

′
t). (4.20)

Hence, we have

χχχnt = Bn(L)uuut

= Qn(I − DL)−1KMHuuut

= Qn(I + DL + D2L2 + · · · )KMHuuut. (4.21)

4.2 Estimators

By substituting ĝggt = 1√
n
W T

n
′
xxxnt for gggt, it is quite natural to estimate Qn by

1√
n
ΓxT

0 W T
n (see equation (4.20)). Moreover, Γg

0, the variance-covariance matrix

of gggt, can be estimated by 1
n
W T

n
′
ΓxT

n0 W T
n = 1

n
ΛT

n , and Γg
1 by 1

n
W T

n
′
ΓxT

n1 W T
n , so

that, basing on equation (4.16), we estimate Dn by DT
n = W T

n
′
ΓxT

n1 W T
n (ΛT

n )−1.
Finally, to estimate the eigenvectors and eigenvalues in Kn and Mn we estimate
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the variance-covariance matrix of εεεt by ΣT
n = 1

n
(ΛT

n − DT
n ΛT

nDT
n
′
) (see equation

(4.17)).
Summing up, in analogy with (4.21) we propose to estimate the impulse-

response functions by

BT
n (L) = QT

n

(
I + DT

n L + (DT
n )2L2 + · · ·

)
KT

n MT
n H, (4.22)

where

(i) QT
n = 1√

n
ΓxT

n0 W T
n , where ΓxT

n0 is the sample variance-covariance matrix of xxxnt

and W T
n the n × r matrix having on the columns the eigenvectors corre-

sponding to the first r largest eigenvalues of ΓxT
n0 ;

(ii) DT
n = W T

n
′
ΓxT

n1 W T
n (ΛT

n )−1, where ΓxT
n1 is the sample covariance matrix of xxxnt

and xxxnt−1;

(iii) MT
n is the diagonal matrix having on the diagonal the square roots of the

first q largest eigenvalues of the the matrix 1
n
(ΛT

n−DT
n ΛT

nDT
n
′
), in descending

order;

(iv) KT
n is the r × q matrix whose columns are the eigenvectors corresponding

to such eigenvalues.

(v) H is a unitary matrix to be fixed by the identifying restrictions.

In order to render operative the above procedure we need to set values for r
and q. Unfortunately, there are no criteria in the literature to fix jointly q and r.
Bai and Ng (2002) propose some consistent criteria to determine r. As regards
the number of dynamic factors, we can follow a decision rule like that proposed
in Forni, Hallin, Lippi and Reichlin (2000) i. e., we go on to add factors until
the additional variance explained by the last dynamic principal component is less
than a pre-specified fraction, say 5% or 10%, of total variance.

4.3 Consistency

Consistency of (4.22) as estimator of the impulse-response functions for large
cross-sections and large sample size (n, T → ∞) is shown in Proposition 3 below.

Proposition 3 Under assumptions PA1-2, FM1-3, we have, as min (n, T ) → ∞:

√
δnt|bT

ni(L) − bi(L)| = Op(1), i = 1, ..., n.

where δnt = min(n, T ), bT
ni(L) and bi(L) denote the ith row of BT

n (L) and Bn(L)
respectively,
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Proof. See Appendix 1.

Proposition 3 shows that consistency is achieved along any path for (n, T ) with

T and n both tending to infinity. The consistency rate is given by min
(√

T,
√

n
)
.

This implies that if the cross-section dimension n is large relative to the sample
size T (T/n → 0) the rate of consistency is

√
T , the same we would obtain if the

common components were observed, i.e. if the variables were not contaminated
by idiosyncratic component. On the other hand, if n/T → 0, then the consistency
rate is

√
n reflecting the fact that the common components are not observed but

have to be estimated3.

4.4 Standard errors and confidence bands

To obtain confidence bands and standard errors we propose the following boot-
strap procedure.

Firstly, compute χχχT
nt and BT

n (L) according to (4.14) and (4.22), and ξξξT
nt =

xxxnt −χχχT
nt.

Secondly, for each one of the estimated idiosyncratic components, estimate
the univariate autoregressive model

aj(L)ξT
jt = σjωjt, j = 1, . . . , n,

whose order can be fixed by the Schwarz criterion, and take the estimated coef-
ficients aT

j (L) and σT
j and the unit variance residuals ωT

jt.
Thirdly, generate new simulated series for the shocks, say uuu∗

t and ω∗
jt, j =

1, . . . , n, by drawing from the standard normal. Use these new series to construct
χχχ∗

nt = BT
n (L)uuu∗

t , ξ∗jt = aT
j (L)−1σT

j ω∗
jt, j = 1, . . . , n, and xxx∗

nt = χχχ∗
nt + ξξξ∗nt.

Finally, compute new estimates of the impulse-response functions B∗
n(L) start-

ing from xxx∗
nt.

By repeating the two last steps N times we get a distribution of estimated
values which can be used to obtain standard errors and confidence bands. Note
that the estimates will in general be biased, since the estimation procedure in-
volves implicitly the estimation of a VAR. An estimate of such bias is provided
by the difference between the point estimate BT

n (L) and the average of the N
estimates B∗

n(L).

5 Empirical application

We illustrate our proposed structural factor model by revisiting a seminal work in
the structural VAR literature, i.e. King et al., 1991 (KPSW from now on). To this

3It should be pointed out that, under the model assumptions of Stock and Watson (2002a
and 2002b) or Bai and Ng (2002), an alternative proof of consistency has been proposed by
Giannone, Reichlin and Sala(2002).
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end, we constructed a panel of macroeconomic series including the series used by
KPSW, with the same sampling period. Just like KPSW, we identify a long-run
shock by imposing long-run neutrality of all other shocks on per-capita output.
The data are well described by three common shocks, so that the comparison
with the three-variable exercise of KPSW is particularly appropriate. Having
the same data, the same identification scheme and the same number of shocks,
different results can only be due to the additional information coming from the
other series in the panel.

5.1 The data

The data set was constructed by downloading mainly from the FRED II database
of the Federal Reserve Bank of St. Louis and Datastream. The original data of
KPSW have been downloaded from Mark Watson’s home page. We collected
89 series, including data from NIPA tables, price indeces, productivity, indus-
trial production indeces, interest rates, money, financial data, employment, labor
costs, shipments, and survey data. A larger n would be desirable, but we were
constrained by both the scarcity of series starting from 1949 (like in KPSW) and
the need of balancing data of different groups. In order to use Datastream series
we were forced to start from 1950:1 instead of 1949:1, so that the sampling period
is 1950:1 - 1988:4. Monthly data are taken in quarterly averages. All data have
been transformed to reach stationarity according to the ADF(4) test at the 5%
level. Finally, the data were taken in deviation from the mean as required by our
formulas, and divided by the standard deviation to render results independent of
the units of measurement. A complete description of each series and the related
transformations is reported in Appendix 2.

5.2 The choice of r and the number of common shocks

As a first step we have to set r and q. Let us begin with r. We computed
the six consistent criteria suggested by Bai and Ng (2002) with r = 1, . . . , 30.
The criteria ICp1 and ICp3 do not work, since they do not reach a minimum for
r < 30; ICp2 has a minimum for r = 12. To compute PCp1, PCp2 and PCp3

we estimated σ̂2 with r = 15 since with r = 30 none of the criteria reaches a
minimum for r < 30. PCp1 gives r = 15, PCp2 gives r = 14 and PCp3 gives
r = 20. Below we report results for r = 12, r = 15 and r = 18, with more
detailed statistics for r = 15. With r = 15, the common factors explain on
average 79.7% of total variance. With reference to the variables of interest in
KPSW, the common factors explain 85.6% of total variance for output, 84.4% for
investment and 89.4% for consumption.

Regarding the choice of q, for comparison with the three variable VAR of
KPSW we set q = 3. This choice is consistent with the decision rule proposed
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in Forni, Hallin, Lippi and Reichlin (2000), since, with Bartlett lag window size
18, the overall variance explained by the third dynamic principal component is
larger than 10% (10.2%), whereas the variance explained by the fourth one is less
than 10% (6.8%). Given the illustrative purpose of this application, we do not
use the more formal criteria for the choice of q proposed in recent literature (Bai
and Ng, 2005, Hallin and Liska, 2006 or Stock and Watson, 2005).

5.3 Fundamentalness

Now let us focus on the 3 × 3 impulse-response function system for the three
variables of KPSW, i.e. per capita consumption, per capita income and per
capita investment. As observed at the end of Section 3, we can compute the
roots of the determinant of this system to check whether it is invertible or not.4

Figure 1 plots the moduli of the two smallest roots of the above determinant as
a function of r, for r varying over the range 3-30. Note that for r = 3 all roots
must be larger than one in modulus, since they stem from a three-variate VAR.
This is in fact the case for r = 3 and r = 4, but for r ≥ 5 the smallest root is
declining and lies always within the unit circle. For r ≥ 22 the second smallest
root becomes smaller than one in modulus.

Figure 1: The moduli of the first and the second smallest roots as functions
of r
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Figure 2 reports the distribution of the modulus of the smallest root for r = 15
across 1000 bootstrapping replications. The mean value is 0.71, indicating a non-
negligible upward bias, since our point estimate for r = 15 is 0.54. We shall come
back to the estimation bias below. Here we limit ourselves to observe that if the
smallest root is overestimated on average, the true value could be even smaller

4Note that these roots (and therefore fundamentalness) are independent of the identification
rule adopted and the rotation matrix H.
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than 0.54. Without any bias correction, the probability of an estimated value
larger than one in modulus is less than 22%.

Figure 2: Frequency distribution of the modulus of the smallest root
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We conclude that the true, structural impulse-response function system for
the common components associated with these three variables is probably non-
fundamental. As a consequence, such impulse response functions, as well as
the associated structural shocks, cannot be recovered by estimating a three-
dimensional VAR.

5.4 Impulse-response functions and variance decomposi-

tion

Coming to the impulse-response functions, as anticipated above we impose long-
run neutrality of two shocks on per-capita output, like in KPSW. This is sufficient
to reach a partial identification, i.e. to identify the long-run shock and its response
functions on the three variables.

Figure 3 shows the response functions of per capita output for r = 12, 15, 18.
The general shape does not change that much with r. The productivity shock has
positive effects declining with time on the output level. The response function
reach its maximum value after 6-8 quarters with only negligible effects after two
years. It should be observed that this simple distributed-lag shape is different
from the one in KPSW, where there is a sharp decline during the second and the
third year, which drives the overall effect back to the impact value.

In Figure 4 we concentrate on the case r = 15. We report the response
functions with 90% confidence bands for output, consumption and investment
respectively. Confidence bands are obtained with the procedure explained above
(with 1000 replications). The shapes are similar for the three variables, with a
positive impact effect followed by important, though declining, positive lagged
effects.

Note that confidence bands are not centered around the point estimate, es-
pecially for consumption, suggesting the existence of a non-negligible bias. This
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Figure 3: The impulse response function of the long-run shock on output for
r = 12, 15, 18
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is not surprising, since formula (4.22) implicitly involves estimation of a VAR,
where in addition the variable involved (the static factors) contain errors (a resid-
ual idiosyncratic term). Figure 5 shows the point estimate along with the mean
of the bootstrap distribution for the output. Such a large bias is probably due
to the small cross-sectional dimension. We have evidence of a much smaller bias
for the larger data set of Giannone, Reichlin and Sala (2002). We do not make
any attempt here to correct for the bias, but a procedure like the one suggested
in Kilian (1998) could be appropriate.

Table 1 reports the fraction of the forecast-error variance attributed to the
permanent shock for output, consumption and investment at different horizons.
For ease of comparison we report the corresponding numbers obtained with the
(restricted) VAR model and reported in Table 4 of KPSW.

At horizon 1, our estimates are smaller. The difference is important for con-
sumption: only 0.30 according to the factor model as against 0.88 according to
the KPSW model. But at horizons larger than or equal to 8 quarters our esti-
mates are greater and the difference is very large for investment. At horizon 20
(5 years) the permanent shock explains 46% of investment variance according to
KPSW as against 86% with the factor model. This result is interesting in that it
solves a typical puzzle of the VAR literature: the finding that technological and
other supply shocks explain a small fraction of investment variations even in the
medium-long run.

6 Conclusions

In this paper we have argued that dynamic factor models are suitable for struc-
tural macroeconomic modeling and constitute an interesting alternative to struc-

tural VARs.
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Figure 4: The impulse response function of the long-run shock on output,
consumption and investment for r = 15

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

4

6

8

10

12

14

16

x 10
−3

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10

x 10
−3

0 2 4 6 8 10 12 14 16 18 20
−0.005

0

0.005

0.01

0.015

0.02

0.025

26
ECB 
Working Paper Series No 712
January 2007



Figure 5: Estimation bias
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We have shown that large information and a small number of shocks gen-
erating the comovement of many variables, allow the econometrician to recover
the structural shocks driving the economy under the mild assumption that the
structure of leads and lags is rich enough so that the cross-section can convey
information on dynamic relations. Thus the fundamentalness problem, which
has no solution in the VAR framework, where n shocks must me recovered using
present and past values of n variables, becomes easily tractable when the number
of variables exceeds the number of shocks.

Having established sufficient conditions for identification, we have proposed a
procedure to estimate the impulse response functions. Moreover, we have shown
consistency of such a procedure and have suggested a bootstrapping method for
the construction of confidence bands and inference purposes.

In the empirical application, we have revisited the seminal paper by Kinget
al. (1991, KPSW). We have designed a large data set including output, consump-
tion and investment (the data analysed by KPSW) on the same sample period.
We have estimated a large factor model with a three-shock specification and, af-
ter having identified the shocks as in KPSW, we have analysed impulse response
functions on the three variables of interest: output, consumption and investment.
We find that the smallest root of the determinant of the impulse-response func-
tions formed by the three variables sub-system is non-fundamental and therefore
could have not been obtained by estimating a VAR on these three variables alone.
These impulse response functions imply a larger effect of the permanent shock on
output and investment than those found by KPSW.
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Table 1: Fraction of the forecast-error variance due to the long-run shock

Dynamic factor model KPSW vector ECM

Horizon Output Cons. Inv. Output Cons. Inv.
1 0.37 0.30 0.07 0.45 0.88 0.12

(0.18) (0.21) (0.19) (0.28) (0.21) (0.18)

4 0.57 0.77 0.42 0.58 0.89 0.31
(0.12) (0.12) (0.19) (0.27) (0.19) (0.23)

8 0.78 0.87 0.72 0.68 0.83 0.40
(0.07) (0.11) (0.16) (0.22) (0.18) (0.18)

12 0.86 0.90 0.80 0.73 0.83 0.43
(0.05) (0.11) (0.16) (0.19) (0.18) (0.17)

16 0.89 0.91 0.83 0.77 0.85 0.44
(0.04) (0.11) (0.16) (0.17) (0.16) (0.16)

20 0.91 0.92 0.86 0.79 0.87 0.46
(0.03) (0.11) (0.16) (0.16) (0.15) (0.16)

Appendix 1: Proof of Proposition 3

Let A and E be two n × n symmetric matrices and denote by σj(·), j = 1, . . . , n
the eigenvalues in decreasing order of magnitude. Throughout this section we
will use the following inequalities due to Weyl (cfr. Stewart and Sun, 1990):

|σj(A + E) − σj(A)| ≤
√

σ1(E2) ≤
√

trace(E2)

Denote by Λn and ΛT
n , the r × r diagonal matrices having on the diagonal

elements the first r largest eigenvalues of Γχ
n0 and Γx

n0, respectively. Writing
Wn and W T

n for the n × r matrices having on the columns the corresponding
eigenvectors, we have, by definition:

Γχ
n0Wn = WnΛn

ΓxT
n0 W T

n = W T
n ΛT

n

Let us recall here our notation for the eigenvalues of the relevant matrices:

µx
nj := σj(Γ

x
n0), µxT

nj := σj(Γ
xT
n0 ), µχ

nj := σj(Γ
χ
n0), µξ

nj := σj(Γ
ξ
n0), j = 1, ..., n
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we have Λn = diag(µχ
n1, ..., µ

χ
nr) and ΛT

n = diag(µxT
n1 , ..., µxT

nr )

Using the following non-singular transformation of the common factors, gt =
Gnft where Gn = 1√

n
W ′

nAn, we have (cfr. Section 4.1):

Qn =
1√
n

Γχ
n0Wn,Dn = W ′

nΓχ
n1WnΛ

−1
n and Σn =

1

n
Λn − 1

n
DnΛnD

′
n

Lemma 1 Under assumptions PA1-2, FM1-3, as n, T → ∞, we have:

(i) trace
[
(ΓxT

kn − Γx
kn)2

]
= Op

(
n2

T

)
, k = 0, 1

(ii) 1
n
µxT

nj = 1
n
µχ

nj + O
(

1
n

)
+ Op

(
1√
T

)
for k = 1, ..., n

Proof. By assumption PA2, there exists a positive constant K ≤ ∞, such that
for all T ∈ N and i, j ∈ N

TE[(γ̂xT
0ij − γx

0ij)
2] < K

as T → ∞, where γxT
0ij and γx

0ij denote the i, jth entries of ΓxT
0n and Γx

0n respectively.

We have:

trace
[
(ΓxT

0n − Γx
0n)2

]
=

n∑

i=1

n∑

j=1

(γxT
0ij − γx

0ij)
2

Taking expectations, we obtain:

E




n∑

i=1

n∑

j=1

(γxT
0ij − γx

0ij)
2


 =

n∑

i=1

n∑

j=1

E
[
(γxT

0ij − γx
0ij)

2
]

= Op

(
n2

T

)

Result (i), for k = 0, follows from the Markov inequality. The result for k = 1
can be easily proved using the same arguments.

Turning to (ii), from the Weyl inequality, we have:

(
µxT

nj − µx
nj

)2
≤ trace

[
(ΓxT

0n − Γx
0n)2

]

moreover, from assumption FM0-3:

1

n
µx

nj ≤
1

n
µχ

nj +
1

n
µξ

n1 =
1

n
µχ

nj + O
(

1

n

)

The desired result follows. Q.E.D.
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Corollary 1 Under assumptions PA1-2, FM1-3, as n, T → ∞, we have:

(i) 1
n
ΛT

n = 1
n
Λn + Op(

1√
T
) + Op

(
1
n

)

(ii) W ′
nW T

n = Ir + Op

(
1
n

)
+ Op

(
1√
T

)

Proof. Result (i) trivially follows from Lemma 1. Turning to (ii), we have the
following decomposition:

1

n
ΛT

n =
1

n
W T ′

n ΓxT
n0 W T

n =
1

n
W T ′

n WnΛnW
′
nW T

n +
1

n
W T ′

n ΓξT
n0W T

n +
1

n
W T ′

n

(
ΓxT

n0 − Γχ
n0

)
W T

n

From results Lemma 1 (i) we get:

1

n
W T ′

n

(
ΓxT

n0 − Γχ
n0

)
W T

n ≤ 1

n

√
trace [(ΓxT

0n − Γx
0n)

2] = O

(
1√
T

)

Moreover, W T ′
n ΓξT

n0W T
n ≤ µξ

n1 = Op(1) by assumption FM3. The desired result
follows. Q.E.D..

Lemma 2 Under assumption PA1-2, FM1-FM3, as n, T → ∞, we have:

(i) QT
ni − Qni = Op

(
1√
n

)
+ Op

(
1√
T

)

(ii) DT
n − Dn = Op

(
1√
n

)
+ Op

(
1√
T

)

(iii) ΣT
n − Σn = Op

(
1√
n

)
+ Op

(
1√
T

)

where QT
ni and Qni denote the ith row of QT

n and Qn, respectively.

Proof. Let us start from result (i). We have the following decomposition

QT
n =

1√
n

ΓxT
n0 W T

n =
1√
n

Γχ
n0W

T
n +

1√
n

Γξ
n0W

T
n +

1√
n

(
ΓxT

n0 − ΓxT
n0

)
W T

n

Write 1ni for the n dimensional vector with entries equal to zero at the ith
position and zero for the rest. Consequently:

QT
ni = 1′

niQ
T
n =

1√
n
1′

niΓ
xT
n0 W T

n =
1√
n
1′

niΓ
χ
n0W

T
n +

1√
n
1′

niΓ
ξ
n0W

T
n +

1√
n
1′

ni

(
ΓxT

n0 − ΓxT
n0

)
W T

n
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Let us study separately each term of the right hand side. For the first term,
Corollary 1 (ii), imply:

1√
n
1′

niΓ
χ
n0W

T
n =

1√
n
1′

niΓ
χ
n0WnW ′

nW T
n = QniW

′
nW

T
n = Qn1 +Op

(
1

n

)
+Op

(
1√
T

)

since WnW
′
nAn = An by Assumption FM0.

For the second term, we have:

1√
n
1′

niΓ
ξ
n0W

T
n ≤ 1√

n

√
1′

niΓ
ξ
n01ni

√
W T ′

n Γξ
n0W

T
n ≤ 1√

n
µξ

n1 = Op

(
1√
n

)

from assumption FM3.

Writing wT
jh for the entry of W T

n in the jth row and the hth columns, the third
term can be written as:

1√
n

∣∣∣1′
ni

(
ΓxT

n0 − ΓxT
n0

)
W T

n

∣∣∣ ≤ 1√
n

∑r
h=1

∣∣∣
∑n

j=1(γ
xT
0ij − γx

0ij)w
T
jh

∣∣∣

≤ 1√
n

∑r
h=1

√∑n
j=1(γ

xT
0ij − γx

0ij)
2
√∑n

j=1(w
T
jh)

2 = 1√
n

∑r
h=1

√∑n
j=1(γ

xT
0ij − γx

0ij)
2

since W T
n is orthonormal. Because E

[∑n
j=1(γ

xT
0ij − γx

0ij)
2
]

= Op

(
n
T

)
, from the

Markov’s inequality, we get

1√
n
1′

ni

(
ΓxT

n0 − ΓxT
n0

)
W T

n = Op

(
1√
T

)

This proves result (i).

Turning to (ii), we have:

1

n
DT

n ΛT
n =

1

n
W T ′

n ΓxT
n1 W T

n =
1

n
W T ′

n Γχ
n1W

T
n +

1

n
W T ′

n Γξ
n1W

T
n +

1

n
W ′

n(Γ
xT
n1 − Γx

n1)Wn

From result (ii) of Corollary 1, we have:

1

n
W T ′

n Γχ
n1W

T
n =

1

n
(W T ′

n Wn)W
′
nΓχ

n1Wn(W ′
nW T

n ) =
1

n
DnΛn + Op

(
1

n

)
+ Op

(
1√
T

)

since WnW
′
nAn = An by Assumption FM0.

By assumptions PA1-2 and FM3, W T ′
n Γξ

n1W
T
n = Op(1). Moreover, Lemma 1

(i) implies that: 1
n
W ′

n(ΓxT
n1 − Γx

n1)Wn = Op(
1√
T
). Result (ii), hence, follows from

Corollary 1 (i) and Assumption FM2.
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Finally, result (iii) is an immediate consequence of Lemma 1 (i) and result (ii)
above.
Q.E.D.

Proof of Proposition 3
Note that the matrix Σn is of fixed dimension r. Because of continuity of the
eigenvalues and eigenvectors with respect to the matrix entries, by Lemma 2 (iii)
and the continuous mapping theorem we have

MT
n = Mn + Op

(
1√
n

)
+ Op

(
1√
T

)
as n, T → ∞

and

KT
n = Kn + Op

(
1√
n

)
+ Op

(
1√
T

)
as n, T → ∞

Continuity of the matrix product (notice that Dn has fixed dimension r), implies:

(
DT

n

)h
= (Dn)h + Op

(
1√
n

)
+ Op

(
1√
T

)
as n, T → ∞

Result (i) is hence an immediate consequence of Lemma 2 (i) and (ii).
Q.E.D.
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Appendix 2: Data description and data treat-

ment

Original Variable ID Code in Orig. Seas.
Database Source Description the Database Units Freq. Adj. Treatment

1 MW Citibase Per Capita Real Consumption Expenditure DLOG
2 MW Citibase Per Capita Gross Private Domestic Fixed Investment DLOG
3 MW Citibase Per Capita Private Gross National product DLOG
4 MW Citibase Per Capita Real M2 (M2 divided by P) DLOG
5 MW Citibase 3-Month Treasury Bill Rate D
6 MW Citibase Implicit Price Deflator for Private GNP DDLOG
7 Fred II BEA Real Gross Domestic Product, 1 Decimal GDPC1 Bil. of Ch. 1996 $ Q YES DLOG
8 Fred II BEA Real Final Sales of Domestic Product, 1 Decimal FINSLC1 Bil. of Ch. 1996 $ Q YES DLOG
9 Fred II BEA Real Gross Private Domestic Investment, 1 Decimal GPDIC1 Bil. of Ch. 1996 $ Q YES DLOG

10 Fred II BEA Real State & Local Cons. Expend. & Gross Inv., 1 Dec. SLCEC1 Bil. of Ch. 1996 $ Q YES DLOG
11 Fred II BEA Real Private Residential Fixed Investment, 1 Dec. PRFIC1 Bil. of Ch. 1996 $ Q YES DLOG
12 Fred II BEA Real Private Nonresidential Fixed Investment, 1 Dec. PNFIC1 Bil. of Ch. 1996 $ Q YES DLOG
13 Fred II BEA Real Nonresidential Inv.: Equipment & Software, 1 Dec. NRIPDC1 Bil. of Ch. 1996 $ Q YES DLOG
14 Fred II BEA Real Imports of Goods & Services, 1 Decimal IMPGSC1 Bil. of Ch. 1996 $ Q YES DLOG
15 Fred II BEA Real Federal Cons. Expend. & Gross Investment, 1 Dec. FGCEC1 Bil. of Ch. 1996 $ Q YES DLOG
16 Fred II BEA Real Government Cons. Expend. & Gross Inv., 1 Dec. GCEC1 Bil. of Ch. 1996 $ Q YES DLOG
17 Fred II BEA Real Fixed Private Domestic Investment, 1 Decimal FPIC1 Bil. of Ch. 1996 $ Q YES DLOG
18 Fred II BEA Real Exports of Goods & Services, 1 Decimal EXPGSC1 Bil. of Ch. 1996 $ Q YES DLOG
19 Fred II BEA Real Change in Private Inventories, 1 Decimal CBIC1 Bil. of Ch. 1996 $ Q YES NONE
20 Fred II BEA Real Personal Cons. Expenditures: Nondurable Goods PCNDGC96 Bil. of Ch. 1996 $ Q YES DLOG
21 Fred II BEA Real State & Local Government: Gross Investment SLINVC96 Bil. of Ch. 1996 $ Q YES DLOG
22 Fred II BEA Real Personal Consumption Expenditures: Services PCESVC96 Bil. of Ch. 1996 $ Q YES DLOG
23 Fred II BEA Real Personal Cons. Expenditures: Durable Goods PCDGCC96 Bil. of Ch. 1996 $ Q YES DLOG
24 Fred II BEA Real Personal Consumption Expenditures PCECC96 Bil. of Ch. 1996 $ Q YES DLOG
25 Fred II BEA Real National Defense Gross Investment DGIC96 Bil. of Ch. 1996 $ Q YES DLOG
26 Fred II BEA Real Federal Nondefense Gross Investment NDGIC96 Bil. of Ch. 1996 $ Q YES DLOG
27 Fred II BEA Real Disposable Personal Income DPIC96 Bil. of Ch. 1996 $ Q YES DLOG
28 Fred II BEA Personal Cons. Expenditures: Chain-type Price Index PCECTPI Index 1996 = 100 Q YES DDLOG
29 Fred II BEA Gross Domestic Product: Chain-type Price Index GDPCTPI Index 1996 = 100 Q YES DDLOG
30 Fred II BEA Gross Domestic Product: Implicit Price Deflator GDPDEF Index 1996 = 100 Q YES DDLOG
31 Fred II BEA Gross National Product: Implicit Price Deflator GNPDEF Index 1996 = 100 Q YES DDLOG
32 Fred II BEA Gross National Product: Chain-type Price Index GNPCTPI Index 1996 = 100 Q YES DDLOG
33 Fred II BLS Nonfarm Business Sector: Unit Labor Cost ULCNFB Index 1996 = 100 Q YES DLOG
34 Fred II BLS Nonfarm Business Sector: Real Compensation Per Hour COMPRNFB Index 1992 = 100 Q YES DLOG
35 Fred II BLS Nonfarm Bus. Sector: Output Per Hour of All Persons OPHNFB Index 1992 = 100 Q YES DLOG
36 Fred II BLS Nonfarm Business Sector: Compensation Per Hour COMPNFB Index 1992 = 100 Q YES DLOG
37 Fred II BLS Manufacturing Sector: Unit Labor Cost ULCMFG Index 1992 = 100 Q YES DLOG
38 Fred II BLS Manufacturing Sector: Output Per Hour of All Persons OPHMFG Index 1992 = 100 Q YES DLOG
39 Fred II BLS Business Sector: Output Per Hour of All Persons OPHPBS Index 1992 = 100 Q YES DLOG
40 Fred II BLS Business Sector: Compensation Per Hour HCOMPBS Index 1992 = 100 Q YES DLOG
41 Fred II St. Louis St. Louis Adjusted Reserves ADJRESSL Bil. of $ M YES DLOG
42 Fred II St. Louis St. Louis Adjusted Monetary Base AMBSL Bil. of $ M YES DLOG
43 Fred II Moody’s Moody’s Seasoned Aaa Corporate Bond Yield AAA % M NO D
44 Fred II Moody’s Moody’s Seasoned Baa Corporate Bond Yield BAA % M NO D
45 Fred II FR Bank Prime Loan Rate MPRIME % M NO D
46 Fred II FR 3-Month Treasury Bill: Secondary Market Rate TB3MS % M NO D
47 Fred II FR Currency in Circulation CURRCIR Bil. of $ M NO DD4LOG
48 Fred II FR Currency Component of M1 CURRSL Bil. of $ M YES DDLOG
49 Fred II BLS CPI for All Urban Consumers: All Items Less Food CPIULFSL Ind. 1982-84 = 100 M YES DDLOG
50 Fred II BLS Consumer Price Index for All Urban Consumers: Food CPIUFDSL Ind. 1982-84 = 100 M YES DDLOG
51 Fred II BLS CPI For All Urban Consumers: All Items CPIAUCSL Ind. 1982-84 = 100 M YES DDLOG
52 Fred II BLS CPI: Intermediate Materials: Supplies & Components PPIITM Index 1982 = 100 M YES DDLOG
53 Fred II BLS Producer Price Index: Industrial Commodities PPIIDC Index 1982 = 100 M NO DDLOG
54 Fred II BLS PPI: Fuels & Related Products & Power PPIENG Index 1982 = 100 M NO DDLOG
55 Fred II BLS PPI Finished Goods: Capital Equipment PPICPE Index 1982 = 100 M YES DDLOG
56 Fred II BLS Producer Price Index: Finished Goods PPIFGS Index 1982 = 100 M YES DDLOG
57 Fred II BLS Producer Price Index: Finished Consumer Goods PPIFCG Index 1982 = 100 M YES DDLOG
58 Fred II BLS Producer Price Index: Finished Consumer Foods PPIFCF Index 1982 = 100 M YES DDLOG
59 Fred II BLS PPI: Crude Materials for Further Processing PPICRM Index 1982 = 100 M YES DDLOG
60 Fred II BLS Producer Price Index: All Commodities PPIACO Index 1982 = 100 M NO DLOG
61 Fred II FR Commercial and Industrial Loans at All Comm. Banks BUSLOANS Bil. of $ M YES DLOG
62 Fred II FR Total Loans and Leases at Commercial Banks LOANS Bil. of $ M YES DLOG
63 Fred II FR Total Loans and Investments at All Commercial Banks LOANINV Bil. of $ M YES DLOG
64 Fred II FR Total Consumer Credit Outstanding TOTALSL Bil. of $ M YES DLOG
65 Fred II FR Real Estate Loans at All Commercial Banks REALLN Bil. of $ M YES DLOG
66 Fred II FR Other Securities at All Commercial Banks OTHSEC Bil. of $ M YES DLOG
67 Fred II FR Consumer (Individual) Loans at All Comm. Banks CONSUMER Bil. of $ M YES DLOG
68 Fred II BLS All Employees: Construction USCONS Thous. M YES DLOG
69 Fred II BLS Total Nonfarm Payrolls: All Employees PAYEMS Thous. M YES DLOG
70 Fred II BLS Employees on Nonfarm Payrolls: Manufacturing MANEMP Thous. M YES DLOG
71 Fred II BLS Unemployed: 16 Years & Over UNEMPLOY Thous. M YES DLOG
72 Fred II BLS Civilian Unemployment Rate UNRATE % M YES DLOG
73 Fred II BLS Civilian Participation Rate CIVPART % M YES DLOG
74 Fred II BLS Civilian Labor Force CLF16OV Thous. M YES DLOG
75 Fred II BLS Civilian Employment: Sixteen Years & Over CE16OV Thous. M YES DLOG
76 Fred II BLS Civilian Employment-Population Ratio EMRATIO % M YES DLOG
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Original Variable ID Code in Orig. Seas.
Database Source Description the Database Units Freq. Adj. Treatment

77 EconStats FR Industrial Production: total Index M YES DLOG
78 EconStats FR Industrial Production: Manufacturing (SIC-based) Index M YES DLOG
79 Datastream ISM ISM Manufacturers Survey: Supplier Delivery Index USNAPMDL Index M YES NONE
80 Datastream ISM Chicago Purchasing Manager Business Barometer USPMCUBB % M NO NONE
81 Datastream ISM ISM Manufacturers Survey: New Orders Index USNAPMNO Index M YES NONE
82 Datastream ISM ISM Manufacturers Survey: Employment Index USNAPMIV Index M YES NONE
83 Datastream ISM ISM Manufacturers Survey: Production Index USNAPMEM Index M YES NONE
84 Datastream ISM ISM Purchasing Managers Index (MFG Survey) USNAPMPR Index M YES NONE
85 Datastream BC Manufacturing Shipments - Total USMNSHIPB Bil. of $ M YES DLOG
86 Datastream BC Shipments of Durable Goods USSHDURGB Bil. of $ M YES DLOG
87 Datastream BC Shipments of Non-Durable Goods USSHNONDB Bil. of $ M YES DLOG
88 Datastream S&P Standard & Poor’s 500 (monthly average) US500STK Index M NO DLOG
89 Datastream FT Dow Jones Industrial Share Price Index USSHRPRCF Index M NO DLOG

Abbreviations:
MW: Mark Watson’s home page (http://www.wws.princeton.edu/ mwatson/publi.html)
Fred II: Fred II database of the Federal Reserve Bank of St. Louis
BEA: Bureau of Economic Analysis
BLS: Bureau of Labor Statistics
FR: Federal Reserve Board
St Louis: Federal Reserve Bank of St. Louis
ISM: Institute for Supply Management
BC: Bureau of Census
S&P: Standard & Poors’
FT: Financial Times
Q: Quarterly
M: Monthly (we take quarterly averages)
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