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Abstract

The Bayesian Estimation, Analysis and Regression toolbox (BEAR) is a comprehensive (Bayesian)

(Panel) VAR toolbox for forecasting and policy analysis. BEAR is a MATLAB based toolbox

which is easy for non-technical users to understand, augment and adapt. In particular, BEAR

includes a user-friendly graphical interface which allows the tool to be used by country desk

economists. Furthermore, BEAR is well documented, both within the code as well as including

a detailed theoretical and user’s guide. BEAR includes state-of-the art applications such as

sign and magnitude restrictions, conditional forecasts, Bayesian forecast evaluation measures,

Bayesian Panel VAR using different prior distributions (for example hierarchical priors), etc.

BEAR is specifically developed for transparently supplying a tool for state-of-the-art research

and is planned to be further developed to always be at the frontier of economic research.

Keywords: Bayesian VAR, Panel Bayesian VAR, Econometric Software, Forecasting, Structural

VAR.

JEL classification: C11, C30, C87, E00, F00.
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1 Non-technical summary

There has been an increasing use of Vector Auto Regressions (VAR) models within academia and

central banks to analyse and forecast economic developments. Traditional maximum likelihood VARs,

though, are often over-parameterised and imprecisely estimated if data is of questionable quality. For

these reasons, Bayesian VAR models have become increasingly popular since their introduction in

the seminal work of Doan et al. (1984). Some codes and software applications for Bayesian VAR

models already exist, however they offer limited features, are rarely user-friendly, and are difficult

to augment with new applications. We have faced these issues, and thus decided to create: the

Bayesian Estimation, Analysis and Regression (BEAR) toolbox. BEAR is a comprehensive Matlab

package, using Excel as both input and output. The development of BEAR was articulated around

three major objectives:

• BEAR should be comprehensive. It should offer both standard features and advanced, state-

of-the-art applications.

• BEAR should be easy to use and equally accessible to Bayesian experts and non-specialist desk

economists. For this reason, BEAR works with a user-friendly system of graphical interfaces as

well as a developers version for advanced users. In addition, BEAR comes with a comprehensive

user guide.

• BEAR should be technically flexible and transparent. For this reason, its code is structured

in a way that makes it easy to read and adapt. Furthermore, BEAR is accompanied with a

technical guide providing complete mathematical derivations for all its applications.

By making the toolbox available, we aim at sharing expertise, and hope BEAR could become a key

tool for macroeconomic analysis which exploits synergies and increases efficiency as well as avoids

unnecessary duplication of work.

BEAR Version 3.0 offers following applications:

• Estimation techniques of VAR models

– OLS (maximum likelihood) VAR

– Standard Bayesian VAR (Doan et al. (1984) and Litterman (1986))

– Mean-adjusted BVAR with informative prior on the steady-state (Villani (2009))

– Bayesian Panel VAR (as in Canova and Ciccarelli (2013))

• Alternative priors for Bayesian VAR models
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– Minnesota (Litterman (1986))

– Normal Wishart (Kadiyala and Karlsson (1997))

– Independent Normal Wishart with Gibbs sampling

– Normal diffuse (Kadiyala and Karlsson (1997))

– Dummy observations (Banbura et al. (2010))

• Prior extensions for Bayesian VARs

– Hyperparameter optimisation by grid search (similar to Giannone et al. (2015))

– Block exogeneity

– Dummy observation extentions: sum-of-coefficient, dummy initial obervation (Banbura

et al. (2010))

• Panel models

– OLS Mean-group estimator (Pesaran and Smith (1995))

– Bayesian pooled estimator

– Random effect model, Zellner-Hong (Zellner and Hong (1989))

– Random effect model, hierarchical (Jarocinski (2010b))

– Static factor model (Canova and Ciccarelli (2013))

– Dynamic factor model (Canova and Ciccarelli (2013))

• Structural VARs

– Choleski factorisation

– Triangular factorisation

– Sign, magnitude and zero restrictions (Arias et al. (2014))

• Applications

– Unconditional forecasts

– Impulse response functions

– Forecast error variance decomposition

– Historical decompositions

– Conditional forecasts: shock approach (Waggoner and Zha (1999))

– Conditional forecasts: tilting approach (Robertson et al. (2005))

– Forecast evaluation: standard and Bayesian-specific criteria
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2 Introduction

2.1 Why create a Bayesian Estimation, Analysis and Regression (BEAR)

toolbox?

2.1.1 Motivation

There has been an increasing use of Vector Auto Regressions (VAR) models within academia and cen-

tral banks to analyse and forecast economic developments. In many respects, VAR models have be-

come the workhorse of macroeconometric modelling. Traditional maximum likelihood VARs, though,

suffer from two major defects. First, VAR models are often over-parameterised. Too many lags are

included in order to improve the in-sample fit, resulting in a significant loss of degrees of freedom

and poor out-of-sample forecast performances. Second, central bankers and financial institutions

are paying more and more attention to emerging economies for which available datasets are typi-

cally short or of questionable quality. Bayesian estimation techniques offer an appealing solution to

these issues. Bayesian prior shrinkage allows to reduce the number of lags, hence limiting the over-

parameterisation issue. Additionally, the supply of prior information compensates for the possible

lack of reliability of the data. For these reasons, Bayesian VAR models have become increasingly

popular since their introduction in the seminal work of Doan et al. (1984).

Many codes and software applications for Bayesian VAR already exist, however they suffer from

major limitations. Most of them offer very limited features, making it difficult to use them for any

advanced research project. Also, such codes are rarely user-friendly, making them hardly accessible

to anyone not being an expert in mathematical programming. Finally, Bayesian econometrics is a

very dynamic field. As promising applications are published on a regular basis, a good Bayesian tool

should be flexible enough to integrate new contributions as they are released. This may not be easily

done with existing applications.

We have faced these issues, and thus decided to create: the Bayesian Estimation, Analysis and

Regression (BEAR) toolbox. BEAR is a comprehensive Matlab package, using Excel as both input

and output. The development of BEAR was articulated around three major objectives:

• BEAR should be comprehensive. It should offer both standard features and advanced, state-

of-the-art applications.

• BEAR should be easy to use and equally accessible to Bayesian experts and non-specialist desk

economists. For this reason, BEAR works with a user-friendly system of graphical interfaces as

well as a developers version for advanced users. In addition, BEAR comes with a comprehensive

user guide.
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• BEAR should be technically flexible and transparent. For this reason, its code is structured

in a way that makes it easy to read and adapt. Furthermore, BEAR is accompanied with a

technical guide providing complete mathematical derivations for all its applications.

By making the toolbox available, we aim at sharing expertise, and believe BEAR could become

a key tool for macroeconomic analysis which exploits synergies and increases efficiency as well as

avoids unnecessary duplication of work.

The remainder of the paper is organized as follows. We continue the introduction by first sum-

marizing main BEAR-applications (section 2.1.2), and then conclude the introduction by presenting

an illustrative example on US monetary policy using BEAR (section 2.2). Subsequently, we turn

to the core of the paper, which describes the theoretical and econometric underpinnings of BEAR.

In section 3 we present the background of BVAR model estimation and evaluation, in section 4

we introduce basic applications under the BVAR methodology. In section 5 we describe advanced

applications, and in section 6 we finally introduce Bayesian Panel VAR models.

2.1.2 BEAR-Toolbox applications

We next list an overview of the applications available in BEAR. BEAR Version 3.0 offers the following

applications:

• Estimation techniques of VAR models

– OLS (maximum likelihood) VAR

– Standard Bayesian VAR (Doan et al. (1984) and Litterman (1986))

– Mean-adjusted BVAR with informative prior on the steady-state (Villani (2009))

– Bayesian Panel VAR (as in Canova and Ciccarelli (2013))

• Alternative priors for Bayesian VAR models

– Minnesota (Litterman (1986))

– Normal Wishart (Kadiyala and Karlsson (1997))

– Independent Normal Wishart with Gibbs sampling

– Normal diffuse (Kadiyala and Karlsson (1997))

– Dummy observations (Banbura et al. (2010))

• Prior extensions for Bayesian VARs

– Hyperparameter optimisation by grid search (similar to Giannone et al. (2015))
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– Block exogeneity

– Dummy observation extentions: sum-of-coefficient, dummy initial obervation (Banbura

et al. (2010))

• Panel models

– OLS Mean-group estimator (Pesaran and Smith (1995))

– Bayesian pooled estimator

– Random effect model, Zellner-Hong (Zellner and Hong (1989))

– Random effect model, hierarchical (Jarocinski (2010b))

– Static factor model (Canova and Ciccarelli (2013))

– Dynamic factor model (Canova and Ciccarelli (2013))

• Structural VARs

– Choleski factorisation

– Triangular factorisation

– Sign, magnitude and zero restrictions (Arias et al. (2014))

• Applications

– Unconditional forecasts

– Impulse response functions

– Forecast error variance decomposition

– Historical decompositions

– Conditional forecasts: shock approach (Waggoner and Zha (1999))

– Conditional forecasts: tilting approach (Robertson et al. (2005))

– Forecast evaluation: standard and Bayesian-specific criteria

2.2 An example using BEAR for US monetary policy analysis

We now introduce an illustrative study on US monetary policy using BEAR. This example applica-

tion does not aim at producing a major contribution in terms of analysis, but rather at setting an

example of the sort of study that can be undertaken. Our setting mostly replicates the seminal work

of Christiano et al. (1999) in a simplified fashion. The main dataset comprises 3 series of data: the

log of real GDP, the log of the consumer price index, and the target Federal Funds rate, obtained
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via Haver Analytics. All the data are quarterly, start in the first quarter of 1960 and end in the last

quarter of 2015. As the study also includes some panel applications, the same dataset is replicated

for the Euro area, Japan and the United Kingdom.

The presentation is divided into two parts. In the first part we illustrate the differences arising

between the different models proposed by BEAR. The analysis is carried out by the way of two basic

applications: impulse response functions, and unconditional forecasts. In the second part we cover

more sophisticated applications including sign restrictions, historical decomposition and a conditional

forecast exercise.

2.2.1 BEAR models and basic applications

This section proposes a comparison of different models available in BEAR. The first candidate is the

benchmark maximum likelihood (or ordinary least squares) VAR model. The second model is the

Bayesian VAR. BEAR proposes no less than 5 different priors for this model: the original Minnesota

prior proposed by Litterman (1986) (section 3.3), the natural conjugate normal-Wishart (section

3.4), the independent normal-Wishart prior (section 3.5), the normal-diffuse prior (section 3.6), and

the dummy observation prior (section 3.7). Because the data is used in log levels there is a signifi-

cant possibility of non-stationarity in the results. For this reason, we also estimate a version of the

model where the normal-Wishart prior is augmented with dummy initial observation and sums-of-

coefficients applications, forming the so-called Sims and Zha (1997) prior. The third model is the

mean-adjusted Bayesian VAR model introduced by Villani (2009) (section 5.6). This model makes

it possible to explicitly integrate prior information about the long-run or steady-state values of the

model. Given that real GDP and the consumer price index are in log levels and that the monotonic

increase of the data suggests non-stationarity, we set the priors for the steady state to revolve around

the end of sample values. This represents a conservative view based on a limited growth assumption

for the variables included in the model. Subsequently, we set a prior mean of 8 for the log of real

GDP with a standard deviation of 0.5, and a prior mean of 5.5 for the log of the CPI, with a 0.25

standard deviation. The target Federal Funds rate appears to be stationary, though characterised

by ample fluctuations. For this reason, we set a prior mean of 4%, with a unit standard deviation.

The final candidate consists of a Bayesian panel VAR (section 6). BEAR proposes 6 different panel

models, but for the sake of simplicity we retain only one for this exercise: the random effect model

with a hierarchical prior inspired from Jarocinski (2010b). All the models are run with 3 lags. The

Bayesian models are all run with a Minnesota-type scheme for the prior distribution of the VAR

coefficients. As all the data are in log levels, we follow Litterman (1986) and set to 1 the prior value

of the autoregressive coefficients on its own first lag for each variable.
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BEAR can conveniently estimate impulse response functions (section 4.2). The first base exercise

consists of an analysis of the effect of a benchmark contractionary monetary policy shock. We adopt

a structural identification by triangular factorisation thanks to which the impulse response functions

are directly interpretable as the response to a unit structural shock.

Figure 1: Impulse response functions to a unit monetary policy shock
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Note: Shaded area represents 95 percent credibility intervals for the normal-Wishart prior.

Figure 1 displays the impulse response functions for the selected models. The shaded area rep-

resents the 95% credibility interval obtained for the normal-Wishart prior. The results obtained

after a benchmark monetary policy shocks are very similar to that of Christiano et al. (1999). A

contractionary monetary policy shock leads to a sustained decline in real GDP, the effect becoming

significant after roughly two quarters. The response is hump-shaped, with the maximal decline tak-

ing place after 10 to 16 quarters.

The responses produced by the Bayesian VAR models under the different priors look all very sim-

ilar, with two noteworthy exceptions. The first is the dummy observation prior which displays a

less pronounced decline in GDP and an earlier recovery. This is hardly surprising as the dummy

observation prior is the only model for which prior information is transmitted to the model through

the likelihood function rather than by the prior distribution. As the two components are attributed
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different weight in the posterior, noticeable differences may result in the estimates. The second ex-

ception occurs when the dummy initial observation and sums-of-coefficients applications are added

to the prior distribution. As the two components together push the model towards a (cointegrated)

unit root process, more inertia is generated. The response is slower to reach its minimal value, and

suggests a possible permanent effect of the shock.

Examining the responses of the alternative models leads to results which are qualitatively com-

parable, even though marked differences appear from a quantitative point of view. The response

produced by the OLS VAR seems shorter-lived than its Bayesian counterpart, with a more pro-

nounced initial fall in production followed by a faster recovery. This difference is most likely due

to the absence of prior information in the model, so that the results represent the information con-

tained in the data alone. The panel model results in responses close to that of the OLS model, but

in this case the discrepancy with the Bayesian VAR models most likely results from the spillover

effects induced by the multilateral nature of the panel framework (see e.g. Georgiadis (2015) for

more details on spillover effects). The mean-adjusted Bayesian VAR finally shows a response which

is markedly more negative than any other model in the medium run, perhaps reflecting the fact that

the higher steady-state value of the interest rate induces stronger effects of monetary policy in general.

BEAR can also conveniently do unconditional forecasts (section 4.1). The second exercise consists

in producing standard unconditional forecasts for the log of real GDP. The forecast period starts in

2014q4 and ends in 2017q4.
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Figure 2: Unconditional forecasts for real GDP
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The results displayed in Figure 2 are qualitatively similar across models: after 2014q4 real GDP

grows steadily with a sustained growth until roughly 2016, before a slight slowdown for the rest of

the period. The characteristics observed for the different models are overall consistent with that of

impulse response functions. The forecasts obtained for the Bayesian VAR under the different priors

are all very similar, except once again for the normal-Wishart augmented with the sums-of-coefficients

and dummy initial observation extensions for which the growth is significantly more protracted. This

is to be expected as the implied unit root favours permanent shifts in the steady-state. The panel

VAR produces forecasts which are noticeably lower than the Bayesian VAR models, most likely

reflecting the impact of the additional information contained in the external units. Finally, the

mean-adjusted produces the lowest forecast values. This is a direct consequence of setting the prior

mean for the steady-state as the end of sample value, which biases the forecasts downward.

2.2.2 Advanced applications with BEAR

Beyond standard applications, BEAR makes it possible to run more sophisticated features in a

straightforward way. We now build on the previous section by identifying structural shocks and
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estimating their impacts. To do so, we adopt the sign and zero restriction methodology proposed

by Arias et al. (2014) (section 4.6). We identify 3 shocks: a demand shock, a supply shock, and

a monetary policy shock. The following is assumed for the sign of the responses to the different

shocks: Following standard theory, demand shocks have a positive effect on output while driving

Table 1: Sign of the responses to identified shocks

demand supply monetary
log real GDP + + +
log CPI + - +
Federal Funds
rate

+ -

up inflation and the interest rate. Supply shocks impact output positively and contribute to lower

prices. The effect on the Federal Funds rate is left undetermined as it is not certain whether the

increase in activity or the fall in price will be predominant in the response of the Central Bank to the

shock. Finally, an expansionary monetary policy shock translates into a cut in the Federal Fundss

rate which boosts output and contributes to increase the price level. With such an identification

scheme the shocks are unambiguously defined since they cannot generate similar responses for all the

variables. The restrictions are defined over the following periods:

Table 2: Periods of application of the restrictions

demand supply monetary
log real GDP 0 3 0 3 0 0
log CPI 0 4 0 3 0 0
Federal Funds
rate

1 4 0 0
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We obtain the set of impulse responses displayed on Figure 3:

Figure 3: Impulse responses with sign restrictions
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All the responses are initially significant except that of the Federal Funds rate to supply shocks.

This is the only response to which no restriction was placed, and such non-significance is quite typi-

cal of the Arias et al. (2014) methodology. The main message in terms of transmission of monetary

policy shocks is that the effect remains significant on output and the CPI over the whole period of

responses, even though the restriction only applies on impact. This confirms the importance and

effectiveness of monetary policy to stabilise economic fluctuations in the US. The effect of the shock

on the Federal Funds rate is at first negative but becomes positive after roughly two years. This

suggests that the initial boost of activity may lead the central bank to reverse their stance in order

to counter inflationary pressures. The response however is not significant.

This structural identification scheme also makes it possible to undertake further applications. In

particular BEAR offers the possibility to obtain estimates for the sample historical decomposition

from the sign restriction framework, which is our second application (section 5.2). The contribution
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of each shock is calculated as the median of the posterior distribution, and we also consider the total

shock contributions defined as the sum of the individual contributions. These estimates are displayed

in Figure 4:

Figure 4: Historical shock decomposition for US GDP growth
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The broad picture provided by the decomposition is that over the whole period, demand shocks

and monetary shocks seem to have represented the bulk of real GDP fluctuations, with supply shocks

playing a more limited role. There are noteworthy exceptions to this: the 1973 and 1979 oil crises,

and the 1985 and 1996 expansions. The 2009 crisis clearly appears as a mostly demand and mone-

tary driven event, with supply contributing more modestly. Supply shocks seem to have gained in

importance in the immediate aftermath of the crisis and have continued to play a non negligible role

more recently.

The decomposition confirms the importance of monetary policy shocks in US business cycles. For

certain periods, their role is actually predominant, as can be seen from the years 1976-1979 and 1992-

1994 periods, which corresponds to periods of very accommodating monetary policy. The (negative)

contribution was also major over the years 2008 and 2009 of the crisis. The contribution of monetary

policy shocks has become less significant since 2010, with the Federal Reserve being limited in its

ECB Working Paper 1934, July 2016 13



action by the zero lower bound reached by the Federal Funds rate since 2010.

The final exercise consists of a conditional forecast experiment. The objective is to analyse the

effect of monetary policy on real GDP growth. The experiment consists in assuming a rise of the

Federal Funds rate to 0.5% percent over the period 2016q1-2017q4. For the sake of clarity, data

for real GDP is turned into year-on-year growth rate. 4 different estimation settings are explored.

The first 3 of them rely on the standard methodology developed by Waggoner and Zha (1999) which

builds on structural shocks (section 5.3). For the first experiment the conditions are generated only

by demand shocks; for the second experiment the conditions are generated by monetary shocks only;

for the third one, the conditions are generated by all the shocks jointly, including supply shocks.

Finally, a fourth set of conditional forecast is produced using the tilting methodology proposed by

Robertson et al. (2005) (section 5.5). This methodology is agnostic about shocks, which represents

an interesting alternative for our experiment. The results are shown in Figure 5:

Figure 5: Conditional forecasts: effect of Federal Funds rate increase on real GDP growth
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The first noticeable characteristics is that the results differ quite significantly according to the

selected methodology. This highlights the importance of choosing a suitable setting in order to estab-
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lish meaningful results. The lowest conditional forecast values are produced by the pure monetary

policy shock scenario. In this case, the perspective in terms of growth is even more pessimistic than

for the unconditional forecasts. This is easily explanable: as the monetary authorities implement

a set of contractionary monetary policies, economic activity is negatively impacted which results

in a noticeable drop of real GDP growth. In this case, monetary policy precedes real activity. By

contrast, the pure demand shock scenario leads to an anticipated real GDP growth which is more op-

timistic than the unconditional forecasts. This is because in this case the economic rationale behind

the results is reversed: an initial increase in demand leads to a fueling in real activity, pushing the

central authorities to increase the interest rate to prevent inflationary pressures. In this case, real

activity precedes monetary policy. The all shocks scenario is somewhere in between: a mixture of

shocks hits the economy, some of them enhancing activity (supply and demand shocks) while others

hamper it (contractionary monetary shocks). The final forecast is, in this case, fairly close to the un-

conditional forecast. The final methodology is tilting and it induces an initial GDP growth which is

significantly higher than with the standard methodology. The methodology is agnostic about shocks

and considers only distributions. Therefore, this results indicates that from a purely statistical point

of view the distribution of real GDP growth needs to shift by this much in order to be consistent

with the specified path for the Federal Funds rate. Compared with the shock-based methodology

this implies a much weaker initial response of monetary authorities to real activity, followed however

by a more sustained action resulting in the interest rate to remain high even though the initial rise

in GDP growth vanishes.

In what follows, we present the underlying econometric methodologies and principles used in BEAR

and provide a concise theoretical background. In particular, we provide thorough derivations and

describe in detail the technical details of all applications that can be implemented in BEAR.
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3 Model estimation and evaluation

3.1 VAR models: formulation and estimation

A general VAR model with n endogenous variables, p lags, and m exogenous variables can be written

as:


y1,t

y2,t

...

yn,t

 =


a1

11 a1
12 · · · a1

1n

a1
21 a1

22 · · · a1
2n

...
...

. . .
...

a1
n1 a1

n2 · · · a1
nn




y1,t−1

y2,t−1

...

yn,t−1

+ · · ·+


ap11 ap12 · · · ap1n

ap21 ap22 · · · ap2n
...

...
. . .

...

apn1 apn2 · · · apnn




y1,t−p

y2,t−p
...

yn,t−p



+


c11 c12 · · · c1m

c21 c22 · · · c2m

...
...

. . .
...

cn1 cn2p · · · cnm




x1,t

x2,t

...

xm,t

+


ε1,t

ε1,t

...

ε1,t

 (3.1.1)

In compact form, the model rewrites:

yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + Cxt + εt, where t = 1, 2, ..., T (3.1.2)

yt = (y1,t, y2,t, · · · , yn,t) is a n × 1 vector of endogenous data, A1, A2, . . . , Ap are p matrices of

dimension n × n, C is a n ×m matrix, and xt is a m × 1 vector of exogenous regressors which can

be e.g. constant terms, time trends, or exogenous data series. εt = (ε1,t ε2,t · · · εn,t) is a vector of

residuals following a multivariate normal distribution:

εt ∼ N (0,Σ) (3.1.3)

εt is assumed to be non-autocorrelated, so that E(εtε
′
t) = Σ while E(εtε

′
s) = 0 if t 6= s. Σ is a

n×n symmetric positive definite variance-covariance matrix, with variance terms on the diagonal and

covariance terms off diagonal. T is the size of the sample used for the regression, and the structure

of the VAR implies that there are k = np + m coefficients to estimate for each equation, leaving a

total of q = nk = n(np+m) coefficients to estimate for the full VAR model.

For further computation, a convenient reformulation of 3.1.2 consists in writing the VAR in trans-

pose form as:

y
′

t = y′t−1A
′

1 + y
′

t−2A
′

2 + ...+ y
′

t−pA
′

p + x
′

tC
′
+ ε

′

t where t = 1, 2, ..., T (3.1.4)
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Because 3.1.4 holds for any t, one can stack observations in the usual way to reformulate the

model for the whole data set:


y,1

y,2
...

y,T


︸ ︷︷ ︸

T×n

=


y,0

y,1
...

y,T−1


︸ ︷︷ ︸

T×n

A,1︸︷︷︸
n×n

+


y,−1

y,0
...

y,T−2


︸ ︷︷ ︸

T×n

A,2︸︷︷︸
n×n

+...+


y,1−p

y,2−p
...

y,T−p


︸ ︷︷ ︸

T×n

A,p︸︷︷︸
n×n

+


x,1

x,2
...

x,T


︸ ︷︷ ︸

T×m

C ,︸︷︷︸
m×n

+


ε,1

ε,2
...

ε,T


︸ ︷︷ ︸

T×n
(3.1.5)

Gathering the regressors into a single matrix, one obtains:


y,1

y,2
...

y,T


︸ ︷︷ ︸

T×n

=


y,0 y,−1 · · · y,1−p x,1

y,1 y,0 · · · y,2−p x,2
...

...
...

...

y,T−1 y,T−2 · · · y,T−p x,T


︸ ︷︷ ︸

T×k



A,1

A,2
...

A,p

C ,


︸ ︷︷ ︸

k×n

+


ε,1

ε,2
...

ε,T


︸ ︷︷ ︸

T×n

(3.1.6)

Or, in more compact notation:

Y = XB + E (3.1.7)

with:

Y =


y,1

y,2
...

y,T

 , X =


y,0 y,−1 · · · y,1−p x,1

y,1 y,0 · · · y,2−p x,2
...

...
...

...

y,T−1 y,T−2 · · · y,T−p x,T

 , B =



A,1

A,2
...

A,p

C ,


, and E =


ε,1

ε,2
...

ε,T

 (3.1.8)

In model 3.1.7, subscripts t have been dropped to emphasize the fact that this formulation

encompasses the whole sample. Once the model has been stacked this way, obtaining OLS estimates

of the VAR is straightforward. An estimate B̂ of the parameter B in 3.1.7 obtains from:

B̂ = (X ,X)−1X ,Y (3.1.9)

Following, an OLS estimate Ê of the residual matrix E can be computed from direct application
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of 3.1.7, and a (degree of freedom adjusted) estimate Σ̂ of the covariance matrix Σ in 3.1.3 may be

obtained from:

Σ̂ =
1

T − k − 1

(
Ê ,Ê
)

(3.1.10)

Alternatively, using A.1.5, one can vectorise 3.1.6 to reformulate the model as:



y1,1
...

y1,T
...

yn,1
...

yn,T


︸ ︷︷ ︸

nT×1

=



y,0 y,−1 · · · y,1−p x,1 0 · · · 0

y,1 y,0 · · · y,−p x,2
...

...
...

...
...

...

y,T−1 y,T−2 · · · y,T−p x,T 0 · · · 0
. . .

0 · · · 0 y,0 y,−1 · · · y,1−p x,1

y,1 y,0 · · · y,−p x,2
...

...
...

...
...

...

0 · · · 0 y,T−1 y,T−2 · · · y,T−p x,T


︸ ︷︷ ︸

nT×q



A
(1)
1
...

A
(1)
p

C(1)

...

A
(n)
1
...

A
(n)
p

C(n)


︸ ︷︷ ︸

q×1

+



ε1,1
...

ε1,T
...

εn,1
...

εn,T


︸ ︷︷ ︸

nT×1

(3.1.11)

where in the above formulation, A
(j)
i and C(j) respectively denote the transpose of row j of matrix

Ai and C. 3.1.11 reformulates compactly as:

y = X̄β + ε (3.1.12)

with:

y = vec(Y ), X̄ = In ⊗X, β = vec(B), ε = vec(E) (3.1.13)
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Also, from 3.1.3, one obtains:

ε ∼ N (0, Σ̄), where Σ̄ = Σ⊗ IT (3.1.14)

An OLS estimate β̂ of the vectorised form β in 3.1.12 can be obtained as:

β̂ = (X̄ ′X̄)−1X̄ ′y (3.1.15)

Note that one can also simply use 3.1.9 and vectorise B̂ to recover β̂. This solution is often

preferred in practice, since the computation of B̂ involves smaller matrices and thus produces more

accurate estimates. Similarly, OLS estimates ε̂ for the residuals can be obtained either by direct

application of 3.1.12, or by vectorising Ê calculated from 3.1.7.

It should be clear that 3.1.7 and 3.1.12 are just alternative but equivalent representations of the

same VAR model 3.1.2. In the incoming developments, one representation or the other will be chosen

according to which one is most convenient for computational purposes. 3.1.7 is typically faster to

compute, while the main appeal of 3.1.12 resides in the fact that Bayesian analysis typically works

with β rather than with B.

3.2 Bayesian VAR estimation: principles

In Bayesian econometrics, every parameter of interest is treated as a random variable, characterized

by some underlying probability distribution. The aim of the econometrician is thus to identify these

distributions in order to produce estimates and carry inference on the model. This differs from the

traditional, frequentist approach which assumes that there exist ”true” parameter values, so that the

work of the econometrician is limited to the identification of these ”true” values.

In a VAR framework, the parameters of interest for the econometrician are the coefficients of the

model, gathered in the vector β in 3.1.12, along with the residual covariance matrix Σ defined in 3.1.3

(though in some instances, it may be assumed that it is known). The principle of Bayesian analysis

is then to combine the prior information the econometrician may have about the distribution for

these parameters (the prior distribution) with the information contained in the data (the likelihood

function) to obtain an updated distribution accounting for both these sources of information, known

as the posterior distribution. This is done by using what is known as Bayes rule, which represents

the cornerstone of Bayesian Analysis. For a general (vector of) parameter(s) θ and a data set y,

Bayes rule can be obtained from basic definitions of conditional probabilities, by noting that:

π(θ |y ) =
π(θ, y)

π(y)
=
π(θ, y)

π(y)

π(θ)

π(θ)
=
π(y, θ)

π(θ)

π(θ)

π(y)
=
π(y |θ )π(θ)

π(y)
(3.2.1)
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As it is common practice to denote data density by f(y |θ ) rather than by π(y |θ ), Bayes rule is

typically written as:

π(θ |y ) =
f(y |θ )π(θ)

f(y)
(3.2.2)

Formula 3.2.2 says that π(θ|y), the posterior distribution of θ conditional on the information con-

tained in y, is equal to the product of the data likelihood function f(y |θ ) with the prior distribution

π(θ), divided by the density f(y) of the data. Since the denominator f(y) is independent of θ, it

only plays the role of a normalizing constant with respect to the posterior π(θ |y ), so that it is often

convenient to ignore it and rewrite 3.2.2 as:

π(θ |y ) ∝ f(y |θ )π(θ) (3.2.3)

In essence, any Bayesian estimation of econometric models reduces to an application of 3.2.3. This

expression allows to obtain the posterior distribution π(θ |y ), which represents the central object for

inference as it combines in one single expression all the information we have about θ. It is this

posterior distribution which is then used to carry inference about the parameter values, compute

point estimates, draw comparisons between models, and so on.

A preliminary remark may be done about the prior distribution π(θ). Most of the times, θ will

not represent a single parameter, but rather several different parameters - or blocks of parameters -

considered by the model. This then implies that π(θ) represents the joint prior distribution for all

the parameters considered simultaneously, which may be difficult to determine. For example, in a

typical Bayesian VAR model, θ will include two blocks: the VAR coefficients β on the one hand, and

the residual variance-covariance matrix Σ on the other hand. What should be a joint distribution for

a vector of VAR coefficients and a variance-covariance matrix is a question with no obvious answer.

A simple way to overcome this issue is to assume independence between parameters or blocks, so

that the joint density simply becomes the product of the individual densities. This then reduces the

problem to the determination of one distribution for each individual element, an easier and more

meaningful strategy than looking for a joint density. For a general model with d parameters or

blocks, π(θ) can then be rewritten as:

π(θ) = π(θ1)× π(θ2)× · · · × π(θd) (3.2.4)

For instance, in the typical VAR example made of the two blocks or parameters θ1 = β and

θ2 = Σ, this allows to rewrite 3.2.3 as:

π(θ |y ) ∝ f(y |θ )π(θ1)π(θ2) (3.2.5)
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In most practical Bayesian VAR applications, it is 3.2.5 rather than 3.2.3 that will be applied to

obtain the posterior distribution.

A similar issue arises with the posterior distribution π(θ |y ): it is also a joint distribution for the

parameters or blocks of the model, while the typical objects of interest for the statistician are the

individual posterior distributions. To derive the marginal distributions of a particular element, one

simply integrates out the remainder of the parameters from the joint posterior distribution:

π(θi |y ) =

∫
π(θ1, θ2, ..., θd |y ) dθ1dθ2...dθd︸ ︷︷ ︸

j 6=i

(3.2.6)

For example, in the typical 2-block VAR model, one finds the distribution for θ1 by integrating

the joint distribution over θ2:

π(θ1 |y ) =

∫
π(θ1, θ2 |y )dθ2 (3.2.7)

Similarly, one will obtain the distribution for θ2 by integrating the joint distribution over θ1.

3.2.2 represents the simplest formulation of Bayes rule. It is however possible to build richer and

more sophisticated versions of it by using what is known as hierarchical prior distributions. To

understand this concept, consider the case of the prior distribution π(θ) set for some parameter

of interest θ. This prior distribution itself depends on some other parameter values that we may

denote by λ. For instance, if π(θ) is the multivariate normal distribution, it depends on the set of

parameters λ = (µ,Σ), which respectively represent the mean and covariance of the multivariate

normal distribution. To be perfectly rigorous, one should hence denote the prior distribution for θ by

π(θ |λ), but in practice the implicit parameters µ and Σ are often omitted to lighten notation so that

the prior distribution is simply written as π(θ). The parameters λ, known as hyperparameters (they

are the parameters determining the prior distribution of the parameters of interest θ), are usually

assumed to be fixed and known, with values provided by the Bayesian practitioner. It is however

possible to assume that λ is also a random variable, and as such to also characterize it with some

prior distribution. This way, an additional layer of uncertainty is added to the model.

Because λ provides additional random variables to the model, those supplementary random vari-

ables must be added to the full posterior distribution, which thus becomes π(θ, λ |y ) and not just

π(θ |y ). It is straightforward to obtain a formula for π(θ, λ |y ) by starting from Bayes rule 3.2.2, and
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then use basic algebra:

π(θ, λ |y ) =
f(y |θ, λ)π(θ, λ)

f(y)

=
f(y |θ, λ)

f(y)

π(θ, λ)

π(λ)
π(λ)

=
f(y |θ, λ)

f(y)
π(θ |λ)π(λ)

∝ f(y |θ, λ)π(θ |λ)π(λ) (3.2.8)

Note that the hyperparameter λ is only used to determine the prior distribution of θ. Therefore, once

the value of θ is determined, λ becomes redundant and does not give anymore any useful information

for the computation of the likelihood f(y |θ, λ). It can thus be omitted so that 3.2.8 rewrites:

π(θ, λ |y ) ∝ f(y |θ )π(θ |λ)π(λ) (3.2.9)

(3.2.9) says that to obtain the full posterior distribution of the hierarchical model, it suffices to multi-

ply the likelihood function f(y |θ ) with the (conditional) prior π(θ |λ) for θ, and the prior distribution

π(λ) for λ. If one is then interested only in the posterior distribution of θ, a marginalisation process

similar to that of 3.2.6 is directly applicable:

π(θ |y ) =

∫
λ

π(θ, λ |y )dλ (3.2.10)

Hierarchical priors can extend to more than one stage. It is possible for instance to add a third layer of

uncertainty. Indeed, since λ is a random variable, it also depends on some set of hyperparameters, say

γ. In the one-stage hierarchical model, γ was implicitly assumed to be fixed and known. However,

it is possible to assume that γ is actually also a random variable, and thus generate a two-stage

hierarchical model. Then, Bayes formula becomes:

π(θ, λ, γ |y ) ∝ f(y |θ )π(θ |λ)π(λ |γ )π(γ) (3.2.11)

And the posterior distribution for θ obtains from:

π(θ |y ) =

∫
λ

∫
γ

π(θ, λ, γ |y )dλdγ (3.2.12)

Any number of additional layers can be added to the model, with the same logic to extend Bayes

rule and the marginalisation process.
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Once the posterior distribution is obtained, either in a standard or hierarchical way, the question

becomes how to handle the posterior distribution. The latter contains all the information that the

statistician has about θ, but as such it is hardly of any use, since an entire distribution represents

something too complicated to be conveniently used in practical applications. One may thus want to

summarize the information contained in the whole distribution in a few criteria only.

For instance, one may typically want to obtain a point estimate for θ. This is done by using a

loss function L(θ̂, θ), which specifies the loss incurred if the true value of the parameter is θ, but

is estimated as θ̂. An example of loss function is the quadratic loss function L(θ̂, θ) = (θ̂ − θ)2.

The Bayes estimator (or point estimate) of θ is then defined as the value of θ̂ which minimizes the

expected loss over the posterior distribution of θ. That is, θ̂ is chosen to minimise:

E
[
L(θ̂, θ)

]
=

∫
L(θ̂, θ)π(θ |y )dθ (3.2.13)

With the quadratic loss function, θ̂ is thus obtained by minimising:

E
[
L(θ̂, θ)

]
=

∫
(θ̂ − θ)2π(θ |y )dθ (3.2.14)

Taking the derivative, setting it to 0 and rearranging, one finds:

2

∫
(θ̂ − θ)π(θ |y )dθ = 0 (3.2.15)

or

θ̂ =

∫
θπ(θ |y )dθ = E(θ |y ) (3.2.16)

That is, the point estimate is given by the mean of the posterior distribution. Other values are

possible with different loss functions. For example, using an absolute value loss function yields the

median as the Bayes estimator, while the so-called step-loss function yields the mode. One may also

want to compute interval estimates for θ, that is:

P (θL ≤ θ ≤ θU) = α (3.2.17)

which indicates that θL ≤ θ ≤ θU with a probability of α, for instance α = 0.95. Such intervals are

referred to as credibility intervals, since they reflect plausible values for θ, values outside the interval

being considered too uncommon or unlikely to be plausible. The credibility interval can be derived

from the posterior distribution, either by trimming probability from both tails of the distribution,

or by selecting the pair yielding the shortest interval.
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In practice, the median will typically be preferred to the mean as a point estimate, for two reasons.

The first is that the median is less sensitive than the mean to extreme values. Therefore, choosing the

median avoids selecting a point estimate which can be very remote from the centre of the distribution,

as can be the case with the mean if the posterior distribution is strongly skewed. The second is that

being the 50% quantile, the median is ensured to be comprised within the bounds of a credibility

interval, while the mean can produce an estimate outside these bounds in the case, once again, of a

skewed distribution.

A final feature of interest is the comparison of different models. Imagine for example that one

wants to compare model 1 and model 2, and determine which one is the true model. Model 1 is

characterized by the prior belief or prior probability P (M1) = p1 that it is indeed the true model, by

a set of parameters θ1, a prior distribution π(θ1 |M1 ) over these parameters, and a likelihood function

f1(y |θ1,M1) . Similarly, model 2 is characterized by P (M2) = p2,θ2, π(θ2 |M2 ) and f2(y |θ2,M2) . The

Bayesian methodology then consists in computing for each model the posterior probability P (M1|y),

which is interpreted as the probability that model i is indeed the true one, given the information

contained in the data. Using Bayes rule 3.2.2, one obtains this posterior probability as:

P (Mi |y ) =
f1(y |Mi )P (Mi)

f(y)
(3.2.18)

After some use of rules of marginal and conditional probabilities, this rewrites as:

P (Mi|y) =
pi
∫
fi(y |θi,Mi)πi(θi |Mi )dθi

f(y)
(3.2.19)

The numerator term in the integral is of particular interest and is known as the marginal likelihood

for model i :

mi(y) =

∫
fi(y |θi,Mi)πi(θi |Mi )dθi (3.2.20)

Note that this function involves the likelihood fi(y |θi,Mi) and the prior π(θi |Mi ). The marginal

likelihood is a crucial element for model comparison. Indeed, to compare model 1 with model 2 and

determine which one is more likely to be the true one, the simplest method is to compute the ratio

of their posterior probabilities. Using 3.2.19 and 3.2.20, one obtains:

R12 =
P (M1 |y )

P (M2 |y )
=

(
p1

p2

)(
m1

m2

)
(3.2.21)

This shows that the ratio is made of two elements: the prior odds ratio p1/p2 which reflects the

prior belief of the statistician in favour of model 1, and the ratio of the marginal likelihoods m1/m2,

known as the Bayes factor. If the statistician has no preconceived idea on which model should be
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true, he will set so that the whole burden of model comparison will fall on the Bayes factor. Once

R12 is calculated, the last remaining issue is to determine which rule of thumb should be followed to

determine whether model 1 should be deemed as the true one.

Jeffreys (1961) proposes the following guidelines:

Table 3: Jeffrey’s guideline

log10(R12) > 2 Decisive support for M1

3/2 < log10(R12) < 2 Very strong evidence for M1

1 < log10(R12) < 3/2 Strong evidence for M1

1/2 < log10(R12) < 1 Substantial evidence for M1

0 < log10(R12) < 1/2 Weak evidence for M1

Any negative value of log10(R12) has of course to be interpreted as evidence against model M1.

This subsection summarized in a nutshell all the principles underlying the practice of Bayesian

econometrics. The following subsections mostly build on these principles, developing the details of

the Bayesian procedures used to estimate the general VAR model introduced in subsection 3.1.

3.3 The Minnesota prior

This subsection initiates the presentation of the different prior distributions used in Bayesian VAR

analysis, along with the derivations of their posterior distributions. The main text provides only the

essential steps of the reasoning, but detailed derivations can be found in appendix A.3 and following

(for the subsequent priors). Also, appendices A.1 and A.2 provide some calculus and statistical

background, if required.

The simplest form of prior distributions for VAR models is known as the Minnesota (or Litterman)

prior. In this framework, it is assumed that the VAR residual variance-covariance matrix Σ is

known. Hence, the only object left to estimate is the vector of parameters β. To obtain the posterior

distribution for β from 3.2.3, one needs two elements: the likelihood function f(y |β ) for the data,

and a prior distribution π(β) for β.

Start with the likelihood function. For the Minnesota prior, 3.1.12 turns out to be the most

convenient formulation for the VAR model. As stated in 3.1.3, this formulation implies that the

residuals follow a multivariate normal distribution with mean 0 and covariance matrix Σ̄. This in

turn implies from 3.1.12 that y also follows a multivariate normal distribution with mean X̄β and

covariance Σ̄. Therefore, one may write the likelihood for y as:
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f(y
∣∣β, Σ̄) = (2π)−nT/2

∣∣Σ̄∣∣−1/2
exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
(3.3.1)

Ignoring terms independent from β relegated to proportionality constants, 3.3.1 simplifies to:

f(y
∣∣β, Σ̄) ∝ exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
(3.3.2)

Now turn to the prior distribution for β. It is assumed that β follows a multivariate normal

distribution, with mean β0 and covariance matrix Ω0:

π(β) ∼ N (β0,Ω0) (3.3.3)

To identify β0 and Ω0, Litterman (1986) proposed the following strategy. As most observed

macroeconomic variables seem to be characterized by a unit root (in the sense that their changes

are impossible to forecast), our prior belief should be that each endogenous variable included in the

model presents a unit root in its first own lags, and coefficients equal to zero for further lags and

cross-variable lag coefficients. In the absence of prior belief about exogenous variables, the most

reasonable strategy is to assume that they are neutral with respect to the endogenous variables,

and hence that their coefficients are equal to zero as well. These elements translate into β0 being a

vector of zeros, save for the entries concerning the first own lag of each endogenous variable which

are attributed values of 1. Note though that in the case of variables known to be stationary, this

unit root hypothesis may not be suitable, so that a value around 0.8 may be preferred to a value of

1.

As an example, consider a VAR model with two endogenous variables and two lags, along with one

exogenous variables (for instance a constant, or an exogenous data series). Each equation will involve

k = np + m = 2 × 2 + 1 = 5 coefficients to estimate, which implies a total of q = nk = 2 × 5 = 10

coefficients for the whole model, so that β0 will be a q×1 vector. For our example, given the structure

described by 3.1.11-3.1.12, it is given by:
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β0 =



1

0

0

0

0

0

1

0

0

0



(3.3.4)

For the variance-covariance matrix Ω0, it is assumed that no covariance exists between terms in

β, so that Ω0 is diagonal. Also, Litterman (1986) argued that the further the lag, the more confident

we should be that coefficients linked to this lag have a value of zero. Therefore, variance should be

smaller on further lags. Also, this confidence should be greater for coefficients relating variables to

past values of other variables. Finally, it should be assumed that little is known about exogenous

variables, so that the variance on these terms should be large. Based on these principles, Litterman

(1986) distinguished three different cases:

1. For parameters in β relating endogenous variables to their own lags, the variance is given by:

σ2
aii

=

(
λ1

lλ3

)2

(3.3.5)

where λ1 is an overall tightness parameter, l is the lag considered by the coefficient, and λ3 is

a scaling coefficient controlling the speed at which coefficients for lags greater than 1 converge

to 0 with greater certainty.

2. For parameters related to cross-variable lag coefficients, the variance is given by:

σ2
aij

=

(
σ2
i

σ2
j

)(
λ1λ2

lλ3

)2

(3.3.6)

where σ2
i and σ2

j denote the OLS residual variance of the auto-regressive models estimated for

variables i and j, and λ2 represents a cross-variable specific variance parameter.

3. For exogenous variables (including constant terms), the variance is given by:

σ2
ci

= σ2
i (λ1λ4)2 (3.3.7)
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where σ2
i is again the OLS residual variance of an auto-regressive model previously estimated

for variable i, and λ4 is a large (potentially infinite) variance parameter.

Ω0 is thus a q×q diagonal matrix with three different types of variance terms on its main diagonal.

For instance, for the VAR model with 2 variables, 2 lags and one exogenous variable specified above,

Ω0 is given by:

Ω0 =



(λ1)2 0 0 0 0 0 0 0 0 0

0

(
σ2

1
σ2

2

)
(λ1λ2)2 0 0 0 0 0 0 0 0

0 0
(
λ1

2λ3

)2
0 0 0 0 0 0 0

0 0 0

(
σ2

1
σ2

2

)(
λ1λ2

2λ3

)2
0 0 0 0 0 0

0 0 0 0 σ2
1(λ1λ4)2 0 0 0 0 0

0 0 0 0 0

(
σ2

2
σ2

1

)
(λ1λ2)2 0 0 0 0

0 0 0 0 0 0 (λ1)2 0 0 0

0 0 0 0 0 0 0

(
σ2

2
σ2

1

)(
λ1λ2

2λ3

)2
0 0

0 0 0 0 0 0 0 0
(
λ1

2λ3

)2
0

0 0 0 0 0 0 0 0 0 σ2
2(λ1λ4)2


(3.3.8)

Different choices are possible for λ1,λ2,λ3 and λ4. However, values typically found in the literature

revolve around:

λ1 = 0.1 (3.3.9)

λ2 = 0.5 (3.3.10)

λ3 = 1 or 2 (3.3.11)

λ4 = 102 to ∞ (3.3.12)

Finally, since the Minnesota prior assumes that the variance-covariance matrix of residuals Σ is

known, one has to decide how to define it. The original Minnesota prior assumes that Σ is diagonal

which, as will be seen later, conveniently implies independence between the VAR coefficients of

different equations. This property was useful at a time of limited computational power as it allows

estimating the model equation by equation (this possibility is not used here). A first possibility is

thus to set the diagonal of Σ equal to the residual variance of individual AR models run on each

variable in the VAR. A second possibility is to use the variance-covariance matrix of a conventional

VAR estimated by OLS, but to retain only the diagonal terms as Σ. Finally, as the model estimates
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all the equations simultaneously in this setting, the assumption of a diagonal matrix is not required.

Therefore, a third and last possibility consists in using directly the entire variance-covariance matrix

of a VAR estimated by OLS.

Once β0 and Ω0 are determined, and that proper values re-attributed to Σ, one may compute the

prior distribution of β. The normality assumption implies that its density is given by:

π(β) = (2π)−nk/2|Ω0|−1/2 exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
(3.3.13)

Relegating terms independent of β to the proportionality constant, 3.3.13 rewrites:

π(β) ∝ exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
(3.3.14)

Now, directly applying 3.2.3, that is, combining the likelihood 3.3.2 with the prior 3.3.14, the

posterior distribution for β obtains as:

π(β |y ) ∝ f(y |β )π(β)

∝ exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
× exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
= exp

[
−1

2

{(
y − X̄β

),
Σ̄−1

(
y − X̄β

)
+ (β − β0),Ω−1

0 (β − β0)
}]

(3.3.15)

Equation 3.3.15 represents the kernel of the posterior distribution, but it does not have the form

of a known distribution. Yet, it is possible to show that after some manipulations, it reformulates

as:

π(β |y ) ∝ exp

[
−1

2

{(
β − β̄

),
Ω̄−1

(
β − β̄

)}]
(3.3.16)

with:

Ω̄ =
[
Ω−1

0 + Σ−1 ⊗X ,X
]−1

(3.3.17)

and:

β̄ = Ω̄
[
Ω−1

0 β0 + (Σ−1 ⊗X ,)y
]

(3.3.18)

This is the kernel of a multivariate normal distribution with mean β̄ and covariance matrix Ω̄.

Therefore, the posterior distribution of β is given by:

π(β |y ) ∼ N (β̄, Ω̄) (3.3.19)
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From this posterior distribution, point estimates and credibility intervals for β can obtain by

direct application of the methods developed in subsection 3.2.

3.4 The normal-Wishart prior

Although the Minnesota prior offers a simple way to derive the posterior distribution of the VAR

coefficients, it suffers from the main drawback of assuming that the residual covariance matrix Σ is

known. One possibility to relax this assumption is to use a normal-Wishart prior distribution. In

this setting, it is assumed that both β and Σ are unknown.

The analysis starts again with the likelihood function f(y
∣∣β, Σ̄) for the data sample. Because

there is no change in the assumptions relative to the data, its density is still given by 3.3.1, repeated

here for convenience:

f(y |β,Σ) = (2π)−nT/2
∣∣Σ̄∣∣−1/2

exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
(3.4.1)

However, since Σ is now assumed to be unknown, Σ̄ = Σ ⊗ IT cannot be relegated anymore to

the proportionality constant. Therefore, 3.4.1 now simplifies to:

f(y |β,Σ) ∝
∣∣Σ̄∣∣−1/2

exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
(3.4.2)

After quite a bit of manipulations, one can show that this density rewrites as:

f(y |β,Σ) ∝ |Σ|−k/2 exp

[
−1

2

(
β − β̂

),(
Σ⊗ (X ,X)−1)−1

(
β − β̂

)]
× |Σ|−[(T−k−n−1)+n+1]/2 exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(3.4.3)

where Y and X are defined in 3.1.8, and B̂ and β̂ are defined as in 3.1.9 and 3.1.15. Equation

3.4.3 can be recognised as the kernel of a multivariate normal distribution (for β), and the kernel

of an inverse Wishart distribution (for Σ), both being centred around OLS estimators. It seems

then natural to assume similar prior distributions for β and Σ, in the hope that it could yield

distributions of the same families for the posterior distribution, which will indeed be the case (such

identical families for the prior and the posterior are known as conjugate priors).

For β, one thus assumes a multivariate normal distribution for the prior:

β ∼ N (β0,Σ⊗ Φ0) (3.4.4)
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Similarly to the Minnesota prior, β0 is an q × 1 vector. Φ0 is a k × k diagonal matrix, and Σ is

the usual VAR residual variance-covariance matrix, which implies that Σ⊗Φ0 is a nk × nk or q × q
covariance matrix.

The choice of β0 is usually simple, while Φ0 raises some issues. For β0, a conventional Minnesota

scheme will be typically adopted, setting values around 1 for own first lag coefficients, and 0 for cross

variable and exogenous coefficients. For Φ0, note the difference between 3.4.4 and the Minnesota

parameter Ω0 in 3.3.3: while Ω0 represents the full variance-covariance matrix of β, now Φ0 only

represents the variance for the parameters of one single equation in the VAR. Each such variance is

then scaled by the variable-specific variance contained in Σ. This Kronecker structure implies that

the variance-covariance matrix of β cannot be specified anymore as in 3.3.8: the variance-covariance

matrix of one equation has now to be proportional to the variance-covariance matrix of the other

equations. As shown in Appendix A.4, without this structure, it would not be possible to obtain

a well identified posterior distribution. One may however approach a Minnesota type of variance

matrix by adopting the following strategy (see e.g. Karlsson (2012)):

For lag terms (both own and cross-lags), define the variance as:

σ2
aij

=

(
1

σ2
j

)(
λ1

lλ3

)2

(3.4.5)

where σ2
j is the unknown residual variance for variable j in the BVAR model, approximated by

individual AR regressions. For exogenous variables, define the variance as:

σ2
c = (λ1λ4)2 (3.4.6)

For instance, with the two-variable VAR with two lags and one exogenous variable used as an

example in subsubsection 3.3, Φ0 would be:

Φ0 =



(
1
σ2

1

)
(λ1)2 0 0 0 0

0
(

1
σ2

2

)
(λ1)2 0 0 0

0 0
(

1
σ2

1

) (
λ1

2λ3

)2
0 0

0 0 0
(

1
σ2

2

) (
λ1

2λ3

)2
0

0 0 0 0 (λ1λ4)2


(3.4.7)

If one assumes a diagonal Σ as in the original Minnesota prior, 3.4.7 then implies that Σ⊗Φ0 is

given by:
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Σ⊗ Φ0 =



(λ1)2 0 0 0 0 0 0 0 0 0

0

(
σ2

1
σ2

2

)
(λ1)2 0 0 0 0 0 0 0 0

0 0
(
λ1

2λ3

)2
0 0 0 0 0 0 0

0 0 0

(
σ2

1
σ2

2

)(
λ1

2λ3

)2
0 0 0 0 0 0

0 0 0 0 σ2
1(λ1λ4)2 0 0 0 0 0

0 0 0 0 0

(
σ2

2
σ2

1

)
(λ1)2 0 0 0 0

0 0 0 0 0 0 (λ1)2 0 0 0

0 0 0 0 0 0 0

(
σ2

2
σ2

1

)(
λ1

2λ3

)2
0 0

0 0 0 0 0 0 0 0
(
λ1

2λ3

)2
0

0 0 0 0 0 0 0 0 0 σ2
2(λ1λ4)2


(3.4.8)

Comparing with 3.3.8, one can see that the normal-Wishart variance-covariance matrix of β is a

special case of the Minnesota variance-covariance matrix where Σ is diagonal and the parameter λ2

is constrained to take a value of 1. In this sense, the normal-Wishart prior appears as a Minnesota

prior that would not be able to provide tighter priors on cross-variable parameters, which may be

an undesirable assumption. For this reason, it is advised to set λ1 at a smaller value than for the

Minnesota prior (e.g. between 0.01 and 0.1), in order to compensate for the lack of extra shrinkage

from λ2. For the remaining hyperparameters λ3 and λ4, the same values as the Minnesota prior may

be attributed.

With β0 and Φ0 at hands, the prior density for β writes as:

π(β) ∝ |Σ|−k/2 exp

[
−1

2
(β − β0),(Σ⊗ Φ0)−1 (β − β0)

]
(3.4.9)

Turn now to the prior for Σ. The retained distribution is an inverse Wishart distribution charac-

terised as:

Σ ∼ IW(S0, α0) (3.4.10)

where S0 is the n × n scale matrix for the prior, and α0 is prior degrees of freedom. While any

choice can be made for these hyperparameters according to prior information, the literature once

again proposes standard schemes. For instance, following Karlsson (2012), S0 can be defined as:

S0 = (α0 − n− 1)


σ2

1 0 0 0

0 σ2
2 0 0

0 0
. . . 0

0 0 0 σ2
n

 (3.4.11)
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On the other hand, the prior degrees of freedom α0 is defined as:

α0 = n+ 2 (3.4.12)

This specifies the prior degrees of freedom as the minimum possible to obtain well-defined mean

and variance. Indeed, this value implies that:

E(Σ) =


σ2

1 0 0 0

0 σ2
2 0 0

0 0
. . . 0

0 0 0 σ2
n

 (3.4.13)

In other words, the expectation of Σ is the diagonal covariance matrix obtained from individual

AR regressions and used as an estimate for Σ in the Minnesota prior. As with the Minnesota prior, it

is possible to implement alternative schemes. For instance, the matrix 3.4.11 can be simply replaced

with an identity matrix of size n.

With these elements, the kernel of the prior density for Σ is given by:

π(Σ) ∝ |Σ|−(α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1S0

}]
(3.4.14)

From 3.2.5, the posterior obtains by combining the likelihood 3.4.3 with the priors 3.4.9 and

3.4.14. After lengthy manipulations, one obtains:

π(β,Σ |y ) ∝ |Σ|−(k)/2 exp

[
−1

2
(β − β̄)

,(
Σ⊗ Φ̄

)−1
(β − β̄)

]
× |Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

(3.4.15)

with:

Φ̄ =
[
Φ−1

0 +X
′
X
]−1

(3.4.16)

β̄ = vec(B̄), B̄ = Φ̄
[
Φ−1

0 B0 +X
′
Y
]

(3.4.17)

ᾱ = T + α0 (3.4.18)

and

S̄ = Y ,Y + S0 +B,
0Φ−1

0 B0 − B̄,Φ̄−1B̄ (3.4.19)
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This is recognised as the kernel of a multivariate normal distribution for β (conditional on Σ),

multiplied by the kernel of an inverse Wishart distribution for Σ. The fact that the posterior takes

the same form as the prior justifies the denomination of conjugate prior. One then wants to use

the joint posterior 3.4.16 to derive the marginal distributions for β and Σ. This is done by direct

application of 3.2.7.

Obtaining the marginal for Σ is trivial: integrating out β is easy as it appears only in the first term

as a multivariate normal. Following integration, only the second term remains, which determines

straight away the posterior density for Σ as:

π(Σ |y ) ∝ |Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

(3.4.20)

This is once again immediately recognised as the kernel of an inverse Wishart distribution:

π(Σ |y ) ∼ IW
(
ᾱ, S̄

)
(3.4.21)

Integrating out Σ to derive the marginal for β is a more complicated matter, but it can be shown

after some work on 3.4.15 that:

π(B |y ) ∝
∣∣In + S̄−1(B − B̄)

,
Φ̄−1(B − B̄)

∣∣− [T+α0−n+1]+n+k−1
2 (3.4.22)

where B is defined in 3.1.8. This is the kernel of a matrix-variate student distribution with mean

B̄, scale matrices S̄ and Φ̄, and degrees of freedom T + α0 − n+ 1:

B ∼MT (B̄, S̄, Φ̄, α̃) (3.4.23)

with:

α̃ = T + α0 − n+ 1 (3.4.24)

This then implies that each individual element Bi,j of B follows a univariate student distribution

with mean B̄i,j, scale parameter Φ̄i,i × S̄j,j and degrees of freedom α̃.

Bi,j ∼ t(B̄i,j, Φ̄i,i × S̄j,j, α̃) (3.4.25)

3.4.21 and 3.4.25 can then eventually be used to compute point estimates and draw inference for

β and Σ, using once again the methods developed in subsection 3.2.
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3.5 An independent normal-Wishart prior with unknown Σ and arbi-

trary Ω0

Even though the normal-Wishart prior is more flexible than the Minnesota prior in the sense that

Σ is not assumed to be known, it has its own limitations. As shown by 3.4.4, assuming an unknown

Σ comes at the cost of imposing a Kronecker structure on the prior distribution for β, constraining

its covariance matrix to be equal to Σ⊗Φ0. This structure creates, for each equation, a dependence

between the variance of the residual term and the variance of the VAR coefficients, which may be

an undesirable assumption. An alternative way to see the restrictions generated by this specific

formulation is to notice that the covariance matrix for the VAR coefficients Σ⊗ Φ0 (given by 3.1.4)

corresponds to the more general covariance matrix used for the Minnesota (see equation 3.4.8) in the

special case where λ2 = 1, that is, where the variance on cross-variable coefficients is as large as the

variance on its own lags, for each equation.

Ideally, one would thus like to estimate a BVAR model where at the same time Σ would be treated

as unknown, and an arbitrary structure could be proposed for Ω0, with no assumed dependence

between residual variance and coefficient variance. Such a prior, known as the independent normal-

Wishart prior, is feasible but implies the sacrifice of analytical solutions in favour of numerical

methods. The analysis starts the usual way: first obtain the likelihood from the data. There is no

change here and likelihood is still given by 3.4.3:

f(y |β,Σ) ∝ |Σ|−T/2 exp

[
−1

2

(
β − β̂

),(
Σ⊗ (X ,X)−1)−1

(
β − β̂

)]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(3.5.1)

Concerning the prior for β, it now departs from the normal-Wishart assumption by assuming

that β follows a multivariate normal distribution with mean β0 and covariance matrix Ω0, but Ω0 is

now an arbitrary q × q matrix, not necessarily adopting the Kronecker structure described by 3.4.4.

β0 on the other hand is the usual q × 1 mean vector. Hence:

β ∼ N (β0,Ω0) (3.5.2)

In typical applications, Ω0 will take the form of the Minnesota covariance matrix described in

3.3.8, but any choice is possible. Similarly, β0 will typically be defined as the Minnesota β0 vector

3.3.4, but any structure of vector β0 could be adopted.

Given β0 and Ω0, the prior density for β is given by:
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π(β) ∝ exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
(3.5.3)

Similarly to the inverse-Wishart prior, the prior distribution for Σ is an inverse Wishart distri-

bution, with scale matrix S0 and degrees of freedom α0:

Σ ∼ IW(S0, α0) (3.5.4)

In typical applications, S0 and α0 will be determined as 3.4.11 and 3.4.12. Following, the prior

density of Σ is given by:

π(Σ) ∝ |Σ|−(α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1S0

}]
(3.5.5)

As usual, the posterior obtains from direct application of 3.2.5, using 3.5.1, 3.5.3 and 3.5.5 :

π(β,Σ |y ) ∝ f(y |β,Σ)π(β)π(Σ)

∝ |Σ|−T/2 exp

[
−1

2

(
β − β̂

),(
Σ⊗ (X

′
X)
−1
)−1 (

β − β̂
)]

× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
′

(Y −XB̂)
}]

× exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
× |Σ|−(α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1S0

}]
(3.5.6)

Regrouping terms, 3.5.6 rewrites as:

π(β,Σ |y) ∝|Σ|−(T+α0+n+1)/2 exp

[
−1

2

{(
β − β̂

), (
Σ−1 ⊗X ,X

) (
β − β̂

)
+ (β − β0),Ω−1

0 (β − β0)
}]

× exp

[
−1

2
tr
{

Σ−1
[
S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
(3.5.7)

And after quite a bit of manipulations, 3.5.7 becomes:
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π(β,Σ |y ) ∝ |Σ|−(T+α0+n+1)/2 exp

[
−1

2
(β − β̄)

,
Ω̄−1(β − β̄)

]
× exp

[
−1

2
β̂,
(
Σ−1 ⊗X ,X

)
β̂ + β,0Ω−1

0 β0 − β̄,Ω̄−1β̄

]
× exp

[
−1

2
tr
{

Σ−1
[(
Y −XB̂

), (
Y −XB̂

)
+ S0

]}]
(3.5.8)

with B̂ and β̂ defined the usual way as in 3.1.9 and 3.1.14, and:

Ω̄ =
[
Ω−1

0 + Σ−1 ⊗X ,X
]−1

(3.5.9)

and

β̄ = Ω̄
[
Ω−1

0 β0 + (Σ−1 ⊗X ,)y
]

(3.5.10)

Note that the general structure of Ω0 prevents from reformulating the second row of 3.5.8 as a trace

expression, which would have allowed to obtain a term corresponding to S̄ in 3.4.19. Consequently,

as it is, 3.5.8 provides no way to derive an analytical marginal distribution for β and Σ.

However, even if it is not possible to derive the unconditional marginal distribution for β and Σ, it

is possible to derive their conditional distributions. To do so, one considers the joint posteriors distri-

bution for all parameters and retain only terms involving parameters whose conditional distribution

must be determined. All terms that do not involve these parameters do not contain information

about their distribution and are thus relegated to the proportionality constant.

Apply first this method to β: considering 3.5.8, and ignoring terms not involving β, one is left

with:

π(β |Σ, y ) ∝ exp

[
−1

2
(β − β̄)

,
Ω̄−1(β − β̄)

]
(3.5.11)

This is recognised as the kernel of a multivariate distribution with mean β̄ and variance-covariance

matrix Ω̄. Hence:

π(β |Σ, y ) ∼ N (β̄, Ω̄) (3.5.12)

Now determine the conditional distribution for Σ. To do so, it is easier to work directly with

3.5.7. Thus, ignore terms not involving Σ in 3.5.7, and reshape the remaining elements to obtain:
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π(Σ |β, y ) ∝ |Σ|−[(T+α0)+n+1]/2 exp

[
−1

2
tr
{

Σ−1 [(Y −XB),(Y −XB) + S0]
}]

(3.5.13)

This is recognised as the kernel of an inverse Wishart distribution:

π(Σ |β, y ) ∼ IW((Ŝ, α̂) (3.5.14)

with scale matrix:

Ŝ = (Y −XB),(Y −XB) + S0

And degrees of freedom:

α̂ = T + α0 (3.5.15)

With these conditional distributions at hand, it is possible to use a numerical method known

as Gibbs sampling to obtain random draws from the unconditional posterior distributions of the

parameters of interest. While a rigorous presentation of the theory of Gibbs sampling implies an

exposition of Markov Chain Monte Carlo methods and lies beyond the scope of this guide , it is still

possible to present the ideas underlying the process.1

The presentation is made for the simplest case: a model with only two blocks of parameters θ1

and θ2 (corresponding for a VAR model to β and Σ). However, it is straightforward to generalise it

to any number of blocks. Assume hence that one considers a model with two blocks of parameters

θ1 and θ2, and wants to determine the unconditional posterior distribution for each of these blocks.

The unconditional distribution has an unknown form, but the conditional distribution has a known

form, and numerical softwares are able to sample from it. Then, consider the following procedure:

Algorithm 1.5.1 (Gibbs sampling with two blocks):

1. Fix any arbitrary initial value for θ
(0)
2 .

2. At iteration 1, determine the conditional distribution f(θ1

∣∣∣θ(0)
2 ), using the value θ

(0)
2 . Then

obtain a draw θ
(1)
1 from this distribution.

3. At iteration 1, determine the conditional distribution f(θ2

∣∣∣θ(1)
1 ), using the value θ

(1)
1 . Then

obtain a draw θ
(1)
2 from this distribution. This marks the end of iteration 1.

1See e.g. Kadiyala and Karlsson (1997) for a brief presentation of the Gibbs sampling methodology, and Greenberg
(2008), chapters 6 and 7, for a much more comprehensive treatment of the topic.
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4. At iteration 2, determine the conditional distribution f(θ1

∣∣∣θ(1)
2 ), using the value θ

(1)
2 . Then

obtain a draw θ
(2)
1 from this distribution.

5. At iteration 2, determine the conditional distribution f(θ2

∣∣∣θ(2)
1 ), using the value θ

(2)
1 . Then

obtain a draw θ
(2)
2 from this distribution. This marks the end of iteration 2. Then pursue the

process, repeating any number of times:

6. At iteration n, determine the conditional distribution f(θ1

∣∣∣θ(n−1)
2 ), using the value θ

(n−1)
2 . Then

obtain a draw θ
(n)
1 from this distribution.

7. At iteration n, determine the conditional distribution f(θ2

∣∣∣θ(n)
1 ), using the value θ

(n)
1 . Then

obtain a draw θ
(n)
2 from this distribution.

The essential property of this process is that after a certain number of iterations, known as

the transient, or burn-in sample, the draws will not be realised any more from the conditional

distribution, but from the unconditional distribution of each block. This is due to the fact the

successive conditional draws result in a gradual convergence of the process towards the unconditional

distributions of each block, and then remain at this distribution, hence the denomination of invariant

distribution. Once the convergence stage is over, it suffices to pursue the process any number of times

to obtain any number of draws from the unconditional posterior distribution, discard the burn-in

sample to keep only the draws from the unconditional distribution, and hence build an empirical

posterior distribution.

This remarkable property constitutes the core of modern numerical methods applied to Bayesian

analysis. All it requires is to know the conditional posterior distributions for the model, and sufficient

computer speed to accomplish the steps. Note that the process is flexible. While the example has

exposed the case of drawing first θ1, then θ2, the converse could have been done: the order is arbitrary

and convergence will be achieved anyway. Actually, the choice of the order should always be based

on convenience. Also, the process can be adapted to a model comprising more than two blocks.

For a model with n blocks, suffice is to condition each draw on each of the other (n − 1) block

values. For instance, for a model with three blocks, each draw should be realised as : θ
(n)
1 from

f(θ1

∣∣∣θ(n−1)
2 , θ

(n−1)
3 ), then θ

(n)
2 from f(θ2

∣∣∣θ(n)
1 , θ

(n−1)
3 ), then θ

(n)
3 from f(θ1

∣∣∣θ(n)
1 , θ

(n)
2 ) (once again, the

order could be different).

After this succinct presentation, it is possible to introduce the Gibbs sampling algorithm used for

the independent normal-Wishart prior. For this model, the two blocks of parameters of interest are

β and Σ, and their conditional distributions are given by 3.5.12 and 3.5.14. Also, while there is no

theorem to define what should be the size of the burn-in sample and the total number of iterations,
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in practice a total number of iterations (It) of 2000 and a burn-in sample (Bu) of 1000 provide

sufficient precision. The following algorithm is thus proposed:

Algorithm 1.5.2 (Gibbs sampling for VAR parameters with an independent normal-

Wishart prior):

1. Define the total number of iterations It of the algorithm, and the size Bu of the burn-in sample.

2. Define an initial value β(0) for the algorithm. This will typically be the VAR model OLS

estimates. Reshape to obtain B(0). Then start running the algorithm.

3. At iteration n, draw the value Σ(n), conditional on B(n−1). Σ(n) is drawn from an inverse Wishart

distribution with scale matrix Ŝ and degrees of freedom α̂, as defined in 3.5.15 and 3.5.15:

π(Σ(n)

∣∣β(n−1), y ) ∼ IW(Ŝ, α̂) with: α̂ = T + α0 and Ŝ = S0 + (Y −XB(n−1))
,(Y −XB(n−1))

4. At iteration n, draw β(n) conditional on Σ(n), and reshape it into B(n) for the next draw of

Σ. Draw β(n) from a multivariate normal with mean β̄ and covariance matrix Ω̄, as defined

in 3.5.9 and 3.5.10: π(β(n)

∣∣Σ(n), y ) ∼ N (β̄, Ω̄) with: Ω̄ =
[
Ω−1

0 + Σ−1
(n) ⊗X ,X

]−1

and β̄ =

Ω̄
[
Ω−1

0 β0 + (Σ−1
(n) ⊗X ,)y

]
5. Repeat until It iterations are realized, then discard the first Bu iterations.

3.6 The normal-diffuse prior

A possible alternative to the Minnesota and the normal-Wishart priors is the so-called normal-diffuse

prior distribution. The specificity of this prior distribution is that it relies on a diffuse (uninformative)

prior for Σ. It hence represents a good alternative to the independent normal-Wishart developed in

the previous subsection when one wants to remain agnostic about the value that Σ should be given.

The likelihood function and the prior distribution for β are similar to those developed in the previous

subsection and are thus respectively given by:

f(y |β,Σ) ∝ |Σ|−T/2 exp

[
−1

2

(
β − β̂

),(
Σ⊗ (X ,X)−1)−1

(
β − β̂

)]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(3.6.1)

and

π(β) ∝ exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
(3.6.2)
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The main change intervenes in the prior distribution for Σ, which is now defined as the so-called

Jeffrey’s or diffuse prior:

π(Σ) ∝ |Σ|−(n+1)/2 (3.6.3)

This prior is called an improper prior as it integrates to infinity rather than to one. Yet, this

does not necessarily preclude the posterior distribution to be proper, which is indeed the case here:

combining the likelihood 3.6.1 with the priors 3.6.2 and 3.6.3, and applying Bayes rule 3.2.5, the

joint posterior is given by:

π(β,Σ |y ) ∝|Σ|−(T+n+1)/2 exp

[
−1

2

{(
β − β̂

), (
Σ−1 ⊗X ,X

) (
β − β̂

)
+ (β − β0),Ω−1

0 (β − β0)
}]

× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(3.6.4)

Also, it can be shown that 3.6.4 may alternatively rewrite as:

π(β,Σ |y ) ∝ |Σ|−(T+n+1)/2 exp

[
−1

2
(β − β̄)

,
Ω̄−1(β − β̄)

]
× exp

[
−1

2

{
β̂,
(
Σ−1 ⊗X ,X

)
β̂ + β,0Ω−1

0 β0 − β̄,Ω̄−1β̄
}]

× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(3.6.5)

with β̄ and Ω̄ defined as in 3.5.9 and 3.5.10. The conditional posterior distribution for β obtains

by considering 3.6.5 and ignoring any term not involving β. This yields:

π(β |Σ, y ) ∝ exp

[
−1

2
(β − β̄)

,
Ω̄−1(β − β̄)

]
(3.6.6)

which is recognised as the kernel of a multivariate normal distribution:

π(β|Σ, y) ∼ N (β̄, Ω̄) (3.6.7)

On the other hand, the conditional posterior distribution for Σ obtains from 3.6.4, relegating to

the proportionality constant any term not involving Σ, and then rearranging. This yields:

π(β,Σ |y ) ∝ |Σ|−(T+n+1)/2 exp

[
−1

2
tr
{

Σ−1 [(Y −XB),(Y −XB)]
}]

(3.6.8)

This is the kernel of an inverse Wishart distribution:

ECB Working Paper 1934, July 2016 41



π(Σ |β, y ) ∼ IW(S̃, T ) (3.6.9)

with S̃ the scale matrix defined as:

S̃ = (Y −XB),(Y −XB) (3.6.10)

As one can see, the main difference between the results developed in this subsection and those

of the previous subsection lie in the expressions related to the posterior distribution of Σ (compare

3.6.9-3.6.10 with 3.5.15-3.5.15). The posterior distribution for Σ is inverse Wishart in both cases,

but the results obtained in the previous subsection involve the prior beliefs S0 and α0, while those

obtained in the present subsection don’t, due to agnosticism about Σ.

The Gibbs algorithm used to derive the unconditional posterior is then similar to algorithm 3.5,

save for the scale matrix and degrees of freedom of the inverse Wishart distribution which have to

be modified, in compliance with 3.6.9 and 3.6.10.

3.7 A dummy observation prior

Most of the Bayesian VAR applications covered so far have been relying on the prior structure

specified by Litterman (1986) for the so-called Minnesota prior. That is, for a VAR model with n

endogenous variables, m exogenous variables and p lags, the prior mean for the VAR coefficients is

a q × 1 = n(np + m) × 1 vector β0, while the prior covariance matrix is a q × q matrix Ω0 with

variance terms on the diagonal, and zero entries off diagonal, implying no prior covariance between

the coefficients.

While this representation is convenient, it results in three main shortcomings. The first is technical

and linked to the estimation of large models. Indeed, for all the priors adopting this Minnesota

structure, estimation of the posterior mean β̄ and the posterior variance Ω̄ involves the inversion of

a q× q matrix. For instance, in the case of a large model with 40 endogenous variables, 5 exogenous

variables and 15 lags (n = 40,m = 5, p = 15) , q is equal to 24200, implying that each iteration of

the Gibbs sampler requires the inversion of a 24200 × 24200 matrix, rendering the process so slow

that it becomes practically intractable. In the worst case, such very large matrices may even cause

numerical softwares to fail the inversion altogether. The second shortcoming is theoretical: with this

structure, no prior covariance is assumed among the VAR coefficients, which may be sub-optimal.

Of course, one could simply add off-diagonal terms in Ω0 in order to create prior covariance terms.

However, there is no all-ready theory to indicate what those values should be. The third issue is that
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with this kind of structure, it is very difficult to impose priors on combinations of VAR coefficients,

which can yet be useful when working with unit root or cointegrated processes.

To remedy these shortcomings, this subsection proposes a specific prior known as the dummy

coefficient prior, closely following the methodology introduced by Banbura et al. (2010) for large

VAR models. The text first introduces the simplified prior used as the basis of the exercise. It

then describes the process of creation of the dummy variable that enables to match the Minnesota

moments. Finally, it develops the two extensions (sum of coefficients, and initial dummy observation)

enriching the prior, and making them consistent with unit root or cointegration processes.

Consider first the prior distribution. As shown by A.4.8, it is possible to express the likelihood

function for the data as:

f(y |β,Σ) ∝ |Σ|−T/2 exp

[
−1

2
tr
{

Σ−1(B − B̂)
,
(X ,X)(B − B̂)

}]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(3.7.1)

with B̂ the OLS estimate for B , defined by 3.1.9 as:

B̂ = (X ,X)−1X ,Y (3.7.2)

This likelihood function is then combined with a joint improper prior for β and Σ :

π (β,Σ) ∝ |Σ|−(n+1)/2 (3.7.3)

This prior is the simplest and least informative prior that one can propose for a VAR model.

Combining the likelihood function 3.7.1 with the improper prior 3.7.3, one obtains the posterior

distribution as:

f(β,Σ |y ) ∝ |Σ|−(T+n+1)/2 exp

[
−1

2
tr
{

Σ−1(B − B̂)
,
(X ,X)(B − B̂)

}]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(3.7.4)

3.7.4 appears as being the product of a matrix normal distribution with an inverse-Wishart

distribution.
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Four remarks can be done about this posterior. First, as the product of a matrix normal distribu-

tion with an inverse-Wishart distribution, this posterior is immediately comparable to that obtained

for the normal-Wishart prior (see 3.4.15 and A.4.16). It can then be shown (see Appendix A.7 for

details) that similarly to the normal-Wishart prior, the marginal posterior distributions for Σ and B

are respectively inverse-Wishart and matrix student. They are parameterized as:

Σ ∼ IW
(
Ŝ, α̂

)
(3.7.5)

with:

Ŝ = (Y −XB̂)
,
(Y −XB̂) (3.7.6)

and

α̂ = T − k (3.7.7)

On the other hand:

B ∼MT (B̂, Ŝ, Φ̂,
_
α) (3.7.8)

with B̂ and Ŝ defined by 3.7.2 and 3.7.6, and:

Φ̂ = (X ,X)−1 (3.7.9)

_
α = T − n− k + 1 (3.7.10)

The second remark is that this prior solves the dimensionality issue. While the Minnesota requires

the inversion of a q × q matrix, it is apparent from 3.7.9 that this prior only requires the inversion

of a k × k matrix, with k = np + m. The intuition behind the result is similar to that of the

normal-Wishart: the posterior is computed at the scale of individual equations, rather than for the

full model simultaneously. In the case of the example VAR model with 40 endogenous variables, 5

exogenous variables and 15 lags (n = 40,m = 5, p = 15), while a prior in the Minnesota fashion

requires the inversion of a 24200 × 24200 matrix, which is practically infeasible, the present prior

only requires inversion of a 605× 605 matrix, a size that remains tractable for numerical softwares.

The third point of interest is that, not surprisingly, an uninformative prior for β and Σ yields

posterior estimates centered at OLS (maximum likelihood) values. By not providing any prior infor-

mation on the mean of the estimates, and setting a flat distribution with infinite variance, one does

hardly more than performing OLS estimation, using only the information provided by the data.
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The final comment on this prior is that it is getting estimates that are basically OLS estimates

which creates an issue. The strength (and main interest) of Bayesian estimation is precisely to be able

to supplement the information contained in the data with personal information, in order to inflect

the estimates provided by the data and improve the accuracy of the model. If one does not provide

any information at all, there is, in fact, very little point into using Bayesian methods. Ideally, one

would thus like to provide prior information for the model, despite the diffuse prior. This is possible

thanks to what is known as dummy observations, or artificial observations.

Consider thus the possibility of generating artificial data for the model. The aim of this generated

data is to provide information to the model that would be equivalent to that supplied traditionally

by the prior distribution. Precisely, the following data matrices Yd and Xd, corresponding to Y and

X in 3.1.7, are created:

Yd =


diag(ρσ1/λ1, ..., ρσn/λ1)

0n(p−1)×n

0m×n

diag(σ1, ..., σn)

 (3.7.11)

and

Xd =

Jp ⊗ diag (σ1/λ1, ..., σn/λ1) 0np×m

0m×np (1/λ1λ4)⊗ Im
0n×np 0n×m

 (3.7.12)

ρ denotes the value of the autoregressive coefficient on first lags in the Minnesota prior, and

σ1, ..., σn denotes as usual the standard deviation of the OLS residual obtained from individual auto-

regressive models. Jp is defined as: Jp = diag
(
1λ3 , 2λ3 , ..., pλ3

)
. Yd is of dimension (n(p+1)+m)×n,

and Xd is of dimension (n(p+1)+m)×(np+m). Considering that each row of Yd (or Xd) corresponds

to an artificial period, one obtains a total of Td = n(p + 1) + m simulated time periods. Note that

unlike the canonical VAR model, Xd here does not correspond to lagged values of Yd.

Both matrices Yd and Xd are made of three blocks. The first block, made of the first np rows,

is related to the moment of the VAR coefficients corresponding to the endogenous variables of the

model. The second block, made of the next m rows, represents the moments of the coefficients on

the exogenous variables. Finally, the last block, made of the last n rows, deals with the residual

variance-covariance matrix.

To make this more concrete, consider a simple example: a VAR model with two endogenous

variables and two lags, along with one exogenous variable (n = 2,m = 1, p = 2). This formulates as:
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(
y1,t

y2,t

)
=

(
a1

11 a1
12

a1
21 a1

22

)(
y1,t−1

y2,t−1

)
+

(
a2

11 a2
12

a2
21 a2

22

)(
y1,t−2

y2,t−2

)
+

(
c11

c21

)
(x1,t) +

(
ε1,t

ε2,t

)
(3.7.13)

For Td periods, reformulated in the usual stacked form 3.1.6, one obtains:



ρσ1/λ1 0

0 ρσ2/λ1

0 0

0 0

0 0

σ1 0

0 σ2


=



1λ3σ1/λ1 0 0 0 0

0 1λ3σ2/λ1 0 0 0

0 0 2λ3σ1/λ1 0 0

0 0 0 2λ3σ2/λ1 0

0 0 0 0 1/λ1λ4

0 0 0 0 0

0 0 0 0 0




a1

11 a1
21

a1
12 a1

22

a2
11 a2

21

a2
12 a2

22

c11 c21



+



ε1,1 ε2,1

ε1,2 ε2,2

ε1,3 ε2,3

ε1,4 ε2,4

ε1,5 ε2,5

ε1,6 ε2,6

ε1,7 ε2,7


(3.7.14)

To see why this formulation implies a structure comparable to the normal-Wishart prior, develop

the system 3.7.14, row after row. Start with the third block (the last two rows), and consider the

entries related to the first variable (the first column). Developing, one obtains:

ε1,6 = σ1 (3.7.15)

and

0 = ε1,7 (3.7.16)

Taking expectation over 3.7.16, one obtains:

E(ε1) = 0 (3.7.17)

Then, using 3.7.17 to compute the variance over 3.7.15, one concludes:
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V ar(ε1) = σ2
1 (3.7.18)

This simply replicates the prior variance for ε1 in the normal-Wishart prior (see equation 3.7.13).

Now, consider blocks 1 and 2, starting with block 1. The first row of (3.7.14) develops as:

ρσ1

λ1

=
1λ3σ1

λ1

a1
11 + ε1,1 ⇒ a1

11 =
ρ

1λ3
− λ1

1λ3σ1

ε1,1 (3.7.19)

And from 3.7.19, it is straightforward to conclude:

E(a1
11) = ρ and V ar(a1

11) = (λ1)2 (3.7.20)

The second entry of the first row of 3.7.14 yields:

0 =
1λ3σ1

λ1

a1
21 + ε2,1 ⇒ a1

21 = − λ1

1λ3σ1

ε2,1 (3.7.21)

From which one obtains:

E(a1
21) = 0 and V ar(a1

11) =

(
σ2

2

σ2
1

)
(λ1)2 (3.7.22)

Go for block 2. Develop the first entry of row 5:

0 =
c11

λ1λ4

+ ε1,5 ⇒ c11 = −λ1λ4ε1,5 (3.7.23)

And from this, one obtains:

E(c11) = 0 and V ar(c11) = (λ1λ4)2σ2
1 (3.7.24)

Going on the same way with the other entries of blocks 1 and 2, it is straightforward to see

that one will recover the full diagonal of 3.4.8, the prior covariance matrix for β implemented in the

normal-Wishart prior.

Note however that 3.7.14 implies more than 3.4.8. Using for instance 3.7.19 and 3.7.23 one con-

cludes that:

Cov(a1
11, c11) = (λ1)2λ4σ1 (3.7.25)

(3.7.25) shows that unlike the strict normal-Wishart prior, the dummy observation setting allows

to implement some prior covariance between the VAR coefficients of the same equation. In this
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respect, the dummy observation scheme is even richer than the normal-Wishart prior.

To conclude this presentation of the basic dummy observation strategy, it is now shown how this

setting combines with the simplified prior introduced at the beginning of the subsection. This is

done in a simple way. Define:

Y ∗ =

(
Y

Yd

)
, X∗ =

(
X

Xd

)
, T ∗ = T + Td (3.7.26)

That is, Y ∗ and X∗ are obtained by concatenating the dummy observation matrices at the top of

the actual data matrices Y and X, and T ∗ is the total number of time periods, obtained from adding

the actual and simulated time periods. Using this modified data set for the prior, one then obtains

the same posterior distributions as 3.7.5 and 3.7.8, except that the posterior parameters 3.7.2, 3.7.6,

3.7.7, 3.7.9, and 3.7.10 are computed using Y ∗, X∗ and T ∗ rather than Y,X and T .

Possible extensions to this basic methodology are now developed. Indeed, as already discussed

already, one of the main asset of the dummy coefficient prior is the convenience it offers to estimate

large models. However, one specific issue may typically arise in large models when variables are

introduced in level. Because such variables typically include unit roots, the model itself should be

characterized by one (or more) unit roots, that is, roots with a value of one. However, with large

models, each draw from the posterior distribution produces VAR coefficients for a large number of

equations. This significantly increases the risk that for any draw, at least one equation will obtain

coefficients that are actually explosive (have a root greater than one in absolute value) rather than

comprising a strict unit root. This may result, for instance, on explosive confidence bands for the

impulse response functions, which becomes larger at longer horizons.

It would thus be desirable to set a prior that would force the dynamic to favor unit root draws,

rather than explosive draws. This can be realized, once again, with the use of dummy observations.

The literature mainly focuses on two strategies: the ”sum-of-coefficients” approach, initially intro-

duced by Doan et al. (1984), and the ”initial dummy observation” approach due to Sims (1992). To

understand the mechanism at work, the traditional VAR model 3.1.2 is first re-expressed into what

is known as an error correction form. Considering again the example VAR model used so far in this

subsection, it is possible to obtain:
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yt = A1yt−1 + A2yt−2 + Cxt + εt

⇒ yt − yt−1 = −yt−1 + A1yt−1 + A2yt−2 + Cxt + εt

⇒ yt − yt−1 = −yt−1 + A1yt−1 + (A2 − A2)yt−1 + A2yt−2 + Cxt + εt

⇒ yt − yt−1 = (−yt−1 + A1yt−1 + A2yt−1)− (A2yt−1 − A2yt−2) + Cxt + εt

⇒ ∆yt = −(I − A1 − A2)yt−1 − A2∆yt−1 + Cxt + εt (3.7.27)

3.7.27 comprises two main parts on its right-hand side. The first term, −(I−A1−A2)yt−1, is the

error correction term. It guaranties stationarity of the model by correcting the current-period change

in yt with part of the preceding period deviation from the long-run value of the model. The second

part, −A2∆yt−1 + Cxt + εt, is made of stationary terms and hence does not impact the stationarity

of the model.

In general, a VAR model with p lags in the form of 3.1.2 can be rewritten in error correction form

as (see Appendix A.7 for details):

∆yt = −(I − A1 − A2...− Ap)yt−1 +B1∆yt−1 +B2∆yt−2 + ...+Bp−1∆yt−(p−1) + Cxt + εt (3.7.28)

with Bi = −(Ai+1 + Ai+2 + ...+ Ap).

It is now possible to introduce the ”sums-of-coefficients” approach. Assume that for a VAR model

with p lags, the following holds:

I − A1 − A2...− Ap = 0 (3.7.29)

Then from 3.7.28, it follows that:

∆yt = B1∆yt−1 +B2∆yt−2 + ...+Bp−1∆yt−(p−1) + Cxt + εt

Or, equivalently:

yt = yt−1 +B1∆yt−1 +B2∆yt−2 + ...+Bp−1∆yt−(p−1) + Cxt + εt (3.7.30)

In this case, yt is equal to its previous value, plus a sum of stationary terms not affecting station-

arity. It follows that each variable in yt contains a unit root. Also, note that the absence of error

correction term rules out the possibility of cointegration relations.
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In order to guarantee that the draws obtained from the posterior are characterized by a unit root

rather than by explosive behavior, one may thus want to shrink prior information around 3.7.29.

This can be done by creating the following dummy observations:

Ys = diag(ȳ1/λ6, ..., ȳn/λ6) (3.7.31)

and

Xs =
(

11×p ⊗ Ys 0n×m

)
(3.7.32)

where ȳi denotes the arithmetic mean of variable yi over the p pre-sample initial conditions, and

λ6 is a sums-of-coefficients specific shrinkage parameter. Ys is of dimension n × n , and Xs is of

dimension n× (np+m). That is, an additional Ts = n periods of dummy observations are generated.

For the example VAR model used so far, this yields:

(
ȳ1/λ6 0

0 ȳ2/λ6

)
=

(
ȳ1/λ6 0 ȳ1/λ6 0 0

0 ȳ2/λ6 0 ȳ2/λ6 0

)

a1

11 a1
21

a1
12 a1

22

a2
11 a2

21

a2
12 a2

22

c11 c21

+

(
ε1,1 ε1,2

ε2,1 ε2,2

)
(3.7.33)

Develop entry (1,1) to obtain:

ȳ1

λ6

=
ȳ1

λ6

a1
11 +

ȳ1

λ6

a2
11 + ε1,1 ⇒ 1− a1

11 − a2
11 =

λ6

ȳ1

ε1,1 (3.7.34)

And from 3.7.34 one concludes (taking expectation and variances):

E(1− a1
11 − a2

11) = 0 and V ar(1− a1
11 − a2

11) =

(
λ6

ȳ1

)2

σ2
1 (3.7.35)

Going on, one recovers 3.7.29. Also, it becomes apparent from 3.7.35 that λ6 controls the variance

over the prior belief: as λ6 shrinks, so does the prior variance over 3.7.29. The limit case λ6 → 0

implies that there is a unit root in each equation, and cointegration is ruled out, while the limit case

λ6 → ∞ implies an uninformative (diffuse) prior. The methodology is then similar to the one used

for the basic dummy observation prior. Define:

Y ∗ =

YYd
Ys

 , X∗ =

X

Xd

Xs

 , T ∗ = T + Td + Ts (3.7.36)
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Apply then the same posterior distributions 3.7.5 and 3.7.8, but use the values 3.7.36 rather than

the original data values.

A shortcoming of the sum-of-coefficients strategy is that it rules out cointegration in the limit,

which may be undesirable. Therefore, an additional identification scheme, known as the ”dummy

initial observation”, is now proposed. In this scheme, one single dummy observation is created for

each variable. This leads to the creation of the following matrices Yo and Xo:

Yo =
(
ȳ1/λ7 ... ȳn/λ7

)
(3.7.37)

and

Xo =
(

11×p ⊗ Yo x̄/λ7

)
(3.7.38)

where x̄ =
(
x̄1 ... x̄m

)
is the 1×m vector in which each entry x̄i denotes the arithmetic mean of

exogenous variable xi over the p pre-sample initial conditions, and λ7 is a dummy initial observation

specific hyperparameter. Yo is of dimension 1×n, Xo is of dimension 1× (np+m), and To = 1 period

of dummy observation is generated. For the example VAR model used so far, this yields:

(
ȳ1/λ7 ȳ2/λ7

)
=
(
ȳ1/λ7 ȳ2/λ7 ȳ1/λ7 ȳ2/λ7 x̄1/λ7

)

a1

11 a1
21

a1
12 a1

22

a2
11 a2

21

a2
12 a2

22

c11 c21

+
(
ε1,1 ε1,2

)
(3.7.39)

Developing the first entry of 3.7.39, one obtains:

ȳ1

λ7

=
ȳ1

λ7

a1
11 +

ȳ2

λ7

a1
12 +

ȳ1

λ7

a2
11 +

ȳ2

λ7

a2
12 +

x̄1

λ7

c11 + ε1,1

⇒ ȳ1 − ȳ1a
1
11 − ȳ2a

1
12 − ȳ1a

2
11 − ȳ2a

2
12 − x̄1c11 = λ7ε1,1 (3.7.40)

Taking expectations, obtain:

ȳ1 = ȳ1a
1
11 + ȳ2a

1
12 + ȳ1a

2
11 + ȳ2a

2
12 + x̄1c11 (3.7.41)

And computing the variance yields:
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V ar(ȳ1 − ȳ1a
1
11 − ȳ2a

1
12 − ȳ1a

2
11 − ȳ2a

2
12 − x̄1c11) = (λ7)2σ2

1 (3.7.42)

3.7.41 states that a no-change forecast constitutes a good representation of the dynamic of the

model. From 3.7.42, it appears that λ7 represents, again, the shrinkage parameter over the prior.

When λ7 → ∞, the prior is diffuse. When λ7 → 0, 3.7.41 holds. Then, either all the variables are

at their unconditional mean, which implies that the model is stationary despite the unit roots in the

variables (implying cointegration), or the dynamic of the system is characterized by an unspecified

number of unit roots, and the variables share a common stochastic trend. The methodology is then

similar to the one previously applied. Define:

Y ∗ =

YYd
Yo

 , X∗ =

X

Xd

Xo

 , T ∗ = T + Td + To (3.7.43)

Apply then the same posterior distributions 3.7.5 and 3.7.8, but use the values 3.7.43 rather than

the original data values.

Note finally that if the two dummy observation extensions (sums-of-coefficients and dummy initial

observations) have been introduced in the context of the dummy prior, they can actually apply to

any of the other priors developed so far. Adaptation is straightforward. Define:

Y ∗ =

YYs
Yo

 , X∗ =

X

Xs

Xo

 , and T ∗ = T + Ts + To (3.7.44)

with Ys, Yo, Xs and Xo defined as in 3.7.31, 3.7.32, 3.7.37 and 3.7.38. Then run estimation of

the posterior distribution as usual, but replace Y,X and T by Y ∗, X∗ and T ∗. Also, it is obviously

possible to run the estimation process with only one of the two dummy extensions, with 3.7.44

modified accordingly.

3.8 Block exogeneity

Before closing the part related to the estimation of BVAR models, it is worth describing a simple and

useful feature known as block exogeneity. This concept is closely related to that of Granger causality

in VAR models. To make things more concrete, consider again the simple example developed in

subsection 3 for the mean and variance of the Minnesota prior, which consisted of a VAR model with

two endogenous variables and two lags, along with one exogenous variables. Using 3.1.1, this model

formulates as:
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(
y1,t

y2,t

)
=

(
a1

11 a1
12

a1
21 a1

22

)(
y1,t−1

y2,t−1

)
+

(
a2

11 a2
12

a2
21 a2

22

)(
y1,t−2

y2,t−2

)
+

(
c11

c21

)
(x1,t) +

(
ε1,t

ε2,t

)
(3.8.1)

Imagine that for some reason, one thinks that the second variable does not affect the first variable,

that is, it has no impact on it. In terms of the example model 3.8.1, the fact that y1,t is exogenous

to y2,t translates into:

(
y1,t

y2,t

)
=

(
a1

11 0

a1
21 a1

22

)(
y1,t−1

y2,t−1

)
+

(
a2

11 0

a2
21 a2

22

)(
y1,t−2

y2,t−2

)
+

(
c11

c21

)
(x1,t) +

(
ε1,t

ε2,t

)
(3.8.2)

If 3.8.2 is believed to be the correct representation of the relation between y1 and y2, one would

like to obtain this representation from the posterior of the VAR model. In fact, it turns out to be

easy to force the posterior distribution of a BVAR model to take the form of 3.8.2: by setting a 0

prior mean on the relevant coefficients, and by implementing an arbitrary small prior variance on

them, one can make sure that the posterior values will be close to 0 as well. In practice, this implies

the following: first, set the prior mean by using a conventional Minnesota scheme. Here, one would

just use 3.3.4:

β0 =



1

0

0

0

0

0

1

0

0

0



(3.8.3)

This guarantees that the prior mean of any block exogenous coefficient is 0 (the Minnesota scheme

only implements non-zero entries on own lags, which cannot be part of the block exogeneity scheme

since a variable cannot be exogenous to itself). Then, use a variance scheme similar to 3.3.8, but

multiply the block exogenous variance by an additional parameter (λ5)2, which will be set to an

arbitrary small value. This will result in a very tight prior variance on these coefficients. In practice,

one may for example use the value: λ5 = 0.001. Using this strategy on the above example, one

obtains a modified version of 3.3.8:
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Ω0 =



(λ1)2 0 0 0 0 0 0 0 0 0

0

(
σ2

1
σ2

2

)
(λ1λ2λ5)2 0 0 0 0 0 0 0 0

0 0
(
λ1

2λ3

)2
0 0 0 0 0 0 0

0 0 0

(
σ2

1
σ2

2

)(
λ1λ2λ5

2λ3

)2
0 0 0 0 0 0

0 0 0 0 σ2
1(λ1λ4)2 0 0 0 0 0

0 0 0 0 0

(
σ2

2
σ2

1

)
(λ1λ2)2 0 0 0 0

0 0 0 0 0 0 (λ1)2 0 0 0

0 0 0 0 0 0 0

(
σ2

2
σ2

1

)(
λ1λ2

2λ3

)2
0 0

0 0 0 0 0 0 0 0
(
λ1

2λ3

)2
0

0 0 0 0 0 0 0 0 0 σ2
2(λ1λ4)2


(3.8.4)

Because the prior variance will be very close to 0 (it can actually be made arbitrarily close to 0

by reducing the value of λ5), the posterior distribution will be extremely tight around 0, as wished.

Of course, block exogeneity needs not being limited to one variable only. One may create as many

exogenous blocks as required. Suffice is to multiply the prior variance of all the relevant coefficients

by (λ5)2 to obtain the desired exogenity on the posterior mean.

A final remark on block exogeneity: it is available with the Minnesota, independent normal-

Wishart, and normal diffuse priors, but not with the normal-Wishart prior nor the dummy obser-

vation prior. For the dummy observation prior the reason is obvious - the prior is diffuse, so Σ⊗ is

simply not defined. For the normal-Wishart prior it is the particular Kronecker structure Σ⊗ Φ0 in

place of the covariance matrix Ω0 that causes instability. This structure implies that the variance of

one equation has to be proportional with the variance of the other equations. Hence, imposing block

exogeneity on one variable for one equation would lead to impose it on all the other equations. Not

only would it lead to assume block exogeneity on some equations where it would not be desired, but

it would also lead to some of the model variables to be exogenous to themselves, which is impossible

(for instance, in the above example, y2 would become exogenous to itself).

3.9 Evaluating the model: calculation of the marginal likelihood

The previous subsections have underlined different methods used to obtain the posterior distribution

of the parameters of interest, given the selected prior. While these methods enable the estimation of

Bayesian VAR models, they are of no help to answer a central question: how should the model be

specified? For instance, what is the optimal lag number? What are the best shrinkage values for the

prior distribution? This issue is central, as one wants to select an adequate model before starting

the analysis of forecasts, impulse response functions, and so on.
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Answering this question is fundamentally a matter of model comparison: for instance the simplest

way to determine if the optimal number of lags for the model is two or three, one will simply

compare the two models and determine which one has the highest posterior probability of being

the true model. The discussion was initiated in subsection 2, and it was seen (equations 3.2.20 and

3.2.21) that comparing two models requires the computation of the Bayes factor, itself derived from

the marginal likelihoods of the models. This subsection is thus dedicated to the methods used to

compute the marginal likelihood in practice.

The methodology employed to derive the marginal likelihood varies from one prior to the other.

Therefore, the derivations are developed in turn for each prior 2.

Deriving the marginal likelihood for the Minnesota prior:

The derivation of the marginal likelihood for the Minnesota prior essentially follows the strategy

proposed by Giannone et al. (2015) for the normal-Wishart prior. To derive the marginal likelihood

for model i, first remember that it is defined by 3.2.20 as:

mi(y) =

∫
fi(y |θi,Mi)πi(θi |Mi )dθi (3.9.1)

Suppress for the time being the model indexes i and Mi to consider the general situation wherein

m(y) is the marginal density for a given model. Then, 3.9.1 reformulates as:

m(y) =

∫
f(y |θ)π(θ)dθ (3.9.2)

The marginal likelihood can thus be seen as the product of the data likelihood function f(y |θ )

with the prior distribution π(θ), integrated over parameter values. Note that unlike the application

of Bayes rule to derive posterior distribution, it is not sufficient here to work only with the kernels of

the distributions. The normalizing constants have to be integrated in the calculations. In the case

of the Minnesota prior (and the other natural conjugate prior, the normal-Wishart), it is possible to

apply 3.9.2 directly to compute the value of the marginal likelihood.

For the Minnesota, the set of parameters θ reduces to the VAR coefficients β, so that θ = β, and

3.9.2 writes as:

m(y) =

∫
f(y |β)π(β)dβ (3.9.3)

The likelihood function f (y |β ) is given by 3.3.1:

2Some details of the derivations are omitted in the main text. The missing steps can be found in Appendix A.8
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f(y
∣∣β, Σ̄) = (2π)−nT/2

∣∣Σ̄∣∣−1/2
exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
(3.9.4)

The prior density π(β) is given by 3.3.13:

π(β) = (2π)−nk/2|Ω0|−1/2 exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
(3.9.5)

Combining 3.9.4 and 3.9.5, one obtains:

f (y |β ) π(β) = (2π)−n(T+k)/2
∣∣Σ̄∣∣−1/2|Ω0|−1/2

× exp

[
−1

2

{(
y − X̄β

),
Σ̄−1

(
y − X̄β

)
+ (β − β0),Ω−1

0 (β − β0)
}]

(3.9.6)

Note that the second row of 3.9.6 is just A.3.1. Then, from A.3.8, it is possible to rewrite 3.9.6

as:

f (y |β ) π(β) = (2π)−n(T+k)/2
∣∣Σ̄∣∣−1/2|Ω0|−1/2

× exp

[
−1

2

{(
β − β̄

),
Ω̄−1

(
β − β̄

)
+
(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,Σ̄−1y
)}]

(3.9.7)

Where β̄ and Ω̄ are defined as in 3.3.17 and 3.3.18. It is then possible to reformulate 3.9.7 as:

f (y |β ) π(β) = (2π)−nT/2
∣∣Σ̄∣∣−1/2|Ω0|−1/2

∣∣Ω̄∣∣1/2 exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,Σ̄−1y
)]

× (2π)−nk/2
∣∣Ω̄∣∣−1/2

exp

[
−1

2

(
β − β̄

),
Ω̄−1

(
β − β̄

)]
(3.9.8)

The advantage of 3.9.8 is that its second row can be readily recognized as the density of a

multivariate normal distribution for β. Therefore, when integrating with respect to β , this row will

simply integrate to 1, greatly simplifying 3.9.8.

So, integrate 3.9.8 with respect to β to obtain:
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m(y) =

∫
f(y |β)π(β)dβ

= (2π)−nT/2
∣∣Σ̄∣∣−1/2|Ω0|−1/2

∣∣Ω̄∣∣1/2 exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,Σ̄−1y
)]

∫
(2π)−nk/2

∣∣Ω̄∣∣−1/2
exp

[
−1

2

(
β − β̄

),
Ω̄−1

(
β − β̄

)]
dβ (3.9.9)

From this, one eventually concludes:

m(y) = (2π)−nT/2
∣∣Σ̄∣∣−1/2|Ω0|−1/2

∣∣Ω̄∣∣1/2 exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,Σ̄−1y
)]

(3.9.10)

Numerical issues with the marginal likelihood for the Minnesota prior

While 3.9.10 is a perfectly correct formula for the marginal likelihood, it may suffer from numerical

instability. In other words, numerical softwares may not be able to compute it, and will return an

error. This is mostly due to the fact that for large models, Ω0 may become close to singular (some

diagonal entries will become very close to zero), leading the software to conclude that |Ω0|=0. It

is then preferable to transform 3.9.10, in order to obtain a formula which will be more stable, and

computationally more efficient. After some manipulations, it can be rewritten as:

m(y) = (2π)−nT/2|Σ|−T/2
∣∣Ink + F ,

Ω

(
Σ−1 ⊗X ,X

)
FΩ

∣∣−1/2

× exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,
(
Σ−1 ⊗ IT

)
y
)]

(3.9.11)

where FΩ denotes the square root matrix of Ω0, that is, the matrix FΩ such that FΩF
,
Ω = Ω0.

3.9.11 is both numerically stable and faster to compute than 3.9.10. The determinant of the first row

can be obtained from A.1.18, taking the product of 1 plus the eigenvalues of F ,
Ω (Σ−1 ⊗X ,X)FΩ.

Finally, as it is typically easier to work with logs than with values in level, 3.9.11 can be equivalently

reformulated as:

log (m(y)) = −nT
2

log (2π)− T

2
log (|Σ|)− 1

2
log
(∣∣Ink + F ,

Ω

(
Σ−1 ⊗X ,X

)
FΩ

∣∣)
− 1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,
(
Σ−1 ⊗ IT

)
y
)

(3.9.12)
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Deriving the marginal likelihood for the normal Wishart prior

The strategy to derive the marginal likelihood for the normal Wishart prior is comparable to that

of the Minnesota, though the computation are made more complex by the inclusion of two sets of

parameters β and Σ. Hence, for the normal Wishart, the set of parameters is θ = β,Σ, so that 3.9.2

writes:

m(y) =
x

f (y |β,Σ) π(β,Σ)dβdΣ (3.9.13)

Assuming as usual independence between β and Σ, one obtains

m(y) =
x

f (y |β,Σ)π(β)π(Σ)dβdΣ (3.9.14)

From 3.1.13, 3.1.14 and 3.3.1, the likelihood for the data is given by:

f(y |β,Σ) = (2π)−nT/2

× |Σ⊗ IT |−1/2 exp

[
−1

2
(y − (In ⊗X) β),(Σ⊗ IT )−1 (y − (In ⊗X) β)

]
(3.9.15)

The second row of 3.9.15 is just A.4.1. Therefore, from A.4.8, the data density rewrites as:

f(y |β,Σ) = (2π)−nT/2|Σ|−T/2 exp

[
−1

2
tr
{

Σ−1
(
B − B̂

),
(X ,X)

(
B − B̂

)}]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(3.9.16)

The prior distribution for β is given by:

π(β) = (2π)−nk/2|Σ⊗ Φ0|
−1/2 exp

(
−1

2
(β − β0),(Σ⊗ Φ0)−1 (β − β0)

)
(3.9.17)

GivenA.2.3.4, 3.9.17 reformulates as:

π(β) = (2π)−nk/2|Σ|−k/2|Φ0|
−n/2 exp

(
−1

2
tr
[
Σ−1(B −B0),Φ−1

0 (B −B0)
])

(3.9.18)

Finally, the prior distribution for Σ is given by:

π(Σ) =
1

2α0n/2Γn
(
α0

2

) |S0|α0/2|Σ|−(α0+n+1)/2 exp

(
−1

2
tr
{

Σ−1S0

})
(3.9.19)
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Combining 3.9.16, 3.9.18 and 3.9.19:

f(y |β,Σ)π(β)π(Σ) = (2π)−nT/2(2π)−nk/2|Φ0|
−n/2 1

2α0n/2Γn
(
α0

2

) |S0|α0/2

× |Σ|−T/2 exp

[
−1

2
tr
{

Σ−1
(
B − B̂

),
(X ,X)

(
B − B̂

)}]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
× |Σ|−k/2 exp

(
−1

2
tr
[
Σ−1(B −B0),Φ−1

0 (B −B0)
])

× |Σ|−(α0+n+1)/2 exp

(
−1

2
tr
{

Σ−1S0

})
(3.9.20)

The last four rows of 3.9.20 can be recognised as A.4.10. Therefore, from A.4.16, 3.9.20 rewrites

as:

f(y |β,Σ)π(β)π(Σ) = (2π)−nT/2(2π)−nk/2|Φ0|
−n/2 1

2α0n/2Γn
(
α0

2

) |S0|α0/2

× |Σ|−k/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
× |Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

(3.9.21)

where B̄, Φ̄, ᾱ and S̄ are defined as in 3.9.17-3.9.20. It is then convenient to reformulate 3.9.21

as:

f(y |β,Σ)π(β)π(Σ) = (2π)−nT/2|Φ0|
−n/2|S0|α0/2

∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 2ᾱn/2Γn
(
ᾱ
2

)
2α0n/2Γn

(
α0

2

)
× (2π)−nk/2|Σ|−k/2

∣∣Φ̄∣∣−n/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
× 1

2ᾱn/2Γn
(
ᾱ
2

)∣∣S̄∣∣ᾱ/2|Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

(3.9.22)

3.9.22 greatly facilitates the integration process in 3.9.14, since the second row of 3.9.22 can be

recognised as the density of a matrix normal distribution, while the third row can be recognised as

the density of an inverse Wishart distribution, both integrating to 1.

Hence, substitute 3.9.22 in 3.9.14 to eventually obtain:
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m(y) =
x

f (y |β,Σ)π(β)π(Σ)dβdΣ

=

∫
(2π)−nT/2|Φ0|

−n/2|S0|α0/2
∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 2ᾱn/2Γn

(
ᾱ
2

)
2α0n/2Γn

(
α0

2

)
×
∫

(2π)−nk/2|Σ|−k/2
∣∣Φ̄∣∣−n/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
dβ

× 1

2ᾱn/2Γn
(
ᾱ
2

)∣∣S̄∣∣ᾱ/2|Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

dΣ

= (2π)−nT/2|Φ0|
−n/2|S0|α0/2

∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 2ᾱn/2Γn
(
ᾱ
2

)
2α0n/2Γn

(
α0

2

)
×
∫

1

2ᾱn/2Γn
(
ᾱ
2

)∣∣S̄∣∣ᾱ/2|Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

dΣ (3.9.23)

Which yields:

m(y) = (2π)−nT/2|Φ0|
−n/2|S0|α0/2

∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 2ᾱn/2Γn
(
ᾱ
2

)
2α0n/2Γn

(
α0

2

) (3.9.24)

After some additional manipulations, one eventually obtains:

m(y) = π−nT/2|Φ0|
−n/2|S0|α0/2

∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 Γn
(
ᾱ
2

)
Γn
(
α0

2

) (3.9.25)

Numerical issues with the marginal likelihood for the normal-Wishart prior

3.9.25 is a valid formula for the marginal likelihood, but it tends to suffer from the same numerical

instability as in the Minnesota case. To improve numerical stability and efficiency, some reformulation

is required. After quite a bit of manipulations, it is possible to show that 3.9.25 reformulates as:

m(y) = π−nT/2
Γn
(
ᾱ
2

)
Γn
(
α0

2

) |S0|−T/2|Ik + F ,
ΦX

,XFΦ|
−n/2∣∣In + F ,

S

[(
S̄ − S0

)]
FS
∣∣−ᾱ/2 (3.9.26)

where FΦ denotes the square root matrix of Φ0 so that FΦF
,
Φ = Φ0, and FS denotes the inverse

square root matrix of S0 so that FSF
,
S = S−1

0 . Once again, the two determinant terms in 3.9.26 can

be computed taking the products of 1 plus the eigenvalues of F ,
ΦX

,XFΦ and F ,
S

[(
S̄ − S0

)]
FS.

Working from A.1.18, by once again with logs rather than levels, 3.9.26 becomes:

ECB Working Paper 1934, July 2016 60



log (m(y)) = −nT
2

log (π) + log
(

Γn

( ᾱ
2

))
− log

(
Γn

(α0

2

))
− T

2
log (|S0|)

− n

2
log (|Ik + F ,

ΦX
,XFΦ|)−

ᾱ

2
log
(∣∣In + F ,

S

(
S̄ − S0

)
FS
∣∣) (3.9.27)

Deriving the marginal likelihood for the independent normal Wishart prior

While in the case of the Minnesota and normal Wishart priors, it was possible to derive the value

of the marginal likelihood by direct application of 3.9.2, this is not possible anymore in the case of the

independent normal Wishart prior. The reason is similar to that preventing to obtain an analytical

formula for the posterior distributions for this prior: in the product term f(y |β,Σ)π(β)π(Σ), the

terms involving β and Σ are so interwoven that it is not possible to separate them into marginal

distributions disappearing during the integration process.

There exists, fortunately, alternative ways to obtain the marginal likelihood. The one used for the

independent normal-Wishart prior follows the methodology proposed by Chib (1995), who proposes

a simple technique based on Gibbs sampling outputs. Start again from 3.9.2 and develop, using basic

definitions of conditional probabilities:

m(y) =

∫
f(y |θ)π(θ)dθ =

∫
[f(y, θ)/π(θ)] π(θ)dθ =

∫
f(y, θ)dθ = f(y) (3.9.28)

That is, the marginal likelihood is equal to f(y), the density of the data. The strategy of Chib

(1995) consists in noticing that the inverse of f(y) is used as the normative constant in Bayes rules

3.2.2, and use this rule to obtain the marginal likelihood. Hence, start from Bayes rule 3.2.2:

π(θ |y ) =
f(y |θ )π(θ)

f(y)
(3.9.29)

Use 3.9.27 and rearrange to obtain:

m(y) =
f(y |θ )π(θ)

π(θ |y )
(3.9.30)

Given that θ = β,Σ , and assuming as usual independence, 3.9.30 rewrites:

m(y) =
f(y |β,Σ)π(β)π(Σ)

π(β,Σ |y )
(3.9.31)

Equation 3.9.30 is perfectly general and thus works for any chosen value for β and Σ. In practice,

however, a point of high density such as the posterior median is chosen in order to increase numerical

precision. Denoting respectively by β̃ and Σ̃ the posterior median for β and Σ, 3.9.31 rewrites as:
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m(y) =
f(y

∣∣∣β̃, Σ̃)π(β̃)π(Σ̃)

π(β̃, Σ̃ |y )
(3.9.32)

While the denominator of 3.9.32 can be readily computed (it is the product of the data likelihood

with the priors distributions for β and Σ, estimated at β̃ and Σ̃), the numerator is unknown. Indeed,

as shown by 3.2.3, only the kernel of the posterior distribution π(β,Σ |y ) is computed in practice,

since the normalising term f(y) in 3.2.2 is unknown (indeed, this term is the marginal likelihood, to

be estimated). Therefore, it is not possible to use the kernel of the posterior density obtained from

3.2.3 in place of π(β̃, Σ̃ |y ), which is the full posterior value. The solution proposed by Chib (1995)

consists first in noticing that π(β̃, Σ̃ |y ) can be manipulated to obtain:

π(β̃, Σ̃ |y ) =
π(β̃, Σ̃, y)

π(y)
=
π(β̃, Σ̃, y)

π(Σ̃, y)

π(Σ̃, y)

π(y)
= π(β̃

∣∣∣Σ̃, y )π(Σ̃ |y ) (3.9.33)

The first term on the right-hand side of 3.9.33 is the conditional posterior distribution of β. It

is necessarily known since it is required to run the Gibbs sampling algorithm (in the case of the

independent normal Wishart, it is simply the multivariate normal distribution). The second term is

the marginal posterior distribution of Σ. It is unknown analytically, but can be approximated using

the identity:

π(Σ̃ |y ) =

∫
π(Σ̃, β |y )dβ =

∫
π(Σ̃, β, y)

π(y)
dβ =

∫
π(Σ̃, β, y)

π(β, y)

π(β, y)

π(y)
dβ =

∫
π(Σ̃ |β, y )π(β |y )dβ

(3.9.34)

While the integral in 3.9.34 is not analytically computable, an approximation of this term can be

estimated from:

π(Σ̃ |y ) =

∫
π(Σ̃ |β, y )π(β |y )dβ ≈ 1

(It−Bu)

It−Bu∑
n=1

π(Σ̃
∣∣β(n), y ) (3.9.35)

Then, from 3.9.33 and 3.9.35, it is possible to rewrite 3.9.32 as:

m(y) =
f(y

∣∣∣β̃, Σ̃)π(β̃)π(Σ̃)

π(β̃
∣∣∣Σ̃, y )(It−Bu)−1

It−Bu∑
n=1

π(Σ̃ |β(n), y )

(3.9.36)

Combining the likelihood function A.2.3.9 with the priors 3.3.13 and 3.9.19, and simplifying, one

eventually obtains:
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m(y) =
(2π)−nT/2

2α0n/2Γn
(
α0

2

) |S0|α0/2
∣∣∣Σ̃∣∣∣−(T+α0+n+1)/2

(
|Ω0|∣∣Ω̄∣∣

)−1/2

× exp

(
−1

2
tr
[
Σ̃−1

{
(Y −XB̃)

,
(Y −XB̃) + S0

}])
× exp

(
−1

2
(β̃ − β0)

,
Ω−1

0

(
β̃ − β0

))
× 1

(It−Bu)−1
It−Bu∑
n=1

π(Σ̃ |β(n), y )

(3.9.37)

where Ω̄ is defined as in 3.5.9, and B̃ is simply β̃ reshaped to be of dimension k × n.

Numerical issues with the marginal likelihood for the independent normal-Wishart prior

3.9.37 provides an accurate approximation of the marginal likelihood value, but it can also suffer

from numerical instability. It is thus preferable to rewrite it to obtain a more stable and efficient

formulation. After some manipulations, one obtains:

m(y) =
(2π)−nT/2

2α0n/2Γn
(
α0

2

) |S0|α0/2
∣∣∣Σ̃∣∣∣−(T+α0+n+1)/2

×
∣∣∣Iq + F ,

Ω (In ⊗X ,)
(

Σ̃−1 ⊗X
)
FΩ

∣∣∣−1/2

× exp

(
−1

2
tr
[
Σ̃−1

{
(Y −XB̃)

,
(Y −XB̃) + S0

}])
× exp

(
−1

2
(β̃ − β0)

,
Ω−1

0

(
β̃ − β0

))
× 1

(It−Bu)−1
It−Bu∑
n=1

π(Σ̃ |β(n), y )

(3.9.38)

where FΩ denotes the square root matrix of Ω0, that is, FΩF
,
Ω = Ω0. The determinant term in

the first row can be computed, as usual from A.1.18, by taking the products of 1 plus the eigenvalues

of F ,
Ω (In ⊗X ,)

(
Σ̃−1 ⊗X

)
FΩ.

Once again, it is more convenient to work with logs rather than with values in level. Therefore,

3.9.38 is rewritten as:
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log (m(y)) = −nT
2

log(2π)− α0n

2
log(2)− log

(
Γn

(α0

2

))
+
α0

2
log (|S0|)−

T + α0 + n+ 1

2
log
(∣∣∣Σ̃∣∣∣)

− 1

2
log
(∣∣∣Iq + F ,

Ω (In ⊗X ,)
(

Σ̃−1 ⊗X
)
FΩ

∣∣∣)− 1

2
tr
[
Σ̃−1

{
(Y −XB̃)

,
(Y −XB̃) + S0

}]
− 1

2
(β̃ − β0)

,
Ω−1

0

(
β̃ − β0

)
− log

(
(It−Bu)−1

It−Bu∑
n=1

π(Σ̃
∣∣β(n), y )

)
(3.9.39)

Deriving the marginal likelihood for the normal diffuse and dummy priors

In the case of the normal diffuse prior, it is not possible to derive the marginal likelihood. This

can be seen simply from 3.9.2:

m(y) =

∫
f(y |θ)π(θ)dθ (3.9.40)

Since for the normal-diffuse, θ = β,Σ, and β and Σ are independent, this reformulates as:

m(y) =
x

f (y |β,Σ)π(β)π(Σ)dβdΣ (3.9.41)

The problem, as shown by 3.6.3, is that π(Σ) is an improper prior. Because it is diffuse and does

not integrate to one, only its kernel is known:

π(Σ) ∝ |Σ|−(n+1)/2 (3.9.42)

This renders estimation of 3.9.40 impossible, as the full proper prior π(Σ) is required, and not

just the kernel. For the dummy prior the reasoning is exactly the same.

Deriving the marginal likelihood when dummy extensions are applied

When dummy observations are included in the estimation process, it is not correct to calculate

naively the marginal likelihood over the total data set (comprising both actual and dummy obser-

vations), as the dummy observations are now included into the estimation process, and hence their

contributions must be taken into account if one wants to obtain the marginal likelihood for actual

data only.

Concretely, and following 3.7.44, denote by Y ∗ the total data set (comprising both actual and

dummy observations) and by Y dum =

(
Ys

Yo

)
the set of dummy observations. Denote their respective

marginal likelihoods by m(y∗) and m(ydum). The object of interest is m(y), the marginal likelihood

for the actual data only. Notice that from 3.9.28, the marginal likelihood is just equal to the density
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of the data. Therefore, the conventional properties of densities apply. Then, using the fact that Y

and Y dum are independent, one obtains:

m(y∗) = m(y, ydum) = m(y)×m(ydum) (3.9.43)

It follows that:

m(y) =
m(y∗)

m(ydum)
(3.9.44)

That is, the marginal likelihood for the data can be recovered by dividing the marginal likelihood

for the total data set by that of the dummy observations alone.

Optimizing hyperparameter values from a grid search:

In their seminal paper, Giannone et al. (2012) introduce a procedure allowing to optimise the

values of the hyperparameters. Optimal here means that the estimated hyperparameters maximise

the value of the marginal likelihood for the model. This implies that the hyperparameter values are

not given anymore but have to be estimated within the Bayesian framework, adopting the hierarchical

approach described in section 3.2. A similar but simpler approach consists into running a grid search.

To do so, one defines for every hyperparameter of the model a minimum and a maximum value (hence

defining a range) along with a step size defining the size of the increment within the range. Then the

marginal likelihood can be estimated for the model for every possible combination of hyperparameter

values within the specified ranges, and the optimal combination is retained as that which maximises

this criterion.
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4 Basic applications

4.1 Forecasts

Forecasts are a central issue for economists. In a traditional frequentist approach, obtaining forecasts

is relatively straightforward, by using what is known as the chain rule of forecasting. Indeed, consider

again the VAR model 3.1.2, or its vectorised form 3.1.12. With the frequentist approach, estimation

of the model would produce a single value of β̂, the vector of VAR coefficients, which would be used as

the estimate for the true parameter value β. Equivalently, under its original form, estimation of the

model would produce Â1, Â2, ..., Âp and Ĉ, which would be used as estimates for the true parameter

values A1, A2, ..., Ap and C. Once these coefficients are estimated, the chain rule of forecasting simply

consists in constructing forecasts for ỹT+1, ỹT+2, ..., ỹT+h sequentially by using conditional expectation

in the following way 3:

ỹT+1 = Et(yT+1 |yT )

= Et(Â1yT + Â2yT−1 + ...+ ÂpyT+1−p + ĈxT+1 + εT+1 |yT )

= Â1Et(yT |yT ) + Â2Et(yT−1 |yT ) + ...+ ÂpEt(yT+1−p |yT ) + ĈEt(xT+1 |yT ) + Et(εT+1 |yT )

= Â1yT + Â2yT−1 + ...+ ÂpyT+1−p + ĈxT+1 (4.1.1)

where ỹT+1 denotes the predicted value for yT+1, and yT = {yt}Tt=1 is the information set containing

data observed up to period T . Applying the same method for ỹT+2 yields:

ỹT+2 = Et(yT+2 |yT )

= Et(Â1yT+1 + Â2yT + ...+ ÂpyT+2−p + ĈxT+2 + εT+2 |yT )

= Â1Et(yT+1 |yT ) + Â2Et(yT |yT ) + ...+ ÂpEt(yT+2−p |yT ) + ĈEt(xT+2 |yT ) + Et(εT+2 |yT )

= Â1ỹT+1 + Â2yT + ...+ ÂpyT+2−p + ĈxT+2 (4.1.2)

Going on:

ỹT+3 = Â1ỹT+2 + Â2ỹT+1 + ...+ ÂpyT+3−p + ĈxT+2

...

ỹT+h = Â1ỹT+h + Â2ỹT+h−1 + ...+ ÂpỹT+h+1−p + ĈxT+h (4.1.3)

3It can be shown that this estimator minimizes the mean squared forecast error (see Luetkepohl (1993), chapter 2)
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One would like to use this methodology in a Bayesian context as well. This is however not possible

as this method ignores the parameter uncertainty proper to Bayesian analysis. In other words, in a

Bayesian framework, the ”correct” parameter values β or A1, A2, ..., Ap, C do not exist, they are only

characterised by a distribution from which realisations can be obtained. This implies that forecasts

cannot be obtained either as a single value: they face the same uncertainty as the parameters, and are

thus characterised also by a distribution rather than a single estimate. Such a distribution is called

the posterior predictive distribution, and is a central object of interest for Bayesian practitioners. It

is denoted by:

f(yT+1:T+h |yT ) (4.1.4)

where f(yT+1:T+h |yT ) denotes the distribution of future datapoints yT+1, ..., yT+h, conditional on

the information set yT . This posterior predictive distribution is the fundamental element used in

Bayesian forecasting: once it is obtained, it is straightforward to produce confidence intervals and

point estimates, using 3.2.16 and 3.2.17. The main difficulty thus consists in identifying the form of

this posterior distribution. Although analytical solutions may exist, they may not produce tractable

implementations. In practice, the following solution is thus favoured: rearrange 4.1.4 to obtain:

f(yT+1:T+h|yT ) =

∫
θ

f(yT+1:T+h, θ|yT )dθ (4.1.5)

=

∫
θ

f(yT+1:T+h, θ, yT )

f(yT )
dθ

=

∫
θ

f(yT+1:T+h, θ, yT )

f(yT , θ)

f(yT , θ)

f(yT )
dθ

=

∫
θ

f(yT+1:T+h|θ, yT )f(θ|yT )dθ (4.1.6)

where θ denotes the parameters of interest for the VAR model (typically, β and Σ). 4.1.6 shows

that the posterior predictive distribution rewrites as an (integrated) product of two distributions: the

posterior distribution, and the distribution of future observations, conditional on data and parameter

values. This way, 4.1.6 suggests a direct simulation method to obtain draws from f(yT+1:T+h |yT ).

Suppose one can generate random draws from the posterior distribution f(θ |yT ), and then, from

these drawn values and yT , compute a sequence yT+1, yT+2, ..., yT+h. This would form a random draw

from f(yT+1:T+h |θ, yT ), so that the product with the draw from f(θ |yT ) would give a draw from

f(yT+1:T+h, θ |yT ) , as indicated by 4.1.6. Marginalizing, which simply implies to discard the values

for θ, would then produces a draw from f(yT+1:T+h |yT ).
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But doing so is easy. In the case of the independent normal-Wishart and normal-diffuse priors

developed in subsections 3.5 and 3.6., draws from f(θ |yT ) are already obtained from the Gibbs

sampling process of the BVAR estimation. For the Minnesota and normal-Wishart priors, suffice is

to run a comparable algorithm. Once estimates for the Gibbs algorithm are obtained, the procedure is

simple: for each iteration of the algorithm, a sequence yT+1, yT+2, ..., yT+h can be obtained by drawing

h series of residuals, then constructing (yT+1 |θ, yT ), (yT+2 |θ, yT+1, yT ) , (yT+3 |θ, yT+2, yT+1, yT ) and

so on, recursively using 3.1.2.

Karlsson (2012) hence proposes the following algorithm to derive the posterior predictive distri-

bution. Note that the algorithm supposes that random draws from the posterior distributions of β

and Σ are available.

Algorithm 2.1.1 (forecasts, all priors):

1. Define the number of iterations (It − Bu) of the algorithm. Because the Gibbs algorithm

previously run for the model estimation phase has already produced (It−Bu) draws from the

posterior distribution of β and Σ, an efficient strategy consists in recycling those draws, rather

than running again the whole Gibbs sampler. Therefore, (It − Bu) iterations are sufficient.

Also, define the forecast horizon h.

2. At iteration n, draw Σ(n) and β(n) from their posterior distributions. Simply recycle draw n

from the Gibbs sampler.

3. Draw simulated series of residuals ε̃
(n)
T+1, ε̃

(n)
T+2, ..., ε̃

(n)
T+h from N(0,Σ(n)).

4. Generate recursively the simulated values ỹ
(n)
T+1, ỹ

(n)
T+2, ..., ỹ

(n)
T+h from 3.1.2: ỹ

(n)
T+1 = A1yT +

A2yT−1 + ... + ApyT+1−p + CxT+1 + ε̃
(n)
T+1 Once ỹT+1 is computed, use: ỹ

(n)
T+2 = A1ỹ

(n)
T+1 +

A2yT + ... + ApyT+2−p + CxT+2 + ε̃
(n)
T+2 And continue this way until ỹ

(n)
T+h is obtained. The

values of c,, A,1, A
,
2...A

,
p come from β(n). Note that each iteration may involve both actual data

(regressors up to period T :yT , yT−1, yT−2...) and simulated values (forecasts ỹ
(n)
T+1, ỹ

(n)
T+2... and

simulated residual series ε̃
(n)
T+1, ε̃

(n)
T+2, ...). Notice also that the forecasts include the exogenous

values xT+1, xT+2...xT+h, which have hence to be known and provided exogenously.

5. Discard Σ(n) and β(n) to obtain draws ỹ
(n)
T+1, ỹ

(n)
T+2...ỹ

(n)
T+h from the predictive distribution f(yT+1:T+h |yT ).

6. Repeat until (It−Bu) iterations are realised. This produces:{
ỹ

(n)
T+1 |yT , ỹ

(n)
T+2 |yT , ..., ỹ

(n)
T+h |yT

}It−Bu
n=1

,

a sample of independent draws from the joint predictive distribution which can be used for

inference and computation of point estimates.
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Because algorithm 3.2.1.1 requires the series Σ(1),Σ(2), ...,Σ(It−Bu) and β(1), β(2), ..., β(It−Bu), it is

necessary to run a Gibbs sampling algorithm to obtain them, even if the retained prior (for instance

the Minnesota or the normal-Wishart prior) yields analytical solutions. Therefore, to conclude this

subsection, the Gibbs algorithm for these two priors is presented. They are very similar to algorithm

3.1.5.1, but are somewhat simpler as the priors admit analytical solutions. Indeed, no burn-in or

transition sample is required since the unconditional posterior distribution is known, so that draws

from the correct marginal distribution can be realised as soon as the algorithm starts. In the case

of the Minnesota prior, this means drawing β directly from a N (β̄, Ω̄). In the normal-Wishart case,

this means drawing B directly from B ∼MT (α̃, B̄, S̄, Φ̄), and Σ directly from IW(S̄, ᾱ).

Algorithm 2.1.2 (Gibbs sampling with a Minnesota prior):

1. Set the number of iterations of the algorithm as (It − Bu). Since draws are directly realised

form the posterior distribution, no burn-in sample is required.

2. Fix the value Σ for the BVAR model, in accordance with the prior.

3. At iteration n, draw the value β(n) conditional on Σ, from a multivariate normal with mean

β̄ and variance-covariance matrix Ω̄, as defined in 3.3.17 and 3.3.18: β(n) ∼ N (β̄, Ω̄) with:

Ω̄ =
[
Ω−1

0 + Σ−1 ⊗X ,X
]−1

and β̄ = Ω̄
[
Ω−1

0 β0 + (Σ−1 ⊗X ,)y
]

4. repeat until (It−Bu) iterations are realized.

Algorithm 2.1.3 (Gibbs sampling with a Normal-Wishart prior):

1. Set the number of iterations of the algorithm as (It − Bu). Since draws are directly realised

form the posterior distribution, no burn-in sample is required.

2. At iteration n, draw the value B(n) from a matrix-variate student distribution, as defined by

3.4.16, 3.4.17, 3.4.19, 3.4.23 and 3.4.24: B(n) ∼ MT (B̄, S̄, Φ̄, α̃) with α̃ = T + α0 − n + 1,

Φ̄ =
[
Φ−1

0 +X ,X
]−1

, B̄ = Φ̄
[
Φ−1

0 B0 +X ,Y
]−1

and S̄ = Y ,Y + S0 +B,
0Φ−1

0 B0 − B̄,Φ̄−1B̄

3. at iteration n, draw the value Σ(n) from an inverse Wishart distribution, as defined by 3.4.18

and 3.4.19: Σ(n) ∼ IW
(
ᾱ, S̄

)
with ᾱ = T + α0 and S̄ =

(
Y −XB̂

), (
Y −XB̂

)
+ S0 +

B̂,X ,XB̂ +B,
0Φ−1

0 B0 − B̄,Φ̄−1B̄

4. repeat until (It−Bu) iterations are realized.

Finally, note that closely associated to the concept of forecast is that of forecast evaluation, namely

how good is the estimated model at producing forecast values (or distributions) which are close to

the realised values. There exist many criteria for this: some of them only compare the realised value
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with the forecast value, while others compare the realised value with the whole posterior distribution

for the forecasts. For more details on the different forecast evaluation criteria and their estimation,

you may refer to Appendix A.10.

4.2 Impulse response functions

A second object of interest for economists is what is known as impulse response functions. The idea

is related to the study of the dynamic effect of shocks. Imagine that the VAR model 3.1.2 is at its

long-run value and that shocks (that is, the error terms or residuals) have zero values at every period:

then the model is stable and remain at the same value over time4. Imagine now that a one-time shock

occurs for a single variable at some period t, before all the shocks return to zero for all subsequent

periods. Then the effect of this shock will propagate to all the variables over the subsequent periods

t+ 1, t+ 2, ...

Formally, start again from model 3.1.2:

yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt (4.2.1)

This model can be reformulated as:

yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt

⇔ yt = (A1L+ A2L
2...+ ApL

p)yt + Cxt + εt

⇔ (I − A1 − A2L
2...− ApLp)yt = Cxt + εt

⇔ A(L)yt = Cxt + εt (4.2.2)

where A(L) denotes the lag polynomial in yt, defined as:

A(L) ≡ I − A1 − A2L
2...− ApLp (4.2.3)

Under the assumption of covariance stationarity, the Wold theorem implies that it is possible

to ”invert” this lag polynomial, that is, it is possible to reformulate the model as an infinite order

moving average:

4That is, if the exogenous variables remain constant as well
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A(L)yt = Cxt + εt

⇔ yt = A(L)−1 [Cxt + εt]

⇔ yt = A(L)−1Cxt + A(L)−1εt

⇔ yt = A(L)−1Cxt +
∞∑
i=0

Ψiεt−i

⇔ yt = A(L)−1Cxt + Ψ0εt + Ψ1εt−1 + Ψ2εt−2 . . . (4.2.4)

The moving average part is made of a sequence of n×n matrices Ψ0,Ψ1,Ψ2..., where each matrix

is of the form:

Ψi =


φi,11 φi,12 · · · φi,1n

φi,21 φi,22 · · · φi,2n
...

...
. . .

...

φi,n1 φi,n2 · · · φi,nn

 (4.2.5)

The sequence Ψ0,Ψ1,Ψ2... actually represents the impulse response functions for the model 4.2.1.

To see this, move model 4.2.4 forward by h periods to obtain:

yt+h = A(L)−1Cxt+h + Ψ0εt+h + Ψ1εt+h−1 + ...+ Ψh−1εt+1 + Ψhεt + Ψh+1εt−1 + . . . (4.2.6)

Then, the impact of the shock εt on yt+h can be obtained by:

∂yt+h
∂εt

= Ψh (4.2.7)

And this shows that Ψh represents the impulse response function for the shock εt on yt+h. More

precisely, from 4.2.6 and 4.2.5, it is possible to obtain the impact of the shock in variable j on variable

yi,t+h as:

∂yi,t+h
∂εj,t

= φh,ij (4.2.8)

While there exists elegant analytical methods to invert a lag polynomial and compute Ψ0,Ψ1,Ψ2...,

in actual applications it is simpler to rely on simulation methods. To see this, go back to model 4.2.1

and compute the impact of εt on yt:

∂yt
∂εt

= I = Ψ0 (4.2.9)
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Move the model forward by one period:

yt+1 = A1yt + A2yt−1 + ...+ Apyt+1−p + Cxt+1 + εt+1

= A1 (A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt)

+ A2yt−1 + ...+ Apyt+1−p + Cxt+1 + εt+1 (4.2.10)

or:

yt+1 = A1A1yt−1 + A1A2yt−2 + ...+ A1Apyt−p + A1Cxt + A1εt

+ A2yt−1 + ...+ Apyt+1−p + Cxt+1 + εt+1 (4.2.11)

From 4.2.11, it is straightforward to obtain:

∂yt+1

∂εt
= A1 = Ψ1 (4.2.12)

Move again the model forward by one period and use 4.2.1 and 4.2.11:

yt+2 = A1yt+1 + A2yt + ...+ Apyt+2−p + Cxt+2 + εt+2

= A1(A1A1yt−1 + A1A2yt−2 + ...+ A1Apyt−p + A1Cxt + A1εt + A2yt−1 + ...+ Apyt+1−p + Cxt+1 + εt+1)

+A2(A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt) + ...+ Apyt+2−p + Cxt+2 + εt+2 (4.2.13)

or:

yt+2 = A1A1A1yt−1 + A1A1A2yt−2 + ...+ A1A1Apyt−p + A1A1Cxt + A1A1εt + A1A2yt−1

+ ...+ A1Apyt+1−p + A1Cxt+1 + A1εt+1

+A2A1yt−1 + A2A2yt−2 + ...+ A2Apyt−p + A2Cxt + A2εt + ...+ Apyt+2−p + Cxt+2 + εt+2 (4.2.14)

Then, obtain from 4.2.14:

∂yt+2

∂εt
= A1A1 + A2 = Ψ2 (4.2.15)

Going on, it is possible to recover numerically the whole sequence Ψ0,Ψ1,Ψ2,Ψ3,Ψ4... Note

that this method is in essence very similar to the chain rule of forecasts developed in the previous
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subsection.

The problem with this method is that it implies the computation of partial derivatives, a task

that numerical softwares are not able to perform. However, looking at the recursive sequence 4.2.1,

4.2.11, 4.2.14, and so on, it is clear that only the terms related to εt are of interest. Therefore, it is

possible to recover numerically φ0,ij, φ1,ij, φ2,ij, . . . , the response of variable i to shock j over periods

0, 1, 2, . . . directly from these equations by setting a unit shock at period t, and switching off to 0 all

the other values of the recursive sequence which are of no interest. Precisely, set

εt =


ε1,t

ε2,t

...

εn,t

 (4.2.16)

such that {
εj,t = 1

ε 6=j,t = 0
(4.2.17)

and

yt−1, yt−2, ..., xt, xt+1, xt+2, ..., εt+1, εt+2, · · · = 0 (4.2.18)

Then run the recursive sequence 4.2.1, 4.2.11, 4.2.14. Do this for all variables and all shocks, and

recover finally Ψh from 4.2.5 by gathering all the φh,ij elements. Finally, it should be clear from 4.2.1

that assuming εi,t = 1 and yt−1, yt−2, ..., xt = 0 is equivalent to assuming yt−1, yt−2, ..., xt, εt = 0 and

yi,t = 1, a formulation that will prove more convenient for numerical computations.

As for the forecasts, it is not possible to apply directly this simulation method in a Bayesian

framework, due to the additional parameter uncertainty that prevails in a Bayesian framework. For-

tunately, it is easy to integrate the impulse response calculation into the Gibbs sampling framework

previously developed. Note in particular that the simulation experiment described above really is

equivalent to producing forecasts for ỹt+1, . . . , ỹt+h in the particular context of the simulation ex-

periment. Therefore, intuitively, one may like to use the methodology introduced in subsubsection

4.1 for forecasts, and adapt it to impulse response functions. This is indeed what will be done: to

calculate the impulse response functions, simply obtain the posterior predictive distribution 4.1.4:

f(yt+1:t+h |yt ) (4.2.19)

for h = 1, 2, . . .
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conditional on:

• yt−1, yt−2, · · · = 0

• yi,t = 1 for some i ∈ 1, 2, . . . , n, and yj,t = 0 for j 6= i

• εt+1, εt+2, · · · = 0

• xt, xt+1, xt+2 · · · = 0

Following, it is straightforward to adapt algorithm 2.1.1 to impulse response functions:

Algorithm 2.2.1 (impulse response functions, all priors):

1. Define the number of iterations (It−Bu) of the algorithm, and the time horizon h.

2. Fix i = 1. Then set yi,T = 1.

3. At iteration n, draw β(n) from its posterior distributions. Simply recycle draw n from the Gibbs

sampler.

4. Generate recursively the simulated values ỹ
(n)
T+1, ỹ

(n)
T+2, ..., ỹ

(n)
T+h from 3.1.2: ỹ

(n)
T+1 = A1yT +

A2yT−1 + ... + ApyT+1−p Once ỹT+1 is computed, use: ỹ
(n)
T+2 = A1ỹ

(n)
T+1 + A2yT + ... + ApyT+2−p

And continue this way until ỹ
(n)
T+h is obtained. Once again, both the exogenous terms and the

shocks are ignored since they are assumed to take a value of 0 at all periods. The values of

A,1, A
,
2...A

,
p come from β(n).

5. Discard β(n) to obtain draws ỹ
(n)
T+1, ỹ

(n)
T+2...ỹ

(n)
T+h from the predictive distribution f(yT+1:T+h |yT ).

6. Repeat until (It−Bu) iterations have been performed. This produces:
{
ỹ

(n)
T+1 |yT , ỹ

(n)
T+2 |yT , ..., ỹ

(n)
T+h |yT

}It−Bu
j=1

,

a sample of independent draws from the joint predictive distribution in the case yi,T = 1.

7. Go back to step 2, and fix i = 2. Then go through steps 3-6 all over again. Then repeat the

process for i = 3, ..., n. This generates the impulse response functions for all the shocks in the

model.

4.3 Structural VARs

An issue arising with conventional impulse response functions is that they arise from correlated

shocks (that is, the residual covariance matrix Σ of the reduced form VAR is typically not diagonal).

Therefore a statement such as ”the impulse response function reflects the response of variable yi

following a shock in variable yj, everything else being constant” is actually meaningless when shocks
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typically arise together. A solution to such a problem can be found in structural VARs, which permit

to obtain the responses of variables to orthogonal shocks.

Consider again model 3.1.2:

yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt (4.3.1)

with εt ∼ N (0,Σ). This is a reduced-form VAR model. An alternative specification of this model

is the structural VAR model:

D0yt = D1yt−1 +D2yt−2 + ...+Dpyt−p + Fxt + ηt (4.3.2)

with ηt ∼ N (0,Γ) a vector of structural innovations with variance-covariance matrix Γ. Most of

the time, one wants Γ to be diagonal. This will imply that the shocks in ηt are mutually orthogonal,

which is what is required to obtain meaningful impulse response functions not suffering from the shock

correlation issue. Also, from a more theoretical point of view, it makes also sense to assume that

structural shocks (say e.g. supply shocks, demand shocks, monetary shocks, etc) are uncorrelated

and arise independently.

For notation convenience, define:

D = D−1
0 (4.3.3)

Then premultiplying both sides of 4.3.2 by D makes straightforward the relation between 4.3.1

and 4.3.2 :

Ai = DDi (4.3.4)

C = DF (4.3.5)

εt = Dηt (4.3.6)

4.3.6 shows that D can be interpreted as a structural matrix: it permits to recover structural

innovations from the reduced-form VAR residuals. Note that 4.3.6 also implies:

Σ = E (εtε
,
t) = E (Dηtη

,
tD

,) = DE (ηtη
,
t)D

, = DΓD, (4.3.7)

or

Σ = DΓD, (4.3.8)
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Another interesting feature of structural VARs is the moving average representation of the model.

Remember from 4.2.4 that 4.3.1 can rewrite as an infinite order moving average process:

yt = A(L)−1Cxt + Ψ0εt + Ψ1εt−1 + Ψ2εt−2... (4.3.9)

where the series I,Ψ1,Ψ2,Ψ3, ... represents the impulse response functions of the reduced form

VAR. Rewrite then 4.3.9 as:

yt = A(L)−1Cxt +DD−1εt + Ψ1DD
−1εt−1 + Ψ2DD

−1εt−2 + ... (4.3.10)

And note that this implies from 4.3.6:

yt = A(L)−1Cxt +Dηt + (Ψ1D) ηt−1 + (Ψ2D) ηt−2 + ... (4.3.11)

This can be reformulated as:

yt = A(L)−1Cxt +Dηt + Ψ̃1ηt−1 + Ψ̃2ηt−2 + ... (4.3.12)

or:

yt = A(L)−1Cxt +
∞∑
i=0

Ψ̃iηt−i (4.3.13)

where

Ψ̃0 ≡ D and Ψ̃i ≡ ΨiD, for i = 1, 2, 3, . . . (4.3.14)

The series D, Ψ̃1, Ψ̃2, Ψ̃3, ... represents the impulse response functions of the structural VAR, that

is, the response of the VAR variables to structural innovations. Then, as long as Γ is diagonal, the

series of responses D, Ψ̃1, Ψ̃2, Ψ̃3, ... will result from independent shocks, and can be given meaningful

economic interpretation.

If D was known, one could use estimates of the reduced form VAR 4.3.1 to identify the structural

disturbances (from 4.3.6), and to obtain the responses of the variables to structural innovations (from

4.3.14). However, 4.3.1 provides no information about D. Some information is provided by 4.3.8:

if the VAR 4.3.1 comprises n variables, then D comprises n2 elements to identify, and Γ comprises

n×(n+1)/2 distinct elements, which hence makes a total of (n/2) (3n+ 1)elements to identify. Since

in 4.3.8 the known elements of Σ provide only n× (n + 1)/2 restrictions on D and Γ, n2 additional

restrictions have to be implemented to identify D and Γ.
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4.4 Identification by Choleski factorisation

The most common identification scheme for D and Γ is Choleski factorization. First, simplify the

problem by assuming that Γ is diagonal, and simplify further by normalizing, that is, by assuming

unit variance for all shocks. Then Γ = I, and 4.3.8 simplifies to:

Σ = DD
′

(4.4.1)

Given the n2 elements of D to identify, and the n × (n + 1)/2 restrictions provided by Σ, there

remains an additional n × (n − 1)/2 restrictions to impose to identify D. A simple way to obtain

them is to implement contemporaneous restrictions on D. Ignoring the exogenous variables, 4.3.2

rewrites:

yt = Dηt + Ψ̃1ηt−1 + Ψ̃2ηt−2 + . . . (4.4.2)

Looking at 4.4.2, it is easy to see that the contemporaneous effect ∂yt
∂ηt

of ηt on yt is given by

D. It is then common practice to identify D by assuming that certain variables do not respond

contemporaneously to certain structural shocks.

For example, assuming that the second variable in yt does not respond immediately to the third

structural shock will be translated by the fact that entry (2, 3) ofD is equal to 0. By selecting carefully

the order in which variables enter into yt, one may impose a set of n × (n − 1)/2 contemporaneous

restrictions that will yield D to be lower triangular. Then, the n× (n− 1)/2 zero constraints on D

will yield exact identification of it.

Identification itself is obtained as follows: the identification scheme amounts to finding a lower

triangular matrix D such that DD, = Σ, with Σ a symmetric matrix. But this is precisely the

definition of the Choleski factor of Σ.

Hence the process can be summarised as:

• Order the variables so as to impose contemporaneous restrictions on D that will make it lower

triangular.

• Compute D as the Choleski factor of Σ.

• Compute shocks and orthogonalized response functions from 4.3.6 and 4.3.14.

In a Bayesian framework, D is considered as a random variable, as any other parameter of the

VAR. Therefore, in theory, one would have to compute its posterior distribution. In practice, however,

because the Choleski identification exactly identifies D (that is, there is a one-to-one relationship

between Σ and D), it is possible to estimate draws from the posterior of D directly from draws from

the posterior distribution of Σ. If the latter have been already obtained for a Gibbs sampling process,
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computing the posterior distribution of D merely amounts to recycling existing posterior draws for

Σ.

The following identification algorithm is thus proposed:

Algorithm 2.4.1 (SVAR with Choleski orderering, all priors):

1. Define the number of iterations (It−Bu) of the algorithm.

2. At iteration n, draw Σ(n) from its posterior distributions. Simply recycle draw n from the

Gibbs sampler.

3. Obtain D(n) by computing the Choleski factor of Σ(n).

4. Obtain Ψ̃
(n)
1 , Ψ̃

(n)
2 ... from Ψ

(n)
1 D(n),Ψ

(n)
2 D(n), following 4.3.14. In practice, there is no need to

calculate Ψ
(n)
1 ,Ψ

(n)
2 since they have already been obtained when the impulse functions have

been computed. Suffice is thus to recycle those estimates.

5. Repeat until (It − Bu) iterations have been achieved. This yields a sample of independent

posterior draws:
{
D(n), Ψ̃

(n)
1 , Ψ̃

(n)
2

}It−Bu
n=1

These draws can then be used as usual for point estimates and confidence intervals.

4.5 Identification by triangular factorisation

Assuming that Γ = I as it is the case with Choleski factorisation may constitute an excessively

restrictive hypothesis. Indeed, this assumption implies that all the structural shocks have a similar

unit variance, even though the variance may actually differ from unity, and different shocks may

have very different sizes. A simple solution to this problem is to use what is known as a triangular

factorisation. To do this, the following assumptions are formed:

• Γ is diagonal, but not identity. This way, the zeros below the diagonal impose n(n − 1)/2

constraints over the n2 required to identify Γ and D with 4.3.8.

• D is lower triangular, and its main diagonal is made of ones. This assumes contemporaneous

restrictions in a way that is similar to a Cholesky decomposition, and additionally imposes a

unit contemporaneous response of variables to their own shocks. Then, the zeros above the

main diagonal combined with the diagonal of ones generate another n(n+ 1)/2 constraints.

Combining the n(n − 1)/2 constraints on Γ with the n(n + 1)/2 constraints on D results in n2

constraints, which exactly identify Γ and D from 4.3.8. In practice, identification follows from the

following result from Hamilton (1994) (result 4.4.1, p 87):
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Any positive definite symmetric n× n matrix Σ has a unique representation of the form:

Σ = DΓD, (4.5.1)

where D is a lower triangular matrix with ones along the principal diagonal, and Γ is a diagonal

matrix.

Suffice is thus to apply the result directly to satisfy 4.3.8. Also, uniqueness of the decomposition

permits to integrate it into the Gibbs sampling process. Empirical computation of D and Γ follows

from the result on Choleski factors provided in Hamilton (1994), p 92. This result basically states

the following: because Σ is positive definitive, it has a unique Choleski factor H such that:

Σ = HH , (4.5.2)

But then, from 4.5.1 and 4.5.2, it is straightforward to conclude that DΓD, = HH , or equivalently

that DΓ1/2 = H, which implies:

 1 0 0 ··· 0
d21 1 0 ··· 0
d31 d32 1 0
...

...
...

dn1 dn2 dn3 ··· 1



√
g11 0 0 ··· 0

0
√
g22 0 ··· 0

0 0
√
g33 0

...
...

...
0 0 0

√
gnn

 =


√
g11 0 0 ··· 0

d21
√
g11

√
g22 0 ··· 0

d31
√
g11 d32

√
g22

√
g33 0

...
...

...
dn1
√
g11 dn2

√
g22 dn3

√
g33 ···

√
gnn

 (4.5.3)

Any numerical software can compute the Choleski factor H (the right-hand side of 4.5.3) very

easily. Once H is known, 4.5.3 makes it clear that it suffices to recover D to divide each column of

H by its corresponding diagonal entry: divide column one by
√
g11, column two by

√
g22, and so on.

As for Γ, 4.5.3 identifies Γ1/2. To obtain Γ, the only step to take is to square all the diagonal entries

of Γ1/2. Then D and Γ are identified.

It is then possible to propose the following algorithm:

Algorithm 2.4.2 (SVAR with triangular factorisation, all priors):

1. Define the number of iterations (It−Bu) of the algorithm.

2. At iteration n, draw Σ(n) from its posterior distributions. Simply recycle draw n from the

Gibbs sampler.

3. Obtain D(n) and Γ(n) from triangular factorisation of Σ(n), using 4.5.3
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4. Obtain Ψ̃
(n)
1 , Ψ̃

(n)
2 ... from Ψ

(n)
1 D(n),Ψ

(n)
2 D(n)..., following 4.3.14. In practice, there is no need to

calculate Ψ
(n)
1 ,Ψ

(n)
2 ... since they have already been obtained when the impulse functions have

been computed. Suffice is thus to recycle those estimates.

5. Repeat until (It − Bu) iterations have been achieved. This yields a sample of independent

posterior draws:{
D(n),Γ(n), Ψ̃

(n)
1 , Ψ̃

(n)
2 ...

}It−Bu
n=1

These draws can then be used as usual for point estimates and confidence intervals.

4.6 Identification by sign, magnitude and zero restrictions

Another popular application with Bayesian VAR models is the implementation of quantitative re-

strictions on impulse response functions. The structural VAR models with a Choleski or triangular

factorization identification scheme constitute a very simple example of such quantitative restrictions,

since they permit to assume that some variables have no immediate response to certain structural

shocks. While these simple settings are already quite attractive, it is possible to get more from BVAR

models. The methodology developed by Arias et al. (2014) makes it possible to set not only zero

restrictions, but also sign and magnitude restrictions on the impulse response functions of a BVAR

model. Also, while the Choleski/triangular scheme only allow generating constraints over the con-

temporaneous responses (that is, period 0 of the impulse response functions), the general restriction

methodology proposed by Arias et al. (2014) permits to implement restrictions at any period of the

impulse response functions.

To be precise, the methodology described in this subsection develops three types of restrictions.

Sign restriction represents the action of constraining the response of a variable to a specific structural

shock to be positive or negative. Magnitude restriction represents the fact of constraining the response

of a variable to a specific structural shock to be included into some interval of values. Finally, zero

restrictions represent the action of constraining the response of a variable to a specific structural

shock to take the value of zero. Each such restriction set by the user of the VAR model can be

defined over any number of impulse response function periods, which need not be the same across

restrictions.

The analysis starts from the conventional SVAR model 4.3.2:

D0yt = D1yt−1 +D2yt−2 + ...+Dpyt−p + Fxt + ηt, t = 1, 2, ..., T (4.6.1)
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For simplicity, assume that ηt ∼ N (0, I), that is, the structural shocks are mutually orthogonal

and have unit variance. The aim consists in finding a structural matrix D = D−1
0 such that the

structural impulse response functions Ψ̃0, Ψ̃1, Ψ̃2... produced from model 4.6.1 satisfy the restrictions

specified by the user. To verify that the restrictions hold, it is convenient to stack the structural

impulse response function matrices of all periods subject to a restriction into a single matrix de-

noted by f(D,D1, ..., Dp). For instance, if restrictions are implemented for periods p1, p2, ..., pn, then

f(D,D1, ..., Dp) is:

f(D,D1, ..., Dp) =


Ψ̃p1

Ψ̃p2

...

Ψ̃pn

 (4.6.2)

Verification of the restrictions can then be realized by the way of selection matrices. For ex-

ample, with sign restrictions, the matrix for sign restrictions with respect to structural shock j,

for j = 1, 2, ..., n, will be the matrix Sj with a number of columns equal to the number of rows of

f(D,D1, ..., Dp), and a number of rows equal to the number of sign restrictions on shock j. Each row

of Sj represents one restriction and is made only of zeros, save for the entry representing the restric-

tion which is a one (for a positive sign restriction), or a minus one (for negative sign restrictions).

Then, the restrictions on shock j hold if:

Sj × fj(D,D1, ..., Dp) > 0 (4.6.3)

where fj(D,D1, ..., Dp) represents column j of the matrix f(D,D1, ..., Dp). The sign restrictions

hold if 4.6.3 holds for all shocks j = 1, 2, ..., n.

Magnitude restrictions on shock j can be represented by the way of the selection matrix Mj, and

two vectors Ml,j and Mu,j. Mj is a selection matrix with a number of columns equal to the number

of rows of f(D,D1, ..., Dp), a number of rows equal to the number of magnitude restrictions on shock

j, and selection entries equal to one. Ml,j and Mu,j are vectors with as many rows as Mj. Each

row entry of Ml,j is the lower bound of the corresponding restriction interval, while each row entry

of Mu,j contains the upper bound of the restriction interval. Then, the magnitude restrictions on

structural shock j hold if :

(Mj × fj(D,D1, ..., Dp)−Ml,j) .× (Mu,j −Mj × fj(D,D1, ..., Dp)) > 0 (4.6.4)

where the operator × denotes element wise product rather than a standard matrix product.

The idea is the following: if the magnitude restrictions are satisfied, then the considered impulse
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response function values Mj × fj(D,D1, ..., Dp) are comprised between Ml,j and Mu,j. Therefore,

Mj × fj(D,D1, ..., Dp)−Ml,j should be a vector of positive values, and Mu,j −Mj × fj(D,D1, ..., Dp)

should also be a vector of positive values. Element wise multiplication should thus result in a

strictly positive vector. On the other hand, if any one restrictions is not satisfied, then either the

corresponding row of Mj × fj(D,D1, ..., Dp)−Ml,j will be negative (if the impulse response function

value is smaller than the lower bound) while the corresponding row ofMu,j−Mj×fj(D,D1, ..., Dp) will

be positive, or the row ofMj×fj(D,D1, ..., Dp)−Ml,j will be negative (if the impulse response function

value is larger than the upper bound) while the corresponding row of Mj × fj(D,D1, ..., Dp)−Ml,j

will be positive. In both cases, the element wise product will be negative, indicating failure of the

restriction. The magnitude restrictions hold if 4.6.4 holds for all shocks j = 1, 2, ..., n.

Eventually, zero restrictions with respect to structural shock j can be checked using a selection

matrix Zj, with a number of columns equal to the number of rows of f(D,D1, ..., Dp), a number

of rows equal to the number of zero restrictions on shock j, and zero entries, except for the entries

relative to the restrictions which take a value of one. Then, the zero restrictions on structural shock

j hold if:

Sj × fj(D,D1, ..., Dp) = 0 (4.6.5)

The zero restrictions hold if 4.6.5 holds for all shocks j = 1, 2, ..., n. In the line of the Gibbs

sampler methodology systematically used so far, a natural strategy would be to adopt the following

algorithm:

Algorithm 2.6.1 (Gibbs sampling for sign, magnitude and zero restrictions):

1. Draw the SVAR coefficients D0, D1, D2, ..., Dp and F from the unrestricted posterior distribu-

tion.

2. Compute the structural impulse response functions Ψ̃0, Ψ̃1, Ψ̃2... from the coefficients.

3. Check if the restrictions are satisfied, using 4.6.3, 4.6.4 and 4.6.5. If yes, keep the draw, if not,

discard the draw.

4. Repeat steps 1-3 until the desired number of iterations satisfying the restrictions is obtained.

Of course, the difficulty with algorithm 2.6.1 is that the traditional Gibbs sampler framework does

not allow to draw directly from the posterior distribution of the SVAR coefficients D0, D1, D2, ..., Dp

and F . Rather, the Gibbs sampling procedure produces draws from the posterior distribution of the

reduced form VAR model 3.1.2:
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yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt (4.6.6)

with εt ∼ N (0,Σ). That is, the conventional Gibbs sampler methodology only provides draws

for A1, A2, ..., Ap, C and Σ.

Intuitively, it would be tempting to apply the following strategy: draw the coefficientsA1, A2, . . . , Ap, C

and Σ of a reduced-form VAR model, from the posterior distribution. From these coefficients, obtain

the impulse response functions Ψ0,Ψ1,Ψ2... Then apply a standard identification scheme such as a

Choleski factorization of the residual covariance matrix Σ to recover the structural matrix D. With

D at hand, finally, identify the SVAR impulse response functions Ψ̃0, Ψ̃1, Ψ̃2... Check if the restric-

tions are satisfied, as described in algorithm 2.6.1, and preserve the draw only if the requirement

is met. The problem is that such an identification would not produce a posterior draw from the

correct distribution for the SVAR coefficients D0, D1, D2, ..., Dp and F . Arias et al. (2014) show

however (theorem 2) that it is possible to use draws from the posterior distributions of the reduced

form model to obtain draws from the correct posterior distribution of the SVAR model. The only

requirement is the implementation of an additional orthogonalisation step.

Because the procedure differs depending on the fact the zero restrictions are included or not in

the setting, the two methodologies are developed in turn, starting with the simplest case of sign and

magnitude restrictions only.

Identification with pure sign and magnitude restrictions: In the case of pure sign and

magnitude restrictions, the procedure remains simple. First, draw a vector β (that is, a set of reduced

form VAR coefficients A1, A2, ..., Ap, C), and a residual covariance matrix Σ from their posterior

distributions. From this, recover the reduced form VAR model 3.1.2:

yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt (4.6.7)

From this reduced VAR model, one can obtain the impulse response functions Ψ0,Ψ1,Ψ2...Then,

define a preliminary structural matrix h(Σ), where h() is any continuously differentiable function of

symmetric positive definite matrices such that h(Σ) × h(Σ), = Σ. In practice, the usual Choleski

factor is used for h(). From this preliminary structural matrix, obtain a first set of structural impulse

response functions Ψ̄0, Ψ̄1, Ψ̄2... from 4.3.14:

Ψ̄i = Ψih(Σ) (4.6.8)

These preliminary impulse response functions, however, are not drawn from the correct distri-
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bution. To draw from the correct posterior distribution, an additional orthogonalisation step is

required. To do so, one has to draw a random matrix Q from a uniform distribution, and define:

D = h(Σ)Q (4.6.9)

The strategy is then to draw such a Q matrix which would be orthogonal, in order to preserve

the SVAR property 4.3.8:

DΓD, = DID, = DD, = h(Σ)QQ,h(Σ), = h(Σ)Ih(Σ), = h(Σ)h(Σ), = Σ (4.6.10)

To obtain an orthogonal matrix Q from the uniform distribution, the procedure is the following.

First, draw a n× n random matrix X, for which each entry is drawn from an independent standard

normal distribution. Then, use a QR decomposition of X, such that X = QR, with Q an orthogonal

matrix and R an upper triangular matrix. It is then possible to obtain the definitive structural

impulse response functions from 4.2.12 as:

Ψ̃i = ΨiD = Ψih(Σ)Q = Ψ̄iQ (4.6.11)

With this, the stacked structural matrix 4.6.2 can write as:

f(D,D1, ..., Dp) =


Ψ̃p1

Ψ̃p2

...

Ψ̃pn

 =


Ψ̄p1

Ψ̄p2

...

Ψ̄pn

Q = f̄(D,D1, ..., Dp)×Q (4.6.12)

with

f̄(D,D1, ..., Dp) =


Ψ̄p1

Ψ̄p2

...

Ψ̄pn

 (4.6.13)

If the restrictions are respected, then 4.6.3 and 4.6.4 hold for all structural shocks j = 1, 2, . . . , n.

If it is not the case, then restart the whole process all over again. It is thus possible to propose the

following Gibbs algorithm:

Algorithm 2.6.2 (Gibbs sampling for sign and magnitude restrictions):

1. Define the restriction matrices Sj,Mj,Ml,j and Mu,j, for j = 1, 2, ..., n.

2. Define the number of successful iterations It−Bu of the algorithm.
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3. At iteration n, draw the reduced-form VAR coefficients B(n)and Σ(n) from their posterior dis-

tributions, and recover model 4.6.6.

4. At iteration n, obtain Ψ
(n)
0 ,Ψ

(n)
1 ,Ψ

(n)
2 ... from B(n).

5. At iteration n, calculate h(Σ(n)), and generate Ψ̄
(n)
0 , Ψ̄

(n)
1 , Ψ̄

(n)
2 ... from 4.6.8. Create the prelim-

inary stacked matrix f̄(D,D1, ..., Dp) =


Ψ̄

(n)
p1

Ψ̄
(n)
p2

...

Ψ̄
(n)
pn

 from 4.6.14.

6. At iteration n, draw a random matrix X, for which each entry is drawn from an independent

standard normal distribution. Then, use a QR decomposition of X to obtain the structural

matrix Q.

7. At iteration n, compute the candidate stacked structural impulse response function matrix

f(D,D1, ..., Dp) from 4.6.13.

8. At iteration n, verify that the restrictions hold from 4.6.3 and 4.6.4. If yes, keep the matrix

Q and go for the next iteration. If not, repeat steps 3 to 8 until a valid matrix Q is obtained.

Then go for the next iterations.

9. Repeat steps 3-8 until It−Bu successful iterations are obtained.

Identification with sign, magnitude, and zero restrictions: When zero restrictions are in-

cluded into the setting, identification becomes more complicated. The reason is that if one tries

to apply naively algorithm 2.6.2 to identify a matrix Q that would satisfy the zero restrictions, the

algorithm would always fail since the set of matrices satisfying the zero restrictions has measure zero.

In other words, the probability to draw by chance a Q matrix that would satisfy the zero restriction

is null. The procedure has then to be adapted to first force the Q draw to produce an orthogonal

Q matrix which will satisfy for sure the zero restrictions, and then run the normal checking process

4.6.3 and 4.6.4 of Q for the remaining sign and magnitude restrictions.

The algorithm to obtain a matrix Q satisfying the sign restrictions goes as follows:

Algorithm 2.6.3 (obtention of a matrix Q satisfying the zero restrictions):

1. Set j = 1 (that is, consider restrictions on structural shock 1).
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2. Create Rj =

(
Zj f̄(D,D1, . . . , Dp)

Q
′
j−1

)
where Qj−1 = [q1 q2 . . . qj−1], with qj the jth column of matrix Q. Of course, when j = 1,

no column of Q has yet been identified, so that Q0 = φ. If Zj = φ (no zero restriction on

structural shock j), set Zj f̄(D,D1, . . . , Dp) = φ.

3. Find a matrix Nj−1 whose columns form a non-zero orthonormal basis for the nullspace of Rj.

Do it only if Rj 6= φ. If Rj = φ, there are no restrictions on shock j, nor any already existing

element of Q. In this case, do not do anything.

4. Draw a random vector xj from a standard normal distribution on Rn.

5. If j = 2, define qj = N
′
j−1

(
Nj−1xj/||N

′
j−1xj||

)
. If Rj = φ, simply define qj = xj/||xj||.

6. Set j = 2 (that is, consider now restrictions on structural shock 2), and repeat steps 2 to 5.

7. Repeat for j = 3, 4, . . . , n. This produces an orthonormal Q matrix that satisfies the zero

restrictions.

Note: When trying to implement sign restrictions, one has to be careful with the number of

restriction implemented on each structural shock, as not every zero restriction setting will be well-

identified. The reason is the following: for j = 1, 2, . . . , n, the solution qj to the equation:

Rjqj (4.6.14)

will be a non-zero solution if and only if zj ≤ n−j, where zj is the total number of zero restrictions

on structural shock j. That is, a well identified orthonormal matrix can only be obtained if for each

structural shock j, the number of zero restrictions on that shock is at most equal to n − j, with n

denoting, as usual, the total number of variables in the model. If for any shock, zj > n − j , the

basis Nj−1 of the nullspace of Rj will be only the trivial basis (a zero vector), so that qj = 0, and Q

cannot be an orthonormal matrix.

However, this issue does not make the exercise as restrictive as it may seem, since one can play on

the order of the variables in the VAR model to achieve a certain setting. Indeed, unlike a conventional

a Choleski/triangular factorization scheme where the ordering of the variable does matter, in a

restriction setting, the variable ordering is perfectly arbitrary. Therefore assume for instance A VAR

model with 4 variables, and two zero restrictions on shock 4. Then z4 = 2 > 0 = 4−4 = n−j. So the

zero restrictions are not identified in this case. However, a simple solution consists in simply inverting

the order of variables 2 and 4 in the VAR model. Then, the two restrictions become restrictions on

shock 2, so that z2 = 2 > 4− 2 = n− j, and the identification scheme will work.
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It then becomes possible to adapt algorithm 2.6.2 for zero restrictions:

Algorithm 2.6.4 (Gibbs sampling for general zero, sign and magnitude restrictions):

1. Define the restriction matrices Sj,Mj,Ml,j,Mu,j and Zj , for j = 1, 2, ..., n.

2. Define the number of successful iterations It−Bu of the algorithm.

3. At iteration n, draw the reduced-form VAR coefficients B(n)and Σ(n) from their posterior dis-

tributions, and recover model 4.6.7.

4. At iteration n, obtain Ψ
(n)
0 ,Ψ

(n)
1 ,Ψ

(n)
2 ... from B(n).

5. At iteration n, calculate h(Σ(n)), and generate Ψ̄
(n)
0 , Ψ̄

(n)
1 , Ψ̄

(n)
2 ... from 4.6.8. Create the prelim-

inary stacked matrix:


Ψ̄

(n)
p1

Ψ̄
(n)
p2

...

Ψ̄
(n)
pn

 (4.6.15)

6. At iteration n, apply algorithm 2.6.3 to obtain an orthonormal Q matrix which satisfies the

zero restrictions.

7. At iteration n, compute the candidate stacked structural impulse response function matrix

f(D,D1, ..., Dp) from 4.6.13.

8. At iteration n, verify that the sign and magnitude restrictions hold from 4.6.3and 4.6.4. If yes,

keep the matrix Q and go for the next iteration. If not, repeat steps 3 to 8 until a valid matrix

Q is obtained. Then go for the next iterations.

9. Repeat steps 3 to 8 until It−Bu successful iterations are obtained.

An example: Consider a 3-variable VAR model with two lags, and assume for simplicity5 that

there are no exogenous variables included in the model:

y1,t

y2,t

y3,t

 =

a
1
11 a1

12 a1
13

a1
21 a1

22 a1
23

a1
31 a1

32 a1
33


y1,t−1

y2,t−1

y3,t−1

+

a
2
11 a2

12 a2
13

a2
21 a2

22 a2
23

a2
31 a2

32 a2
33


y1,t−2

y2,t−2

y3,t−2

+

ε1,t

ε2,t

ε3,t

 (4.6.16)

5Note that exogenous variables are irrelevant for the computation of impulses response functions, and thus for imple-
menting restrictions on them. Therefore, they can be omitted without loss of generality.
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The conventional assumption on residuals applies:

E (εtε
,
t) = Σ (4.6.17)

, or

E

ε1,t

ε2,t

ε3,t

(ε1,t ε2,t ε3,t

)
=

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 (4.6.18)

The following restrictions are implemented:

• Sign restrictions: a positive sign restriction on the response of variable 1 to structural shock 2,

to be implemented at period 2. And a negative sign restriction on the response of variable 1

to structural shock 3, to be implemented at period 3.

• A magnitude restriction of
[
−0.5 0.5

]
on the response of variable 2 to structural shock 2, and

a magnitude restriction of
[
−0.3 0.7

]
on the response of variable 3 to structural shock 2, both

to be implemented at period 1.

• Zero restrictions: a zero restriction to be implemented on the response of variable 1 and 3

to structural shock 1, to be implemented at period 0. Note that even though the general

methodology makes it possible to develop zero restrictions at any period, zero restrictions

typically make sense only at impact (period 0).

Case of pure sign and magnitude restrictions (algorithm 2.6.2):

1. Because there are restrictions over three periods (periods 1, 2 and 3), the stacked matrix for

impulse response functions will be:

f(D,D1, ..., Dp) =

Ψ̃1

Ψ̃2

Ψ̃3

 (4.6.19)

Because the model comprises three variables, each individual impulse response function matrix

Ψ̃ will be of size 3× 3. With three of them stacked, the matrix f(D,D1, ..., Dp) will comprise a

total of 3× 3 = 9 rows. Therefore, each restriction matrix Sjand Mj will comprise 9 columns.

The restriction matrices are thus as follows:

• A positive sign restriction on the response of variable 1 to structural shock 2, to be

implemented at period 2:
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S2 =
(

0 0 0 1 0 0 0 0 0
)

(4.6.20)

• A negative sign restriction on the response of variable 1 to structural shock 3, to be

implemented at period 3:

S3 =
(

0 0 0 0 0 0 −1 0 0
)

(4.6.21)

• A magnitude restriction of
[
−0.5 0.5

]
on the response of variable 2 to structural shock

2, and a magnitude restriction of
[
−0.3 0.7

]
on the response of variable 3 to structural

shock 2, both to be implemented at period 1:

M2 =

(
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

)
(4.6.22)

,

Ml,2 =

(
−0.5

−0.3

)
(4.6.23)

,

Mu,2 =

(
0.5

0.7

)
(4.6.24)

2. Assume that the following draw is realized for the values of the VAR coefficients:

y1,t

y2,t

y3,t

 =

 0.78 0.12 −0.08

0.05 0.82 0.03

−0.16 0.21 0.85


y1,t−1

y2,t−1

y3,t−1

+

 0.02 −0.04 0.07

0.11 0.06 −0.16

−0.03 0.08 −0.09


y1,t−2

y2,t−2

y3,t−2

+

ε1,t

ε2,t

ε3,t


(4.6.25)

It can be shown that such a draw produces a stationary model. Assume that the draw for Σ is

given by:

Σ =

 0.028 −0.013 0.034

−0.013 0.042 0.006

0.034 0.006 0.125

 (4.6.26)

3. Obtain Ψ1,Ψ2 and Ψ3 as:
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Ψ1 =

 0.78 0.12 −0.08

0.05 0.82 0.03

−0.16 0.21 0.85

 (4.6.27)

Ψ2 =

 0.65 0.14 −0.06

0.19 0.74 −0.11

−0.28 0.41 0.65

 (4.6.28)

Ψ3 =

 0.55 0.15 −0.05

0.29 0.66 −0.22

−0.31 0.53 0.47

 (4.6.29)

4. Obtain h(Σ), the lower Choleski factor of Σ, as:

h(Σ) =

 0.1673 0 0

−0.0777 0.1896 0

0.2032 0.1149 0.2656

 (4.6.30)

Obtain the preliminary stacked matrix:

Ψ̄1

Ψ̄2

Ψ̄3

 =

Ψ1

Ψ2

Ψ3

h(Σ) =



0.105 0.013 −0.021

−0.049 0.159 0.008

0.129 0.137 0.226

0.086 0.019 −0.015

−0.050 0.128 −0.030

0.053 0.153 0.173

0.070 0.021 −0.014

−0.047 0.099 −0.058

0.002 0.154 0.124


(4.6.31)

5. assume the random matrix X that was drawn is the following:

X =

−0.3034 0.8884 −0.8095

0.2939 −1.1471 −2.9443

−0.7873 1.0689 1.4384

 (4.6.32)

From the QR decomposition of X, the orthonormal matrix obtained from X is:
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Q =

−0.3396 0.5484 0.7642

0.3289 −0.6919 −0.6427

−0.8812 −0.4696 0.0546

 (4.6.33)

6. compute the candidate stacked structural impulse response function matrix:

f(D,D1, ..., Dp) =


Ψ̃p1

Ψ̃p2

...

Ψ̃pn

 =


Ψ̄p1

Ψ̄p2

...

Ψ̄pn

Q =



−0.0125 0.0581 −0.0901

0.0620 −0.1407 −0.0641

−0.1977 −0.1300 −0.1751

0.0097 0.0412 −0.0790

0.0858 −0.1019 −0.0458

−0.1204 −0.1577 0.1297

−0.0042 0.0302 −0.0682

0.1002 −0.0675 −0.0311

−0.0596 −0.1633 −0.0939


(4.6.34)

7. verify that the restrictions hold from 4.6.3 and 4.6.4 :

• Positive sign restriction on the response of variable 1 to structural shock 2, to be imple-

mented at period 2:

S2 × f2(D,D1, ..., Dp) =
(

0 0 0 1 0 0 0 0 0
)



0.0581

−0.1407

−0.1300

0.0412

−0.1019

−0.1577

0.0302

−0.0675

−0.1633


= (0.0412) > 0

(4.6.35)

• A negative sign restriction on the response of variable 1 to structural shock 3, to be

implemented at period 3:
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S3 × f3(D,D1, ..., Dp) =
(

0 0 0 0 0 0 −1 0 0
)



−0.0901

−0.0641

−0.1751

−0.0790

−0.0458

0.1297

−0.0682

−0.0311

−0.0939


= (0.0682) > 0

(4.6.36)

• A magnitude restriction of
[
−0.5 0.5

]
on the response of variable 2 to structural shock

2, and a magnitude restriction of
[
−0.3 0.7

]
on the response of variable 3 to structural

shock 2, both to be implemented at period 1:

ECB Working Paper 1934, July 2016 92



(M2 × f2(D,D1, ..., Dp)−Ml,2)× (Mu,2 −M2 × f2(D,D1, ..., Dp))

=



(
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

)



0.0581

−0.1407

−0.1300

0.0412

−0.1019

−0.1577

0.0302

−0.0675

−0.1633


−

(
−0.5

−0.3

)


×



(
0.5

0.7

)
−

(
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

)



0.0581

−0.1407

−0.1300

0.0412

−0.1019

−0.1577

0.0302

−0.0675

−0.1633




=

((
−0.1407

−0.1300

)
−

(
−0.5

−0.3

))
×

((
0.5

0.7

)
−

(
−0.1407

−0.1300

))

=

(
0.3593

0.1700

)
×

(
0.6407

0.8300

)

=

(
0.2302

0.1411

)
> 0 (4.6.37)

Hence all the restrictions are satisfied. Keep this matrix Q since it is a valid candidate.

Case of general restrictions (algorithm 2.6.4):

1. There are now restrictions over four periods (periods 0, 1, 2 and 3, see below), so that the

stacked matrix for impulse response functions will be:
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f(D,D1, ..., Dp) =


Ψ̃0

Ψ̃1

Ψ̃2

Ψ̃3

 (4.6.38)

Because the model comprises three variables, each individual impulse response function matrix

Ψ̃ will be of size 3 × 3. With four of them stacked, the matrix f(D,D1, ..., Dp) will comprise

a total of 3 × 4 = 12 rows. Therefore, each restriction matrix Sj and Mj will comprise 12

columns.

The restriction matrices are thus as follows:

• A positive sign restriction on the response of variable 1 to structural shock 2, to be

implemented at period 2:

S2 = (0 0 0 0 0 0 1 0 0 0 0 0) (4.6.39)

• A negative sign restriction on the response of variable 1 to structural shock 3, to be

implemented at period 3:

S3 = (0 0 0 0 0 0 0 0 0 − 1 0 0) (4.6.40)

• A magnitude restriction of
[
−0.5 0.5

]
on the response of variable 2 to structural shock

2, and a magnitude restriction of

[
−0.3 0.7

]
(4.6.41)

on the response of variable 3 to structural shock 2, both to be implemented at period 1:

M2 =

[
0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

]
, Ml,2 =

(
−0.5

−0.3

)
, Mu,2 =

(
0.5

0.7

)
(4.6.42)

• A zero restriction to be implemented on the response of variable 1 and 3 to structural

shock 1, to be implemented at period 0:

Z1 =

[
0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

]
(4.6.43)
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2. Assume that the following draws are realized for the values of the VAR coefficients and residual

covariance matrix Σ (same as the pure sign and magnitude restriction case):

y1,t

y2,t

y3,t

 =

 0.78 0.12 −0.08

0.05 0.82 0.03

−0.16 0.21 0.85


y1,t−1

y2,t−1

y3,t−1

+

 0.02 −0.04 0.07

0.11 0.06 −0.16

−0.03 0.08 −0.09


y1,t−2

y2,t−2

y3,t−2

+

ε1,t

ε2,t

ε3,t


(4.6.44)

Σ =

 0.028 −0.013 0.034

−0.013 0.042 0.006

0.034 0.006 0.125

 (4.6.45)

3. Obtain Ψ0,Ψ1,Ψ2 and Ψ3 as:

Ψ1 =

1 0 0

0 1 0

0 0 1

 (4.6.46)

Ψ1 =

 0.78 0.12 −0.08

0.05 0.82 0.03

−0.16 0.21 0.85

 (4.6.47)

Ψ2 =

 0.65 0.14 −0.06

0.19 0.74 −0.11

−0.28 0.41 0.65

 (4.6.48)

Ψ3 =

 0.55 0.15 −0.05

0.29 0.66 −0.22

−0.31 0.53 0.47

 (4.6.49)

4. Obtain h(Σ), the lower Choleski factor of Σ, as:

h(Σ) =

 0.1673 0 0

−0.0777 0.1896 0

0.2032 0.1149 0.2656

 (4.6.50)

Obtain the preliminary stacked matrix:
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f̄(D,D1, ..., Dp) =


Ψ̄0

Ψ̄1

Ψ̄2

Ψ̄3

 =


Ψ0

Ψ1

Ψ2

Ψ3

h(Σ) =



0.1673 0 0

−0.0777 0.1896 0

0.2032 0.1149 0.2656

0.105 0.013 −0.021

−0.049 0.159 0.008

0.129 0.137 0.226

0.086 0.019 −0.015

−0.050 0.128 −0.030

0.053 0.153 0.173

0.070 0.021 −0.014

−0.047 0.099 −0.058

0.002 0.154 0.124



(4.6.51)

5. Apply algorithm 2.6.3 to obtain an orthonormal Q matrix which satisfies the zero restrictions:

• Set j = 1

• Create

R1 =

[
Z1f̄(D,D1, ..., Dp)

Q,
0

]
=

[
Z1f̄(D,D1, ..., Dp)

φ

]
=

(
0.1673 0 0

0.2032 0.1149 0.2656

)
(4.6.52)

• Obtain

N0 =

 0

−0.9178

0.3970

 (4.6.53)

• Draw

x1 =

 0.3252

−0.7549

1.3703

 (4.6.54)

• Obtain

q1 = N0 (N ,
0x1/ ‖N ,

0x1‖) =

 0

−0.9178

0.3970

 (4.6.55)

• set j = 2
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• Create

R2 =

[
Z2f̄(D,D1, ..., Dp)

Q,
1

]
=

[
φ

Q,
1

]
=
(

0 −0.9178 0.3970
)

(4.6.56)

• Obtain

N1 =

−0.9178 0.3970

0.1576 0.3644

0.3644 0.8424

 (4.6.57)

• Draw

x2 =

 0.3192

0.3129

−0.8649

 (4.6.58)

• Obtain

q2 = N1 (N ,
1x2/ ‖N ,

1x2‖) =

 0.4303

−0.3584

−0.8285

 (4.6.59)

• Set j = 3

• Create

R3 =

[
Z3f̄(D,D1, ..., Dp)

Q,
2

]
=

[
φ

Q,
2

]
=

(
0 −0.9178 0.3970

0.4303 −0.3584 0.8285

)
(4.6.60)

• Obtain

N2 =

0.9027

0.1709

0.3950

 (4.6.61)

• Draw

x2 =

−0.0301

−0.1649

0.6277

 (4.6.62)

• Obtain

q3 = N2 (N ,
2x3/ ‖N ,

2x3‖) =

0.9027

0.1709

0.3950

 (4.6.63)
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Obtain:

Q =

 0 0.4303 0.9027

−0.9178 −0.3584 0.1709

0.3970 −0.8285 0.3950

 (4.6.64)

6. Compute the candidate stacked structural impulse response function matrix f(D,D1, ..., Dp):

f(D,D1, ..., Dp) = f̄(D,D1, ..., Dp)×Q =



0 0.0720 0.1511

−0.1741 −0.1014 −0.0377

0 −0.1737 0.3079

−0.0209 0.0579 0.0887

−0.1427 −0.0848 −0.0141

−0.0366 −0.1805 0.2297

−0.0235 0.0428 0.0752

−0.1296 −0.0424 −0.0352

−0.0716 −0.1751 0.1428

−0.0254 0.0342 0.0614

−0.1146 −0.0077 −0.0487

−0.0918 −0.1569 0.0775



(4.6.65)

7. Verify that the sign and magnitude restrictions hold from 4.6.3 and 4.6.4 . It is not necessary

to check for the zero restrictions since Q has been constructed to satisfy them (and indeed, it

can be readily verified from f(D,D1, ..., Dp) that the zero restrictions are satisfied).

• Positive sign restriction on the response of variable 1 to structural shock 2, to be imple-

mented at period 2:
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S2 × f2(D,D1, ..., Dp) =
(

0 0 0
)



0.0720

−0.1014

−0.1737

0.0579

−0.0848

−0.1805

0.0428

−0.0424

−0.1751

0.0342

−0.0077

−0.1569



= (0.0428) > 0 (4.6.66)

The first sign restriction is satisfied.

• A negative sign restriction on the response of variable 1 to structural shock 3, to be

implemented at period 3:

S3 × f3(D,D1, ..., Dp) =
(

0 0 0 0 0
)



0.1511

−0.0377

0.3079

0.0887

−0.0141

0.2297

0.0752

−0.0352

0.1428

0.0614

−0.0487

0.0775



= (−0.0614) < 0 (4.6.67)

Hence, the second sign restriction is not satisfied.

• A magnitude restriction of [
−0.5 0.5

]
(4.6.68)

on the response of variable 2 to structural shock 2, and a magnitude restriction of[
−0.3 0.7

]
(4.6.69)
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on the response of variable 3 to structural shock 2, both to be implemented at period 1:

(M2 × f2(D,D1, ..., Dp)−Ml,2) .× (Mu,2 −M2 × f2(D,D1, ..., Dp))

=

((
−0.0848

−0.1805

)
−

(
−0.5

−0.3

))
.×

((
0.5

0.7

)
−

(
−0.0848

−0.1805

))

=

(
0.4152

0.1195

)
.×

(
0.5848

0.8805

)

=

(
0.2428

0.1052

)
> 0 (4.6.70)

Therefore, the magnitude restrictions are satisfied. Only one restriction is not satisfied (the

second sign restriction), but this is sufficient to conclude that the identified Q matrix is not a valid

candidate. Go back to steps 3-8 and repeat until a valid candidate is obtained.
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5 Advanced analysis

5.1 Forecast error variance decomposition

Consider again model 3.1.2:

yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt, t = 1, 2, ..., T (5.1.1)

If it is invertible, it admits the infinite order moving average representation 4.2.4:

yt = A(L)−1Cxt + εt + Ψ1εt−1 + Ψ2εt−2 + ... (5.1.2)

This is the moving average representation of the reduced-form VAR. As shown by 4.3.13, by using

a structural decomposition, one may obtain a moving average representation of the VAR in terms of

uncorrelated structural disturbances as:

yt = A(L)−1Cxt +Dηt + Ψ̃1ηt−1 + Ψ̃2ηt−2 + ... (5.1.3)

with:

Ψ̃k =


φ̃k,11 φ̃k,12 · · · φ̃k,1n

φ̃k,21 φ̃k,22 · · · φ̃k,2n
...

...
...

φ̃k,n1 φ̃k,n2 · · · φ̃k,nn

 (5.1.4)

Consider forecasting the value yt+h using 5.1.3:

yt+h = A(L)−1Cxt+h +
∞∑
k=0

Ψ̃iηt+h−k (5.1.5)

This can be separated into three components:

yt+h = A(L)−1Cxt+h︸ ︷︷ ︸
future values of exogenous variables,

assumed to be known

+
h−1∑
k=0

Ψ̃kηt+h−k︸ ︷︷ ︸
unknown, future shocks

+
∞∑
k=0

Ψ̃kηt+h−k︸ ︷︷ ︸
known present and past shocks

(5.1.6)

Then, from 5.1.6, one obtains:
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Et (yt+h) = A(L)−1Cxt+h︸ ︷︷ ︸
future values of exogenous variables,

assumed to be known

+
∞∑
k=0

Ψ̃kηt+h−k︸ ︷︷ ︸
known present and past shocks

(5.1.7)

Therefore, the forecast error for yt+h is given by:

yt+h − Et (yt+h) =
h−1∑
k=0

Ψ̃kηt+h−k︸ ︷︷ ︸
unknown, future shocks

(5.1.8)

Or, from 5.1.4:


y1,t+h − Et (y1,t+h)

y2,t+h − Et (y2,t+h)
...

yn,t+h − Et (yn,t+h)

 =


φ̃0,11 φ̃0,12 · · · φ̃0,1n

φ̃0,21 φ̃0,22 · · · φ̃0,2n

...
...

...

φ̃0,n1 φ̃0,n2 · · · φ̃0,nn



η1,t+h

η2,t+h

...

ηn,t+h

+


φ̃1,11 φ̃1,12 · · · φ̃1,1n

φ̃1,21 φ̃1,22 · · · φ̃1,2n

...
...

...

φ̃1,n1 φ̃1,n2 · · · φ̃1,nn



η1,t+h−1

η2,t+h−1

...

ηn,t+h−1

 ...

(5.1.9)

Therefore, considering variable i in the VAR (i = 1, 2, ..., n), and using 5.1.9, the forecast error

5.1.8 rewrites:

yi,t+h − Et (yi,t+h) =
h−1∑
k=0

(
φ̃k,i1η1,t+h−k + φ̃k,i2η2,t+h−k + ...+ φ̃k,inηn,t+h−k

)
(5.1.10)

or

yi,t+h − Et (yi,t+h) =
h−1∑
k=0

(
φ̃k,i1η1,t+h−k

)
+

h−1∑
k=0

(
φ̃k,i2η2,t+h−k

)
+ ...+

h−1∑
k=0

(
φ̃k,inηn,t+h−k

)
(5.1.11)

Denote the variance of this forecast error by σ2
y,i(h), and the constant variances of the structural

innovation series found on the diagonal of Γ by σ2
η,1, σ

2
η,2, ..., σ

2
η,n. Then, taking the variance of both

sides of 5.1.11, it rewrites as:

σ2
y,i(h) = σ2

η,1

h−1∑
k=0

(φ̃k,i1)
2

+ σ2
η,2

h−1∑
k=0

(φ̃k,i2)
2

+ ...+ σ2
η,n

h−1∑
k=0

(φ̃k,in)
2

(5.1.12)

where use has been made of the fact that structural disturbances are uncorrelated, so that no

covariance terms appear in the formula. Then, dividing both sides of 5.1.12 by σ2
y,i(h), one obtains:
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1 =
σ2
η,1

σ2
y,i(h)

h−1∑
k=0

(φ̃k,i1)
2

︸ ︷︷ ︸
proportion of σ2

y,i(h)

due to shocks in the
η1,t sequence

+
σ2
η,2

σ2
y,i(h)

h−1∑
k=0

(φ̃k,i2)
2

︸ ︷︷ ︸
proportion of σ2

y,i(h)

due to shocks in the
η2,t sequence

+...+
σ2
η,n

σ2
y,i(h)

h−1∑
k=0

(φ̃k,in)
2

︸ ︷︷ ︸
proportion of σ2

y,i(h)

due to shocks in the
ηn,t sequence

(5.1.13)

or

1 = σi(1, h) + σi(2, h) + ...+ σi(n, h) (5.1.14)

with

σi(j, h) =
σ2
η,j

σ2
y,i(h)

h−1∑
k=0

(φ̃k,ij)
2

(5.1.15)

σi(j, h) represents the proportion of forecast error variance of variable i due to structural shock

j at horizon T + h. Once again, this characterizes identification of variance decomposition in a

frequentist approach. In a Bayesian framework, one must take into account the uncertainty related

to the parameters. Hence, rather than computing a single estimate, one draws estimates for the

variance decomposition directly from the posterior distribution of orthogonalised impulse response

functions. Then, with these draws from the posterior distribution of variance decomposition, one

may as usual compute point estimates and credibility intervals. The following algorithm is thus

proposed:

Algorithm 3.1.1 (forecast error variance decomposition, all priors):

1. define the number of iterations (It − Bu) of the algorithm, and h, the time horizon for the

forecast error variance decomposition.

2. at iteration n, draw Γ(n), Ψ̃
(n)
1 , Ψ̃

(n)
2 ... from their posterior distributions. Simply recycle draw n

from the SVAR Gibbs algorithm previously run.

3. obtain σ
(n)
i (j, h), the variance decomposition values from 5.1.15, for i = 1, .., n, j = 1, .., n, and

t = 1, .., h.

4. repeat until (It−Bu) iterations have been achieved. This yields a sample of independent draws

from the posterior distribution of variance decomposition,

{
σ

(n)
i (j, h)

}It−Bu
n=1

(5.1.16)

for i = 1, .., n, j = 1, .., n, and t = 1, .., h.
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These draws can then be used for point estimates and confidence intervals.

5.2 Historical decomposition

A matter of interest with VAR models is to establish the contribution of each structural shock to

the historical dynamics of the data series. Precisely, for every period of the sample, one may want

to decompose the value of each variable into its different components, each components being due

to one structural shock of the model. This identifies the historical contribution of each shock to the

observed data sample.

Concretely, consider again model 3.1.2:

yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + Cxt + εt, t = 1, 2, . . . , T (5.2.1)

Consider again for simplicity the case where the VAR model has only one lag:

yt = A1yt−1 + Cxt + εt (5.2.2)

By backward substitution, one obtains:

yt = A1yt−1 + Cxt + εt

= A1 (A1yt−2 + Cxt−1 + εt−1) + Cxt + εt

= A1A1yt−2 + Cxt + A1Cxt−1 + εt + A1εt−1 (5.2.3)

Going one step further:

yt = A1A1yt−2 + Cxt + A1Cxt−1 + εt + A1εt−1

= A1A1 (A1yt−3 + Cxt−2 + εt−2) + Cxt + A1Cxt−1 + εt + A1εt−1

= A1A1A1yt−3 + Cxt + A1Cxt−1 + A1A1Cxt−2 + εt + A1εt−1 + A1A1εt−2 (5.2.4)

Going on, one may go back to the beginning of the sample:

yt = (A1)ty0 +
t−1∑
j=0

(A1)jCxt−j +
t−1∑
j=0

(A1)jεt−j (5.2.5)

When there is more than one lag, the backward substitution process becomes more complex, but

the logic remains the same. In general, for a model with p lags, one can rewrite yt as:
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yt =

p∑
j=1

A
(t)
j y1−j +

t−1∑
j=0

Cjxt−j +
t−1∑
j=0

Bjεt−j (5.2.6)

where the matrix series A
(t)
j , Cj and Bj are (potentially complicated) functions of A1, A2, ..., Ap.

For instance, in 5.2.5, A
(t)
1 = (A1)t, Cj = (A1)jC, and Bj = (A1)j. The t superscript on A

(t)
j

emphasizes the fact that the matrix A
(t)
j depends on t = 1, 2, ..., T , while the Cj and Bjseries are

independent of it.

Note also that the matrices B1, B2, ..., Bt−1 provide the response of yt to shocks occurring at periods

t, t− 1, ..., 2, 1. By definition, they are thus the series of impulse response function matrices:

Bj = Ψj (5.2.7)

Therefore, one can rewrite 5.2.6 as:

yt =

p∑
j=1

A
(t)
j y1−j +

t−1∑
j=0

Cjxt−j +
t−1∑
j=0

Ψjεt−j (5.2.8)

Using 4.3.6 and 4.3.14, one may obtain a representation of the impulse response functions in

terms of structural shocks:

Ψjεt−j = ΨjDD
−1εt−j = Ψ̃jηt−j (5.2.9)

Then, 5.2.8 rewrites as:

yt =

p∑
j=1

A
(t)
j y1−j +

t−1∑
j=0

Cjxt−j︸ ︷︷ ︸
historical contribution of

deterministic variables

+
t−1∑
j=0

Ψ̃jηt−j︸ ︷︷ ︸
historical contribution

of structural shocks

(5.2.10)

5.2.10 makes it clear that yt can be separated into two parts: one due to deterministic exogenous

variables and initial conditions, and one due to the contribution of unpredictable structural distur-

bances affecting the dynamics of the model. Because it is only the latter part which is of interest in

this exercise, one may simply rewrite 5.2.10 as:

yt = d(t) +
t−1∑
j=0

Ψ̃jηt−j︸ ︷︷ ︸
historical contribution

of structural shocks

(5.2.11)

where for and VAR with n variables, d(t) is a n × 1 vector of contributions from deterministic
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variables and initial conditions. Considering variable i of the model (for i = 1, 2, ..., n) , one can then

express the value of yi,t as:

yi,t = d
(t)
i +

t−1∑
j=0

(
φ̃j,i1η1,t−j + φ̃j,i2η2,t−j + ...+ φ̃j,inηn,t−j

)
(5.2.12)

where φ̃j,ik denotes entry (i, k) of the structural impulse response matrix Ψ̃j. Rearranging:

yi,t = d
(t)
i +

t−1∑
j=0

φ̃j,i1η1,t−j︸ ︷︷ ︸
Historical contribution

of structural shock 1

+
t−1∑
j=0

φ̃j,i2η2,t−j︸ ︷︷ ︸
Historical contribution

of structural shock 2

+...+
t−1∑
j=0

φ̃j,inηn,t−j︸ ︷︷ ︸
Historical contribution

of structural shock n

(5.2.13)

Equation 5.2.13 finally expresses, for each variable in the model, the historical decomposition of this

variable in terms of present and past structural shocks, along with its exogenous component.

Once again, this describes the historical decomposition in a traditional, frequentist context. Because

the Bayesian framework implies uncertainty with respect to the VAR coefficients, this uncertainty

must be integrated into the above framework, and one must compute the posterior distribution of the

historical decomposition. As usual, this is done by integrating the historical decomposition frame-

work into the Gibbs sampler, in order to obtain draws from the posterior distribution. The following

Gibbs algorithm is proposed:

Algorithm 3.2.1 (Historical decomposition, all priors):

1. Define the number of iterations (It−Bu) of the algorithm. Then run the algorithm:

2. At iteration n, obtain random draws β(n), Σ(n) and D(n) from their posterior distribution.

Simply recycle draw n from the Gibbs sampler.

3. For j = 1, 2..., T , compute the impulse response function matrices Ψj and Ψ̃j from β(n), Σ(n)

and D(n).

4. For j = 1, 2..., T , obtain the VAR residuals εt from β(n). Then, using D(n), obtain the structural

disturbances ηt.

5. With these elements, compute for j = 1, 2..., T the historical contribution of each shock, using

5.2.13.
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6. For j = 1, 2..., T , obtain the contribution of the non-shock components by rearranging 5.2.13:

d
(t)
i = yi,t −

t−1∑
j=0

φ̃j,i1η1,t−j −
t−1∑
j=0

φ̃j,i2η2,t−j − ...−
t−1∑
j=0

φ̃j,inηn,t−j (5.2.14)

7. Repeat until (It−Bu) iterations are realised.

5.3 Conditional forecasts

Sometimes, one may also be interested into obtaining what is known as conditional forecasts. These

are defined as forecasts obtained by constraining the path of certain variables to take specific values

decided by the statistician. In other words, they are obtained conditional on given values for a subset

of variables, over a subset of periods. This technique is very useful when one wants for instance to

simulate a scenario for some specific variables and observe the outcome for the other variables, or

compare the differences in outcomes obtained from different scenarios.

To derive conditional forecasts, consider again the VAR model 3.1.2:

yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + Cxt + εt (5.3.1)

Assume that one wants to use model 5.3.1 to produce forecasts, and to make things more concrete,

consider the simple case of predicting yT+2 for a VAR with one lag. By recursive iteration similar to

that applied in subsubsection 4.2, one obtains:

yT+1 = A1yT + CxT+1 + εT+1 (5.3.2)

and

yT+2 = A1yT+1 + CxT+2 + εT+2

= A1(A1yT + CxT+1 + εT+1) + CxT+2 + εT+2

= A1A1yT + A1CxT+1 + CxT+2 + A1εT+1 + εT+2 (5.3.3)

The forecasts are functions of three terms: terms involving the present value of the endogenous

variables yt, terms involving future values of the exogenous variables xt, and terms involving future

values of the reduced form residuals εt. In general, for a forecast of period T + h from a VAR with

plags, one obtains an expression of the form:
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yT+h =

p∑
j=1

A
(h)
j yT−j+1 +

h∑
j=1

C
(h)
j xT+j +

h∑
j=1

B
(h)
j εT+j (5.3.4)

where A
(h)
j , B

(h)
j and C

(h)
j denote the respective matrix coefficients on yT−j+1, εT+j and xT+j for a

forecast of yT+h. In the preceding example for instance, A
(1)
1 = A1 and A

(2)
1 = A1A1. With more lags

and longer forecast horizons, the series A
(h)
j , B

(h)
j and C

(h)
j can quickly become fairly complicated

functions of A1, A2, ..., Ap and C, but they are easy to recover numerically by successive iterations.

Note also that the matricesB
(h)
1 , B

(h)
2 , ..., B

(h)
h provide the response of yT+h to shocks in yT+1, yT+2...yT+h.

By definition, as showned in subsection 4.2, they are thus the series of impulse response function

matrices:

B
(h)
j = Ψh−j (5.3.5)

Therefore, one may rewrite 5.3.4 as:

yT+h =

p∑
j=1

A
(h)
j yT−j+1 +

h∑
j=1

C
(h)
j xT+j +

h∑
j=1

Ψh−jεT+j (5.3.6)

Now, using 4.3.6 and 4.3.14, one may rewrite

Ψh−jεT+j = Ψh−jDD
−1εT+j = Ψ̃h−jηT+j (5.3.7)

5.3.7 then allows to rewrite the forecast function 5.3.6 in terms of structural shocks:

yT+h =

p∑
j=1

A
(h)
j yT−j+1 +

h∑
j=1

C
(h)
j xT+j︸ ︷︷ ︸

Forecast in the absence of shocks

+
h∑
j=1

Ψ̃h−jηT+j︸ ︷︷ ︸
Dynamic impact of

future structural shocks

(5.3.8)

In the right-hand side of 5.3.8, the first and second terms are known values (they are just the

regular forecasts), while the third is unknown. Therefore, one may rewrite 5.3.8 as:

yT+h = ỹT+h +
h∑
j=1

Ψ̃h−jηT+j (5.3.9)

with ỹT+h the unconditional forecast value for period T + h. Consider imposing the condition:

yi,T+h = ȳ (5.3.10)

Where yi,T+h is the value of variable i (over the n variables in the model) at period T + h, and ȳ

is any scalar value decided by the statistician. Then, considering row i in 5.3.9, one obtains:
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yi,T+h = ỹi,T+h +
h∑
j=1

Ψ̃h−j,iηT+j = ȳ (5.3.11)

where Ψ̃h−j,i denotes row i of the impulse response matrix Ψ̃h−j. This can be rearranged to

obtain:

h∑
j=1

Ψ̃h−j,iηT+j = ȳ − ỹi,T+h (5.3.12)

5.3.12 shows that constraining yT+h to take the fixed value ȳ will imply restrictions on the value

of future structural innovations, up to period T + h. 5.3.12 can be reformulated in linear form as:

(φ̃h−1,i1 · · · φ̃h−1,in︸ ︷︷ ︸
j=1

| · · · · · ·︸ ︷︷ ︸
j=2,...,h−1

| φ̃0,i1 · · · φ̃0,in︸ ︷︷ ︸
j=h

)



η1,T+1

...

ηn,T+1

...

...

η1,T+h

...

ηn,T+h


=
(
ȳ − ỹi,T+h

)
(5.3.13)

where the vectors of restriction and the vector of shocks are of size 1× s, with s = h×n the total

number of shocks to constrain (n structural shocks for a n-variable VAR, to be constrained over h

periods). φ̃h−j,i1, . . . , φ̃h−j,in are the n elements of Ψ̃h−j,i.

If one wants to impose v conditions of the type of 5.3.10, then these conditions can be all put in

the linear form 5.3.13 and then stacked to form a linear system:

R︸︷︷︸
ν×s

η︸︷︷︸
s×1

= r︸︷︷︸
ν×1

ν ≤ s = nh (5.3.14)

R is the ν×s matrix of linear restrictions, η is the s×1 vector gathering all the structural shocks

to be constrained for a forecast at horizon T + h, and r is the ν × 1 vector gathering the differences

between the predicted and conditional values.

To make things more concrete, consider the case of a 2-variable VAR with variables y1,t and y2,t

gathered in the vector yt, and assume one wants to produce a forecast for yT+3 , so that the final

forecast horizon h = 3. Assume that one wants to produce this forecast by constraining the first
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variable to take specific values over the first two forecast periods, that is: y1,T+1 = ȳ1 and y1,T+2 = ȳ2.

Then n = 2, h = 3 so that s = h × n = 2 × 3 = 6. Because two restrictions are imposed, ν = 2.

Hence R will be ν × s = 2× 6, η will be s× 1 or 6× 1, and r will be ν × 1 or 2× 1.

Precisely, the stacked linear form system 5.3.14 will be given by:

(
φ̃0,11 φ̃0,12 0 0 0 0

φ̃1,11 φ̃1,12 φ̃0,11 φ̃0,12 0 0

)


η1,T+1

η2,T+1

η1,T+2

η2,T+2

η1,T+3

η2,T+3


=

(
ȳ1 − y1,T+1

ȳ2 − y2,T+2

)
(5.3.15)

Once the system 5.3.14 is obtained, it remains to know how to draw the structural disturbances

so that this system of constraint will be satisfied. The main contribution is due to Waggoner and Zha

(1999) who derive a Gibbs sampling algorithm to construct the posterior predictive distribution of

the conditional forecast. In particular they show that the distribution of the restricted future shocks

is normal, and characterised by:

η ∼ N (η̄, Γ̄) (5.3.16)

with

η̄ = R
′
(RR

′
)−1r (5.3.17)

and

Γ̄ = I −R′(RR′)−1R (5.3.18)

While in theory, one could draw shocks directly from N(η̄, Γ̄), in practice an equivalent but

numerically more efficient solution has been proposed by Jarocinski (2010a). It consists in taking

the singular value decomposition of R, that is, in identifying a v×v unitary matrix U , a v×s matrix

Sand s × s unitary matrix V such that R = USV . Denoting by P the matrix made of the first s

columns of S, by V1 the matrix made of the first s columns of V , and by V2 the matrix made of the

remaining v − s columns of V , Jarocinski (2010a) shows that drawing from 5.3.16 is equivalent to

drawing from:

V1P
−1U ,r + V2λ, where λ ∼ N (0, Is−v) (5.3.19)

Once these shocks are drawn, the system of constraints 5.3.14 will be satisfied by construction,
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and forecast can be formed by direct application of 5.3.9.

It is then possible to use the traditional Gibbs sampler framework to produce the posterior distri-

bution of conditional forecasts, as detailed in the incoming algorithm. A note of warning however: the

methodology adopted here is conventional, but is not exactly similar to that proposed by Waggoner

and Zha (1999). These authors suggest that in order to obtain a posterior distribution accounting

for parameter uncertainty in finite samples, the Gibbs sampler algorithm should, at each iteration,

augment the sample of data with the predicted values previously obtained. Doing so, the posterior

distribution will shift away from the one that would be obtained by considering only the sample of

actual data, which is labelled by the authors as a ”shift in distribution” phenomenon. The algorithm

developed hereafter does not adopt this specific methodology, as it can suffer from numerical insta-

bility, and produce shifts in distribution that are so large that the implied forecast values may not

have reasonable economic interpretation anymore. Adopting thus a standard approach, the following

algorithm is proposed:

Algorithm 3.3.1 (conditional forecasts, all priors):

1. define the total number of iterations of the algorithm It−Bu, the forecast horizon h, and the

v conditions : ȳ1, ȳ2, ..., ȳv to be imposed on the series.

2. at iteration n, draw β(n), Σ(n)and D(n). In practice, recycle draws from the Gibbs sampler.

3. at iteration n, compute first the unconditional forecasts ỹT+1, ỹT+2, ..., ỹT+h from β(n), by iter-

atively using 5.3.4, but excluding shocks.

4. for j = 1, 2..., h, compute the impulse response function matrices Ψj and Ψ̃j from β(n), Σ(n)and

D(n).

5. build R and r, as defined in 5.3.14.

6. draw the constrained shocks, using 5.3.19.

7. calculate the conditional forecasts using 5.3.9, with the unconditional forecast values obtained

in step 2 and the constrained shocks obtained in step 5.

8. repeat steps 2-7 until It−Bu iterations are realised.

5.4 Conditional forecasts generated by specific shocks

In practice, when one works with conditional forecasts, assuming that the conditions are generated

by all the structural shocks of the model may be undesirable or economically irrelevant. For instance,

consider a simple two-variable VAR model in GDP and a central bank interest rate. Assume that the
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condition to be implemented is an increase of the interest rate to over the next four quarters. There

can be two stories behind this increase. A first possibility is that the central authorities wanted

to implement this rise for some reason (for instance, attract more foreign investment), so that the

decision has been taken regardless of GDP. In this case, the increase in the interest rate will be

implemented through monetary shocks, and its expected effect is a negative impact on GDP in the

short run.

The second possibility is that it is actually a fuelling in activity (rise in GDP) that motivated the

rise in interest rate, pushing the central authorities to fight inflationary pressure. In this case the

condition is due to GDP shocks, and one will observe an initial increase in GDP in the short run (the

one generating the policy, before the policy impacts negatively real activity). It then appears that

the observed effect on output will be opposite, depending on which shock originates the constraint.

This simple example suggests that one may want to select carefully the shocks originating the

constraint, in order to produce meaningful economic results. Unfortunately, doing so complicates

substantially the conditional forecast framework, and it is not always possible to implement any

arbitrary choice of shocks generating the conditions.

So, consider again the conditional forecast framework 5.3.11, in which some variable i of the VAR

model takes the value ȳ at forecast horizon T + h:

yi,T+h = ȳ = ỹi,T+h +
h∑
j=1

Ψ̃h−j,iηT+j (5.4.1)

Before one enters into the computational details, some definitions are stated. First, a shock in

ηT+h (the vector of all structural shocks at period T + h) is said to be constructive for yi,T+h if it is

used to generate the condition yi,T+h = ȳ. If it is not used to generate this condition, the shock is

labelled as non-constructive. Shocks can only be constructive for conditions on their own periods.

Secondly, one defines a block of variables for period T +h as the set of all variables on which there is

a condition for this period, and for which the conditions are generated by the same shocks. A single

variable may perfectly constitute a block by itself, if its condition is generated by shocks that are

not constructive for any other variables.

Using a concrete example is probably the simplest way to illustrate the methodology and the

concepts used in conditional forecasts generated by specific shocks. Consider for instance a 3-variable

VAR model for which forecasts are produced up to horizon T + 3, and for which conditions are set

over the first two periods.
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At period T +1, conditions are set on variables 1 and 2 : y1,T+1 = ȳ1 and y2,T+1 = ȳ2. It is assumed

that these conditions are generated by structural shocks 1 and 2 for both variables.

They hence constitute the constructive shocks for y1,T+1 and y2,T+1, while structural shock 3 is

non-constructive. Also, because the conditions on y1,T+1 and y2,T+1 are generated by the same shocks,

variables 1 and 2 constitute a block (actually, the unique block for T + 1). At period T + 2, only

one condition is set, on variable 3: y3,T+2 = ȳ3. This condition is generated by shock 3. Variable

3 therefore constitutes the unique block for period T + 2, associated with the unique constructive

shock 3. Structural shocks 1 and 2 are non-constructive. Finally, at period 3, there are no conditions

at all. Therefore, all the shocks are non-constructive and there are no blocks.

The next paragraph illustrates the procedure used to identify the values of the structural shocks,

both constructive and non-constructive, that will fulfil the conditions placed on every forecast period.

The general idea is to split the initial problem into separate problems (one for each forecast period),

and then solve in a recursive way, starting with the first period, up to the final forecast period. To

start the resolution, first recover the linear constraint system 5.3.14 corresponding to the complete

conditional forecast problem:

φ̃0,11 φ̃0,12 φ̃0,13 0 0 0 0 0 0

φ̃0,21 φ̃0,22 φ̃0,23 0 0 0 0 0 0

φ̃1,31 φ̃1,32 φ̃1,33 φ̃0,31 φ̃0,32 φ̃0,33 0 0 0





η1,T+1

η2,T+1

η3,T+1

η1,T+2

η2,T+2

η3,T+2

η1,T+3

η2,T+3

η3,T+3


=

ȳ1 − ỹ1,T+1

ȳ2 − ỹ2,T+1

ȳ3 − ỹ3,T+2

 (5.4.2)

Then start solving recursively, period by period:

Period T+1: First, because only period T + 1 is of concern for now, one can retain only the rows

of system 5.4.2 related to this period and obtain a modified system:
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(
φ̃0,11 φ̃0,12 φ̃0,13 0 0 0 0 0 0

φ̃0,21 φ̃0,22 φ̃0,23 0 0 0 0 0 0

)



η1,T+1

η2,T+1

η3,T+1

η1,T+2

η2,T+2

η3,T+2

η1,T+3

η2,T+3

η3,T+3


=

(
ȳ1 − ỹ1,T+1

ȳ2 − ỹ2,T+1

)
(5.4.3)

One can actually go further: because the shocks corresponding to future periods are irrelevant

for period T + 1 (see the 0 coefficients corresponding to shocks in periods T + 2 and T + 3), one may

take them out of 5.4.3, and reformulate it as:

(
φ̃0,11 φ̃0,12 φ̃0,13

φ̃0,21 φ̃0,22 φ̃0,23

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1

ȳ2 − ỹ2,T+1

)
(5.4.4)

The advantage of formulation 5.4.4 over 5.4.3 is that it is much faster to solve in computational

applications.

• Consider then the non-constructive shocks. Here only structural shock 3 is non-constructive, so

draw η3,T+1 from its distribution. Once its value is known, note that it is possible to produce

a modified but equivalent formulation of 5.4.4 which integrates the impact of this shock by

transferring it on the right-hand side.

(
φ̃0,11 φ̃0,12 0

φ̃0,21 φ̃0,22 0

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1 − φ̃0,13η3,T+1

ȳ2 − ỹ2,T+1 − φ̃0,23η3,T+1

)
(5.4.5)

The interest of system 5.4.4 is that it integrates the value of the non-constructive shocks into

the conditions on the right hand side. Hence, when one will draw the subsequent shocks, they

will account for the already known value of η3,T+1.

• Consider then the constructive shocks for block 1 in period T + 1. These shocks must ensure

that the conditions y1,T+1 = ȳ1 and y2,T+1 = ȳ2 hold. To do so, draw them for The Waggoner

and Zha (1999) distribution 5.3.16-5.3.18, using the modified matrices R and r defined in 5.4.5.

These shocks ensure that the two conditions will be met. Retain only the shocks η1,T+1 and
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η2,T+1 since η3,T+1 has already been drawn. Note that discarding the draw of η3,T+1 is of no

consequence on the constraint as it is a non-constructive shock.

There is then no need to go further for period T + 1: all the shocks (constructive and non-

constructive) have been drawn, and the constructive shocks have taken into account the values of

the non-constructive shocks, so that the conditions y1,T+1 = ȳ1 and y2,T+1 = ȳ2 hold.

Period T+2:

• Similarly to period 1, because only period T + 2 is now of interest, one may consider only the

rows of 5.4.2 which are related to this period, ignore coefficients on shocks beyond T + 2 and

obtain a modified system:

(
φ̃1,31 φ̃1,32 φ̃1,33 φ̃0,31 φ̃0,32 φ̃0,33

)


η1,T+1

η2,T+1

η3,T+1

η1,T+2

η2,T+2

η3,T+2


= (ȳ3 − ỹ3,T+2) (5.4.6)

• Since the shocks η1,T+1,η2,T+1 and η3,T+1 are already known, they become constant values

that have to be integrated to the conditioning set (the right-hand side of 5.4.6). Therefore,

reformulate 5.4.6 by transferring the impact of previous shocks to the right-hand side:

(
0 0 0 φ̃0,31 φ̃0,32 φ̃0,33

)


η1,T+1

η2,T+1

η3,T+1

η1,T+2

η2,T+2

η3,T+2


=
(
ȳ3 − ỹ3,T+2 − φ̃1,31η1,T+1 − φ̃1,32η2,T+1 − φ̃1,33η3,T+1

)

(5.4.7)

Again, for computational purposes, it is suitable to reduce the system further and take out of

the system the zero columns corresponding to shocks of period T + 1, now that they have been

taken into account:
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(
φ̃0,31 φ̃0,32 φ̃0,33

)η1,T+2

η2,T+2

η3,T+2

 =
(
ȳ3 − ỹ3,T+2 − φ̃1,31η1,T+1 − φ̃1,32η2,T+1 − φ̃1,33η3,T+1

)
(5.4.8)

• Then draw the non-constructive shocks. Here they are η1,T+2 and η2,T+2. Draw these shocks

from their distributions, then, again, transfer the impact to the right-hand side to update the

condition set:

(
0 0 φ̃0,33

)η1,T+2

η2,T+2

η3,T+2

 =
(
ȳ3 − ỹ3,T+2 − φ̃1,31η1,T+1 − φ̃1,32η2,T+1 − φ̃1,33η3,T+1 − φ̃0,31η1,T+2 − φ̃0,32η2,T+2

)
(5.4.9)

• Then draw the constructive shock η3,T+2 for period T + 2, from the Waggoner and Zha (1999)

distribution, using the modified matrices R and r defined in 5.4.9. Discard all the shocks

obtained from this draw except η3,T+2, which is the only constructive shock. This shock guar-

antees that the condition is respected. All the shocks are drawn for period , and the unique

condition holds. There is nothing more to be done.

Period T+3:

• Because there are no conditions at period T + 3, there is no linear system to create. So the

only thing to do is:

• Draw the three non-constructive shocks η1,T+3, η2,T+3 and η3,T+3 from their distributions. Note

once again that the values of these shocks is of no consequence for past conditions, since these

shocks are non-impacting for past values (see all the 0 coefficients of in 5.4.2). This finishes

the process. A vector of shocks η for all forecast periods has been drawn, which ensures that

all the conditions hold, and that all the non-constructive shocks are just random values drawn

from their distributions.

This example illustrates the methodology to follow. It is however a simplified exercise, since it

features only one block per period. In general, the full methodology to determine the shocks for a

conditional forecast exercise at horizon T + h , with an arbitrary number of blocks for each period is

as follows:
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Algorithm 3.4.1 (shock identification for conditional forecasts, all priors):

1. For each forecast period T +i, with i = 1, 2, . . . , h, decide the set of conditions, the constructive

shocks and the blocks.

2. Formulate the complete problem as a linear system of the form 5.3.14: Rη = r.

3. At period T + i : consider only the rows of the linear system Rη = r which are related to

T + i and obtain a restricted system. Reformulate the system to make it smaller by ignoring

columns of R and shocks related to periods beyond T + i .

4. Then, update the system by transferring the impact of all the previous shocks ηT+1, ηT+2, . . . , ηT+(i−1)

on the right-hand side. This again makes the system smaller as it permits to supress all the

shocks and columns of R related to periods preceding T + i.

At this point, the system has been reduced so that it only accounts for the current shocks and

conditions: in the system Rη = r, R is of dimension νi × n, with νi the number of conditions

for period T + i, η is of dimension n and comprises only current period shocks, and r is νi× 1 .

5. Draw now the non-constructive shocks (if any) from their distributions. Transfer their effects

to the right-hand-side of the system. This updates R and r in the linear system.

6. Draw the constructive shocks corresponding to the first block from the Waggoner and Zha

(1999) distribution, using the updated matrices R and r. Discard all the shocks which are

non-constructive for block 1. The retained constructive shocks ensure that the conditions in

block 1 hold. Transfer their effects to the right-hand-side of the system. This updates R and

r in the linear system.

7. Then draw the constructive shocks corresponding to the second block from the Wagonner-Zha

distribution, using the updated matrices R and r. Discard all the shocks which are non-

constructive for block 2. The retained constructive shocks ensure that the conditions in block

2 hold. Transfer their effects to the right-hand-side of the system. This updates R and r in the

linear system.

8. At period T + 1: repeat with all the other blocks. When all the blocks have been treated,

a vector of shocks ηT+i has been produced that allows for all the period conditions to hold.

Update η with the values ηT+i, and go for the next period.

9. Repeat steps 3-8 for all periods, until ηT+h is calculated. This produces the complete vector of

shocks η allowing for every condition at every period to hold.
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One would wish that this is the end of the story. Unfortunately, it is not. Things do not necessarily

go as smoothly as algorithm 3.4.1 suggests. In fact, algorithm 3.4.1 may often fail, and produce

nonsense values. It will actually produce correct conditional forecasts only when the conditions,

shocks and blocks have been designed so that conditional forecasts are well defined. Otherwise,

conditional forecasts simply don’t exist. To see why, it is once again better to use examples. Of the

three following examples, one works, and two fail. This helps illustrating the potential pitfalls one

may face when trying to use conditional forecasts.

For example 1, consider a simple VAR model with 3 variables, where conditional forecasts have

only to be produced for T + 1. There is a condition on variable 1, so that y1,T+1 = ȳ1, and this

condition is generated by shock 1. This constitutes block 1. Block 2 is made of variable 2 with

y2,T+1 = ȳ2 , generated by shocks 2 and 3. Implement algorithm 3.4.1 for this example. Generate

first the linear system:

(
φ̃0,11 φ̃0,12 φ̃0,13

φ̃0,21 φ̃0,22 φ̃0,23

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1

ȳ2 − ỹ2,T+1

)
(5.4.10)

Because there are no non-constructive shocks, draw directly the constructive shock η1,T+1 for

block 1 from the Waggoner and Zha (1999) distribution, and transfer its impact on the right-hand

side of 5.4.10:

(
0 φ̃0,12 φ̃0,13

0 φ̃0,22 φ̃0,23

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1 − φ̃0,11η1,T+1

ȳ2 − ỹ2,T+1 − φ̃0,11η1,T+1

)
(5.4.11)

This shock ensures that the condition y1,T+1 = ȳ1 holds (implying that row 1 on the right-hand

side of 5.4.11 is now equal to 0). Then go for the second block: draw the constructive shocks η2,T+1

and η3,T+1 for block 2 from the Waggoner and Zha (1999) distribution, using the updated system

5.4.11, and transfer their impact on the right-hand side:

(
0 0 0

0 0 0

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1 − φ̃0,11η1,T+1 − φ̃0,12η2,T+1 − φ̃0,13η3,T+1

ȳ2 − ỹ2,T+1 − φ̃0,11η1,T+1 − φ̃0,22η1,T+1 − φ̃0,23η3,T+1

)
(5.4.12)

This draw ensures that the condition on block 2 y2,T+1 = ȳ2 holds. However, the first condition

y1,T+1 = ȳ1 may not hold anymore. Indeed compare row 1 in the right-hand sides of 5.4.11 with that

of 5.4.12: there is additional term −φ̃0,12η2,T+1− φ̃0,13η3,T+1 due to the impact of the subsequent draw
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of shocks for block 2. Hence, y1,T+1 = ȳ1 will not hold anymore (that is, row 1 in the right-hand side

of 5.4.11 will not be equal to 0 anymore), except if the additional term −φ̃0,12η2,T+1 − φ̃0,13η3,T+1 is

equal to 0. By chance, it turns out that this is true when the structural matrix D is lower triangular

(which is the case when D is identified by Choleski or triangular factorisation). Indeed, since Ψ̃0 = D

(see 4.2.14), then φ̃0,12 = φ̃0,13 = 0.

However, there is no necessity for the system to yield such a favourable result. Consider, as a

second example, the same setting, except that block 1 is now made of variable 1 with y1,T+1 = ȳ1,

generated by shock 3, while block 2 is made of variable 2 with y2,T+1 = ȳ2, generated by shocks 1

and 2. The linear system is again 5.4.10. Start by drawing the constructive shock η3,T+1 for block 1,

then transfer its effect on the right-hand side:

(
φ̃0,11 φ̃0,12 0

φ̃0,21 φ̃0,22 0

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1 − φ̃0,13η3,T+1

ȳ2 − ỹ2,T+1 − φ̃0,23η3,T+1

)
(5.4.13)

This guarantees that the condition for block 1 holds, so that row 1 in the right-hand side of

5.4.13 is equal to 0. Then, draw now the constructive shocks η1,T+1 and η2,T+1 for block 2 from the

Waggoner and Zha (1999) distribution using the updated system 5.4.13, and transfer their impact

on the right-hand side:

(
0 0 0

0 0 0

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1 − φ̃0,13η3,T+1 − φ̃0,11η1,T+1 − φ̃0,12η2,T+1

ȳ2 − ỹ2,T+1 − φ̃0,23η3,T+1 − φ̃0,21η1,T+1 − φ̃0,22η2,T+1

)
(5.4.14)

The condition on block 2 y2,T+1 = ȳ2 now holds, but the condition y1,T+1 = ȳ1 will not hold

anymore, except if −φ̃0,11η1,T+1− φ̃0,12η2,T+1 = 0. When the structural matrix D is lower triangular,

φ̃0,11 will not be equal to 0: if one naively implements algorithm 3.4.1, the first condition will not

hold: it is actually impossible to obtain conditional forecasts with this setting. The impossibility

here is due to the fact that the two blocks are conflicting, and that the structural matrix Ψ̃0 does

not correct for the conflict.

The third example is even worse: it shows that the system may fail even if there is only one block

and hence no possible issue of conflict between blocks. For example 3, consider again the same VAR

model, but consider now that there is only one condition on variable 1, y1,T+1 = ȳ1 , generated by

shock 2. The linear system is now:

ECB Working Paper 1934, July 2016 119



(
φ̃0,11 φ̃0,12 φ̃0,13

)η1,T+1

η2,T+1

η3,T+1

 =
(
ȳ1 − ỹ1,T+1

)
(5.4.15)

Applying algorithm 3.4.1, there are two non-constructive shocks, η1,T+1 and η3,T+1, so draw these

shocks and transfer their impacts to the right-hand side:

(
0 φ̃0,12 0

)η1,T+1

η2,T+1

η3,T+1

 =
(
ȳ1 − ỹ1,T+1 − φ̃0,11η1,T+1 − φ̃0,13η3,T+1

)
(5.4.16)

Now, one would like to draw the constructive shock η1,T+2 from the Waggoner and Zha (1999)

distribution, using the updated system (15.14). But with a conventional lower triangular structure

on D, this is not possible. The reason is that the matrix R in 5.4.16 is entirely made of zeros. Indeed,

Ψ̃0 = D , and since D is lower triangular, φ̃0,12 = 0 . In this case, the Waggoner and Zha (1999)

distribution is not even defined. Another way to see the issue is to say that whatever the value

selected for η1,T+2, since R is entirely made of zeros, the shock will have no impact on the system:

(
0 0 0

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1 − φ̃0,11η1,T+1 − φ̃0,13η3,T+1 − φ̃0,13η3,T+1︸ ︷︷ ︸

=0

)
(5.4.17)

Then there is no way to select a shock value η2,T+1 that will satisfy the condition. The impossibility

here is due to the fact that the impact φ̃0,12 on the shock η2,T+1 used to build the condition is null.

The general conclusion of these three examples is that there is no automatic guaranty for a condi-

tional forecast setting to be identified. In general, a particular setting for conditional forecasts will be

identified only if the design of shocks (constructive and non-constructive), blocks, and the structure

of are consistent. And since there exists no automatic verification procedure, there is no choice but

to verify the consistence of the setting manually before conditional forecasts are estimated.

Such verifications can be a hassle. Fortunately, there exist general conditions to identify settings

that will always fail, and settings that will always work. The list is not exhaustive however, and for

settings which do not comply with these categories, manual verification is still required. This is true

in particular for risks of conflicting blocks, for which preliminary verification remains pretty much

the only method available.
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Outline of conditions for conditional forecasts genetared by specific shocks Failure condi-

tions: these conditions describe settings that will always result in non-identification of the conditional

forecast.

1. There are more variables in a block than shocks generating their conditions. Example: block 2

is made of variables 2,3 and 4, and the conditions on these variables are generated by shocks

3 and 4 only (3 variables, only 2 shocks). Solution: blocks should have at least as may shocks

as variables. More shocks than variables is fine, but less is not possible. Proof : see Appendix

A.11 for an example.

2. The same shock generate conditions on different blocks. Example: block 1 is made of variables

1 and 2 whose conditions are generated by shocks 1 and 2; block 2 is generated by variable 3,

generated by shock 2 as well (shock 2 is shared by blocks 1 and 2).

Solution: different blocks should have different shocks.

Proof : see Appendix A.11 for an example.

3. For some block, the conditions on the variables are generated only by shocks further away in

the ordering than the variables, and is lower triangular. Example: variables 1 and 3 constitutes

block 1. Their conditions are generated by shock 4 and 5. D is defined by Choleski factorisation.

Solution: choose either shocks preceding the variables in the ordering, or the variable’s own

shocks. Proof : direct consequence of example 3.

Success condition: satisfying these conditions will ensure that conditional forecasts are well iden-

tified, conditional of course on the fact that no failure conditions are met.

1. There is only one block, and for all variables in this block, the conditions are generated by their

own shocks (and possibly other shocks); D is lower triangular. Example: Block 1 is the only

block, made by variables 1, 2 and 3, and the conditions are generated by shocks 1, 2 and 3. D

is defined by triangular factorisation. Proof : Because there is only block, no conflict between

blocks may arise. Because each variable is determined (at least) by its own shock, the impact

is given by φ̃0,11 , which is non-zero since D is lower triangular.

2. There are several blocks, but each block is identified by its own shocks. In addition, the order

of the blocks is consistent with the order of the variables, and D is lower triangular. Example:

Block 1 is made of variables 1 and 2, defined by shocks 1 and 2; block 2 is made of variable

4, defined by shock 4. Counter-example: Block 1 is made of variable 4, defined by shock 4;

block 2 is made of variables 1 and 2, defined by shocks 1 and 2; this will fail. Proof : Direct

consequence of example 1: conflicts between shocks avoided or not avoided thanks to the lower

triangular structure of D.
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Note finally that the general conditional forecast framework introduced in subsection 3.3 corre-

sponds to success condition 1 (there is only one block, in which the constraints are generated by

all the shocks). Therefore, it is guaranteed to be always well identified. Now that the framework

has been exhaustively developed, it is possible to introduce the Gibbs algorithm used for conditional

forecasts when conditions are generated by specific shocks:

Algorithm 3.4.2 (conditional forecasts generated by specific shocks, all priors):

1. Define the total number of iterations It−Bu of the algorithm, the forecast horizon h, and the

ν conditions: ȳ1, ȳ2, . . . , ȳν to be imposed on the series. For each forecast period, decide which

shocks generate which conditions (i.e., define the blocks). Check that conditional forecasts are

identified, either manually, or using the conditions above.

2. At iteration n, draw β(n), Σ(n), Dn, and Γ(n) (obtained from Σ(n)).

3. At iteration n, compute first the unconditional forecasts ỹT+1, ỹT+2, . . . , ỹT+h by iteratively

using 5.3.4, but excluding shocks.

4. For j = 1, 2 . . . , h, compute the impulse response function matrices Ψj and Ψ̃j from β(n), Σ(n)

and Dn.

5. Run algorithm 3.4.1 to identify the shocks that will satisfy the conditions.

6. Calculate the conditional forecasts, using 5.3.9 with the unconditional forecast values obtained

in step 3 and the constrained shocks obtained in step 4.

7. Repeat until It−Bu iterations are realised.

5.5 Relative entropy methodology - Tilting

The conditional forecast methodology developed by Waggoner and Zha (1999) produces what is

known as ”hard forecasts”: the conditions set by the user always hold exactly. This may however

not be very realistic: rather than an exact value, the researcher may want to obtain a distribution

centered at the condition value, with some variability allowed around this value. This is known

as ”soft forecast”. While Waggoner and Zha (1999) also propose a soft forecast methodology, it is

interesting here to go for an alternative approach proposed by Robertson et al. (2005), called the

relative entropy approach. This approach has two main advantages over the classical Waggoner

and Zha (1999) methodology. First, while the Waggoner and Zha (1999) method only allows the

user to set the condition value, or, in other words, the center of the predictive distribution, the

relative entropy method allows the user to determine any moment associated with the distribution,
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along with quantile values. Second, the central idea of the approach is to obtain a new predictive

distribution compliant with the condition that is as close as possible to the initial unconditional

forecast distribution. In this respect, the conditional forecasts obtained this way are as consistent as

possible with the initial distribution, which may not be the case with the Waggoner and Zha (1999)

approach.

The relative entropy methodology is now formally introduced. The presentation starts with the

general method, applicable to any random variable. It will then be straightforward to show how the

method adapts to the specific case of conditional forecasts. So, consider any random variable y, with

an associated density function f(y). Note that this random variable can be multivariate, in which

case y will be a vector. If y contains n variables, then:

y =


y1

y2

...

yn

 (5.5.1)

The analytical form of the density function f(y) may or may not be known, but it is assumed that

it is possible to sample from the distribution numerically, using computer applications. Therefore, it

is possible to obtain a series of N draws
{
y(i)
}N
i=1

on y, together with a series of weights (π1, π2, ...πN)

attributed to each draw. Naturally, when N draws are realized from a computer application, the

weights are just 1/N for all πi.

The idea underlying the relative entropy method is the following: imagine that there is some addi-

tional or new information available, which is not taken into account by the distribution f(y). Ideally,

if this information is relevant, one would like to account for it, but of course, that would result in

a new distribution, say f ∗(y), which would necessarily be different from f(y), as the latter ignores

this information. The fundamental problem is: how to recover f ∗(y)? Robertson et al. (2005) simply

notice that if one keeps the same draws
{
y(i)
}N
i=1

, but alters the weights attributed to them, (that is,

a new series of weights (π∗1, π
∗
2, ...π

∗
N) is now used for the draws), a modified, or ”tilted” distribution

will be obtained. The idea is then that it is possible to define those new weights (π∗1, π
∗
2, ...π

∗
N) so as

to obtain a distribution that will be compliant with the new information. An obvious issue is that

there may exist several (and potentially, an infinite number of) distributions compliant with this

information, and hence several possible sets of new weights (π∗1, π
∗
2, ...π

∗
N). However, for consistency

reasons, the new distribution should also be designed to be as close as possible to the original distri-

bution. From this principle, as will be detailed hereafter, a unique set of new weights (π∗1, π
∗
2, ...π

∗
N)

can be obtained.
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The technical aspects of the methodology are now considered. Assume thus that some new infor-

mation is available about the distribution of the random variable y, and that this information can

be expressed as the expectation of some function g(y) of the random variable y. Assume also that

this expectation is equal to some known value ḡ. That is, the information takes the form:

E (g(y)) =

∫ ∞
−∞

g(y)f ∗(y)dy = ḡ (5.5.2)

Note that the expectation is taken with respect to f ∗(y), the modified density, and not f(y), the

original density. In practice, because the analytical form of the density f ∗(y) may not be known, one

uses the equivalent approximation, based on a sample of draws from f ∗(y):

E (g(y)) =
N∑
i=1

g
(
y(i)
)
π∗i = ḡ (5.5.3)

While just any function g(y) is permitted, in practice one typically wants to use a function g(y)

that defines quantities which are relevant for a distribution such as moments or quantiles. These two

cases are now detailed.

Start with moments. To express the information that the rth moment of some yj ∈ y is equal to

x̄, define:

g(y) = (yj)
r and ḡ = x̄ (5.5.4)

This yields: ∫ ∞
−∞

(yj)
rf ∗(yj)dy = x̄ (5.5.5)

which is the definition of the rth moment. In practice, one uses:

N∑
i=1

(y
(i)
j )

r
π∗i = x̄ (5.5.6)

When r is equal to 1, one simply determines the mean of the distribution, and g(y) is trivially

defined as g(y) = yj. Note however that 5.5.3 can only define basic moments: central moments (like

the variance) cannot be directly obtained since g
(
y(i)
)

would then require the value E∗ (yj) which is

unknown.

The second principal object of interest for a distribution is quantiles. Defining quantiles can be

done easily. To generate the information that the αth quantile of yj is equal to x̄, define:
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g(y) = 1 (yj ≤ x̄) and ḡ = α (5.5.7)

where 1 (.) denotes the indicator function, which takes a value of 1 if the condition holds, and 0

otherwise. Then, 5.5.2 becomes: ∫ x̄

−∞
f ∗(yj)dyj = α (5.5.8)

This says that the distribution function of yj at x̄, F ∗(x̄), is equal to α , which is equivalent to

saying that x̄ is the αth quantile of yj. In practice, one uses:

y
(i)
j ≤x̄∑

π∗i = α (5.5.9)

Note that there can be several elements of information to integrate. If there exists L such pieces

of new information to integrate, then 5.5.3 becomes:

N∑
i=1

g1

(
y(i)
)
π∗i = ḡ1

N∑
i=1

g2

(
y(i)
)
π∗i = ḡ2

...
N∑
i=1

gL
(
y(i)
)
π∗i = ḡL

(5.5.10)

Once the functions g1(y), g2(y), ...., gL(y) and the values ḡ1, ḡ2, ...., ḡL are defined, the next step

in the procedure consists in determining how to derive the set of new weights (π∗1, π
∗
2, ...π

∗
N) that

will define the new distribution. This is done by noticing that the objective of the new weights is

twofold: first, they should result in a distribution satisfying the new information; and second, the new

distribution should be as close as possible to the original one. To achieve these objectives, Robertson

et al. (2005) use a criterion known as the Kullback-Leibler Information Criterion (or KLIC), which

represents a measure of the distance between the initial weights and the new weights. The criterion

is defined as:

K(π, π∗) =
N∑
i=1

π∗i log

(
π∗i
πi

)
(5.5.11)

The greater the value of K(π, π∗), the greater the overall distance between the series of initial weights

π and the series of new weights π∗, and the further the new distribution from the initial one. It is

now possible to formulate the problem completely: one wants to find a new set of weights π∗ that
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will minimize K(π, π∗) and satisfy the new information. Formally, the program is:

min
π∗

K(π, π∗) =
N∑
i=1

π∗i log

(
π∗i
πi

)
(5.5.12)

subject to the constraints:

π∗i ≥ 0 , ∀i = 1, 2, ..., N (5.5.13)

N∑
i=1

π∗i = 1 (5.5.14)

and

N∑
i=1

g1

(
y(i)
)
π∗i = ḡ1

N∑
i=1

g2

(
y(i)
)
π∗i = ḡ2

...
N∑
i=1

gL
(
y(i)
)
π∗i = ḡL

(5.5.15)

The first two conditions are justified by the fact that the weights represent probabilities, while

5.5.15 states that the new distribution must be compliant with the additional information. Using

the method of Lagrange, the solution can be written as:

π∗i =
πi exp

(
λ,g
(
y(i)
))

N∑
i=1

πi exp (λ,g (y(i)))

(5.5.16)

with

λ =


λ1

λ2

...

λL

 and g
(
y(i)
)

=


g1

(
y(i)
)

g2

(
y(i)
)

...

gL
(
y(i)
)

 (5.5.17)

and where λ denotes the L×1 vector of Lagrange multipliers associated with the constraints in 5.5.15

. It can then be shown that it is possible to obtain the values of λ as the solution of the following

minimization problem:
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λ = arg min
λ̃

N∑
i=1

πi exp
(
λ̃,
[
g
(
y(i)
)
− ḡ
])

(5.5.18)

with

ḡ =


ḡ1

ḡ2

...

ḡL

 (5.5.19)

Note that for numerical softwares, a reformulation of 5.5.16 and 5.5.18 may prove convenient.

Start with 5.5.18 :

N∑
i=1

πi exp
(
λ̃,
[
g
(
y(i)
)
− ḡ
])

=
N∑
i=1

πi exp
([
g
(
y(i)
)
− ḡ
],
λ̃
)

=
N∑
i=1

πi exp


[
g1

(
y(i)
)
− ḡ1 g2

(
y(i)
)
− ḡ2 · · · gL

(
y(i)
)
− ḡL

]

λ̃1

λ̃2

...

λ̃L




=
(
π1 π2 · · · πN

)
exp .




g1

(
y(1)
)
− ḡ1 g2

(
y(1)
)
− ḡ2 · · · gL

(
y(1)
)
− ḡL

g1

(
y(2)
)
− ḡ1 g2

(
y(2)
)
− ḡ2 · · · gL

(
y(2)
)
− ḡL

...
...

...

g1

(
y(N)

)
− ḡ1 g2

(
y(N)

)
− ḡ2 · · · gL

(
y(N)

)
− ḡL



λ̃1

λ̃2

...

λ̃L




= π, × exp .
{
Gλ̃
}

(5.5.20)

with:

π =


π1

π2

...

πN

 and G =


g1

(
y(1)
)
− ḡ1 g2

(
y(1)
)
− ḡ2 · · · gL

(
y(1)
)
− ḡL

g1

(
y(2)
)
− ḡ1 g2

(
y(2)
)
− ḡ2 · · · gL

(
y(2)
)
− ḡL

...
...

...

g1

(
y(N)

)
− ḡ1 g2

(
y(N)

)
− ḡ2 · · · gL

(
y(N)

)
− ḡL

 (5.5.21)

The notation ′′ exp .′′ expresses element-wise exponentiation. Proceed similarly for 5.5.16 :
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π∗i =
πi exp

(
λ,g
(
y(i)
))

N∑
i=1

πi exp (λ,g (y(i)))

=
πi exp

(
g
(
y(i)
),
λ
)

N∑
i=1

πi exp (g(y(i))
,
λ)

=


(
π1 π2 · · · πN

)
exp .




g1

(
y(1)
)

g2

(
y(1)
)
· · · gL

(
y(1)
)

g1

(
y(1)
)

g2

(
y(1)
)
· · · gL

(
y(1)
)

...
...

...

g1

(
y(1)
)

g2

(
y(1)
)
· · · gL

(
y(1)
)



λ1

λ2

...

λL





−1

× πi exp


[
g1

(
y(1)
)

g2

(
y(1)
)
· · · gL

(
y(1)
)]

λ1

λ2

...

λL




This implies:


π∗1

π∗2
...

π∗N

 =


(
π1 π2 · · · πN

)
exp .




g1

(
y(1)
)

g2

(
y(1)
)
· · · gL

(
y(1)
)

g1

(
y(2)
)

g2

(
y(2)
)
· · · gL

(
y(2)
)

...
...

...

g1

(
y(N)

)
g2

(
y(N)

)
· · · gL

(
y(N)

)



λ1

λ2

...

λL





−1

×


π1 0 · · · 0

0 π2 · · · 0
...

...
. . .

...

0 0 · · · πN

× .
exp .




g1

(
y(1)
)

g2

(
y(1)
)
· · · gL

(
y(1)
)

g1

(
y(2)
)

g2

(
y(2)
)
· · · gL

(
y(2)
)

...
...

...

g1

(
y(N)

)
g2

(
y(N)

)
· · · gL

(
y(N)

)



λ1

λ2

...

λL






or

π∗ = (π, × exp . {gλ})−1 × Iπ × (exp . {gλ}) (5.5.22)

with:
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π∗ =


π∗1

π∗2
...

π∗N

 , Iπ =


π1 0 · · · 0

0 π2 · · · 0
...

...
. . .

...

0 0 · · · πN

 and g =


g1

(
y(1)
)

g2

(
y(1)
)
· · · gL

(
y(1)
)

g1

(
y(2)
)

g2

(
y(2)
)
· · · gL

(
y(2)
)

...
...

...

g1

(
y(N)

)
g2

(
y(N)

)
· · · gL

(
y(N)

)

 (5.5.23)

The program then reduces to obtaining the vector of Lagrange multipliers λ by minimizing 5.5.20

, and recovering the vector of new weights π∗ from 5.5.22 .

Once π∗ is obtained, there still remains some work to do. Indeed the new weights are useful to

define the updated distribution. But in practical applications, what one wants to obtain is not the

new distribution itself, but rather a series of draws from this new distribution. To obtain those

draws, one has to sample from f(y) with weights π∗ rather than with weights π.

This can be done using the multinomial resampling algorithm of Gordon et al. (1993), which is now

introduced. The procedure is simple in essence: it amounts to noticing that the series of updated

weights π∗ = (π∗1, π
∗
2, ...π

∗
N) represent probabilities, and can thus be interpreted as the chance of

drawing a given value of
{
y(i)
}N
i=1

for each draw we want to realize. Let us say then that one wants

to obtain N∗ draws from the new distribution (setting N∗ > N helps to improve the precision of the

process). It is then possible to consider the drawing process as a multinomial experiment with N∗

independent draws, and probabilities π∗ = (π∗1, π
∗
2, ...π

∗
N) assigned to each draw. The methodology is

then straightforward:

Algorithm 3.5.1 (multinomial resampling algorithm):

1. Define the total number of draws N∗ to be realized from the new distribution, preferably with

N∗ > N .

2. Realise a draw d from the multinomial distribution: d =
(
d1 d2 · · · dN

),
∼ mn (N∗, π∗1, π

∗
2, ...π

∗
N)

This defines N integer values d1, d2, ..., dN , such that d1 + d2+. . . +dN = N∗.

3. Generate the new sample of size N∗ from the updated distribution by gathering d1 copies of

y(1), d2 copies of y(2), . . . , dN copies of y(N).

It is now possible to present a general algorithm implementing the full procedure.

Algorithm 3.5.2 (distribution tilting for a general random variable):
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1. Consider the random variable y, with an associated density function f(y), possibly unknown.

Obtain a sample of N draws
{
y(i)
}N
i=1

on y, together with a series of weights (π1, π2, ...πN)

attributed to each draw (typically: πi = 1/N for all i ).

2. Define the functions g1(y), g2(y), ..., gL(y) and the values ḡ1, ḡ2, ..., ḡL in order to integrate the

new information in the form of 5.5.10.

3. Build the vector π and the matrix G, defined in 5.5.21. Then, obtain the series of Lagrange

multipliers, from the minimization problem 5.5.18, reformulated as 5.5.20:

λ = arg min
λ̃

π, × exp .
{
Gλ̃
}

4. Build the matrices Iπ and g, defined in 5.5.23. Recover the vector of new weights π∗ from

5.5.22.

5. Obtain a sample of draws from the updated distribution by applying algorithm 3.5.1.

It is now possible to show how to adapt this procedure to the case of conditional forecasts.

Algorithm 2.1.1 in subsubsection 4.1 provides a way to obtain draws from the posterior predictive

distribution f(yT+1:T+h |yT ), that is, to obtain draws from the posterior distribution of unconditional

forecasts. For a model with n endogenous variable, a horizon of h forecast periods, and It − Bu

draws obtained from the Gibbs sampler algorithm, each draw y
(i)
T+1:T+h will be a vector of size nh× 1

:

y
(i)
T+1:T+h =



y
(i)
1,T+1

...

y
(i)
1,T+h

...

y
(i)
n,T+1

...

y
(i)
n,T+h



i = 1, 2, . . . , It−Bu (5.5.24)

As usual, each draw from the Gibbs sampler is given a weight πi = 1/(It − Bu) , for i =

1, 2, ..., It−Bu.

Now assume that one wants to conduct a conditional forecast exercise. In the tilting context, this

will amount to use the posterior distribution of unconditional forecasts, and tilt it in order to obtain

new distributions compliant with the conditions the user wants to set. The primary object of interest
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for conditional forecasts is the median (point estimate) value of the distribution. The second object

of interest are the lower and upper bounds of the confidence interval for this distribution: tight bands

around the median value reflect high certainty about the condition, while looser bands express low

confidence and allows for more variability. All these conditions are easily implemented by the way of

quantiles. For instance, assume that one wants to set the conditions that the posterior distribution

for the first variable at forecast horizon T + 2 will take a median value of x̄1 , and that the 95%

probability bands will take their lower and upper bounds at respectively x̄2 and x̄3. Then, using

5.5.3 and 5.5.9 , this set of conditions can be expressed as:

N∑
i=1

g1

(
y

(i)
1,T+2

)
π∗i = ḡ1 ⇒

y
(i)
1,T+2≤x̄1∑

π∗i = 0.5 , using g1(yT+1:T+h) = 1
(
y1,T+2 ≤ x̄1

)
and ḡ1 = 0.5

N∑
i=1

g2

(
y

(i)
1,T+2

)
π∗i = ḡ2 ⇒

y
(i)
1,T+2≤x̄2∑

π∗i = 0.025 , using g2(yT+1:T+h) = 1
(
y1,T+2 ≤ x̄2

)
and ḡ2 = 0.025

N∑
i=1

g3

(
y

(i)
1,T+2

)
π∗i = ḡ2 ⇒

y
(i)
1,T+2≤x̄3∑

π∗i = 0.975 , using g3(yT+1:T+h) = 1
(
y1,T+2 ≤ x̄3

)
and ḡ3 = 0.975

(5.5.25)

The same strategy can then be used for any condition on any variable of the model, at any

forecast horizon. The remaining steps in the process consists then in a direct application of the

general methodology. It is thus possible to obtain the following algorithm:

Algorithm 3.5.3 (computation of conditional forecasts with relative entropy):

1. Using the Gibbs sampler, obtain a series of (It − Bu) draws from the posterior predictive

distribution: y
(1)
T+1:T+h, y

(2)
T+1:T+h, ..., y

(It−Bu)
T+1:T+h. Define the weights πi associated to these draws,

typically πi = 1/(It−Bu) for all i .

2. Define the conditions to be set on forecast values. Generate the series of functions g1(yT+1:T+h), g2(yT+1:T+h), ..., gL(yT+1:T+h),

along with the series of values ḡ1, ḡ2, ..., ḡL, to expresses the conditions in the form of 5.5.25.

3. Build the vector π and the matrix G , defined in 5.5.21. Then, obtain the series of Lagrange

multipliers, from the minimization problem5.5.18, reformulated as 5.5.20 :

λ = arg min
λ̃

π, × exp .
{
Gλ̃
}

4. Build the matrices Iπ and g, defined in 5.5.25. Recover the vector of new weights π∗ from 5.5.22

.
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5. Obtain a sample of draws from the conditional forecast distribution by applying algorithm

3.5.1.

5.6 Mean-adjusted VAR models

The main advantage of Bayesian modelling consists in integrating prior information into the model,

allowing the final estimates to reflect (partly) the belief of the researcher about which values the

parameters should take. Yet, if Bayesian VAR models traditionally integrate prior information about

the dynamic coefficients (see the work of Litterman (1986) and subsubsection 3.3), they remain most

of the time uninformative on the deterministic components, in particular constant terms. In typical

applications, deterministic terms are given a prior mean of 0 associated with a very large variance

in order to obtain a diffuse prior distribution. This way, the posterior values entirely stem from the

information contained in the data.

This approach presents two disadvantages, which both result from the fact that the long-run, or

steady-state value of a VAR model depends on the deterministic coefficients. The first drawback

is that if the researcher actually has some knowledge about the long run values of the model, not

integrating these values into the model generates a loss of relevant prior information. The second

disadvantage of not integrating this information into the model is that the deterministic coefficients

and, hence, the steady-state will be entirely determined by the data. This may result in long term

forecast grossly at odds with the prior opinion of the researcher.

To overcome this issue, Villani (2009)proposes a reformulation of the classical Bayesian VAR

model allowing for explicit inclusion of prior information about steady-state values. To see this, start

from the conventional VAR model 3.1.2:

yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + Cxt + εt, where t = 1, 2, ..., T (5.6.1)

From 4.3.9, this model may rewrite as:

yt = A(L)−1Cxt + Ψ0εt + Ψ1εt−1 + Ψ2εt−2... (5.6.2)

with A(L) = I − A1L − A2L
2 . . . ApL

p the matrix lag polynomial representation of 5.6.1. This

is the usual VAR model, or VAR model on standard form. Villani (2009) proposes an alternative

representation:

A(L)(yt − Fxt) = εt (5.6.3)

This representation is known as a VAR model on mean-adjusted form. In this representation,
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A(L) is a lag polynomial similar to that in model 5.6.2. The pmatrices A1, A2, . . . , Ap are of dimension

n × n . In addition, F is a n ×m matrix of coefficients with respect to the m exogenous variables.

This structure implies that each equation comprises k1 = np coefficients to estimate with respect to

yt, and m coefficients with respect to xt, leaving a total of q2 = nk1 = n2p coefficients to estimate

for the full model with respect to yt, and q2 = nm coefficients with respect to xt.

The advantage of model 5.6.3 is clear in terms of long-term or steady-state values: taking expec-

tations on both sides and rearranging, one obtains:

E(yt) = Fxt (5.6.4)

That is, the long-run value of the VAR is simply the deterministic of exogenous component of

the model. This representation is particularly convenient when the exogenous components comprise

only constant terms, since then Fxt reduces to a vector of constants, say µ, so that E(yt) = µ. In

other words, the steady-state values for the data are just the constants in µ. This is in contrast

with model 5.6.2, where C does not represent the long-term values, and has no direct interpretation.

Hence, if the researcher has at his disposal information about the long run values for the model, this

information can be integrated directly into the model through the prior mean of µ.

The main inconvenient of model 5.6.3, however, it that it is intractable as it is. While the variable

of interest in the model is yt, 5.6.3 is expressed as a complicated and non-linear function of it, so

that yt cannot be calculated directly. It is thus necessary to convert first the mean-adjusted model

into a tractable standard form, which fortunately can be done easily. To do so, start from 5.6.3 and

rearrange:

A(L)(yt − Fxt)− εt
⇔ A(L)yt − A(L)Fxt = εt

⇔ A(L)yt = A(L)Fxt = εt

⇔ yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + A(L)Fxt + εt

⇔ yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + Fxt − A1Fxt−1 · · · − ApFxt−p + εt (5.6.5)

5.6.5 shows that a mean-adjusted VAR is simply a VAR in standard form integrating additional

lagged values of exogenous variables in its deterministic component. In this modified model, there are

still k1 and q1 parameters to estimate for yt, but now the model comprises k3 = m(p+ 1) coefficients

in each equation with respect to xt, and thus q3 = nk3 = nm(p+ 1) coefficients in total.
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Actually, one can go further and convert 5.6.5 into more convenient matrix forms equivalent to

3.1.7 and 3.1.12. First, rewrite 5.6.5 in transpose form:

y
′

t = y
′

t−1A
′

1 + y
′

t−2A
′

2 · · ·+ y
′

t−pA
′

p + x
′

tF
′ − x′t−1F

′
A
′

1 − · · · − x
′

t−pF
′
A
′

p + ε
′

(5.6.6)

Then stack observations:


y
′
1

y
′
2
...

y
′
T


︸ ︷︷ ︸
T×n

=


y
′
0

y
′
1
...

y
′
T−1


︸ ︷︷ ︸

T×n

A
′

1︸︷︷︸
n×n

+


y
′
−1

y
′
0
...

y
′
T−2


︸ ︷︷ ︸

T×n

A
′

2︸︷︷︸
n×n

+ · · ·+


y
′
1−p

y
′
2−p
...

y
′
T−p


︸ ︷︷ ︸

T×n

A
′

p︸︷︷︸
n×n

+


x
′
1

x
′
2
...

x
′
T


︸ ︷︷ ︸
T×m

F
′︸︷︷︸

m×n

−


x
′
0

x
′
1
...

x
′
T−1


︸ ︷︷ ︸

T×m

F
′
A
′

1︸ ︷︷ ︸
m×n

− · · · −


x
′
1−p

x
′
2−p
...

x
′
T−p


︸ ︷︷ ︸

T×m

F
′
A
′

p︸ ︷︷ ︸
m×n

+


ε
′
1

ε
′
2
...

ε
′
T


︸ ︷︷ ︸
T×n

(5.6.7)

Gather the regressors into matrices to obtain:


y
′
1

y
′
2
...

y
′
T


︸ ︷︷ ︸
T×n

=


y
′
0 y

′
−1 . . . y

′
1−p

y
′
1 y

′
0 . . . y

′
2−p

...
...

. . .
...

y
′
T−1 y

′
T−2 . . . y

′
T−p


︸ ︷︷ ︸

T×k1


A
′
1

A
′
2

...

A
′
p


︸ ︷︷ ︸
k1×n

+


x
′
1 −x′0 . . . −x′1−p
x
′
2 −x′1 . . . −x′2−p
...

...
. . .

...

x
′
T −x′T−1 . . . −x′T−p


︸ ︷︷ ︸

T×k1


F
′

F
′
A
′
1

...

F
′
A
′
p


︸ ︷︷ ︸

k3×n

+


ε
′
1

ε
′
2
...

ε
′
T


︸ ︷︷ ︸
T×n

(5.6.8)

Or, in compact notation:

Y = XB + Z∆ + E (5.6.9)

with
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Y =


y
′
1

y
′
2
...

y
′
T

 , X =


y
′
0 y

′
−1 . . . y

′
1−p

y
′
1 y

′
0 . . . y

′
2−p

...
...

. . .
...

y
′
T−1 y

′
T−2 . . . y

′
T−p

 , Z =


x
′
1 −x′0 . . . −x′1−p
x
′
2 −x′1 . . . −x′2−p
...

...
. . .

...

x
′
T −x′T−1 . . . −x′T−p



B =


A
′
1

A
′
2

...

A
′
p

 , ∆ =


F
′

F
′
A
′
1

...

F
′
A
′
p

 , E =


ε
′
1

ε
′
2
...

ε
′
T

 (5.6.10)

Vectorising 5.6.8, the model eventually rewrites:



y1,1

...

y1,T

...

yn,1
...

yn,T


︸ ︷︷ ︸
nT×1

=



y
′
0 y

′
−1 . . . y

′
1−p 0 . . . 0

y
′
1 y

′
0 . . . y

′
2−p . . .

...
...

. . .
...

...

y
′
T−1 y

′
T−2 . . . y

′
T−p 0 . . . 0

0 . . . . . . 0 y
′
0 y

′
−1 . . . y

′
1−p

... . . . . . . y
′
1 y

′
0 . . . y

′
2−p

... . . .
...

...
...

0 . . . . . . 0 y
′
T−1 y

′
T−2 . . . y

′
T−p


︸ ︷︷ ︸

T×k1



A
(1)
1
...

A
(1)
p

...

A
(n)
1
...

A
(n)
p


︸ ︷︷ ︸
k1×n

x
′
0 x

′
−1 . . . x

′
1−p 0 . . . 0

x
′
1 x

′
0 . . . x

′
2−p . . .

...
...

. . .
...

...

x
′
T−1 x

′
T−2 . . . x

′
T−p 0 . . . 0

0 . . . . . . 0 x
′
0 y

′
−1 . . . x

′
1−p

... . . . . . . x
′
1 x

′
0 . . . x

′
2−p

... . . .
...

...
...

0 . . . . . . 0 x
′
T−1 x

′
T−2 . . . x

′
T−p


︸ ︷︷ ︸

T×k1



F (1)

...

(FAp)
(1)

...

F (n)

...

(FAp)
(n)


︸ ︷︷ ︸

q2×1

+



ε1,1

...

ε1,T

...

εn,1
...

εn,T


︸ ︷︷ ︸
nT×1

(5.6.11)

And 5.6.11 reformulates compactly as:

y = X̄β + Z̄∆ + ε (5.6.12)
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with:

y = vec(Y ), X̄ = In ⊗X, Z̄ = In ⊗ Z, β = vec(B), δ = vec(∆), and ε = vec(E) (5.6.13)

In practical applications, it is either the form 5.6.9 or the form 5.6.12 which will be used, rather

than 5.6.3. A decomposition which proves useful to recover ∆ in 5.6.12 is the following:

vec(∆
′
) = vec(F A1F . . . ApF ) =


Inm

Im ⊗ A1

...

Im ⊗ Ap

 vec(F ) = Uψ (5.6.14)

with:

U =


Inm

Im ⊗ A1

...

Im ⊗ Ap

 (5.6.15)

and

ψ = vec(F ) (5.6.16)

and where A.1.5 was used to obtain the third term.

It remains yet to determine how to estimate mean-adjusted model 5.6.3 with Bayesian methods.

Villani (2009) only provides derivation in the case of the normal-diffuse prior distribution, so the

incoming analysis will be restricted to this case. Note first that there are now three blocks to

estimate, and not two anymore: β, defined in 5.6.12, which corresponds to the endogenous variables

yt ; ψ, defined in 5.6.16, which corresponds to the exogenous variables xt; and Σ , the usual residual

variance-covariance matrix.

The prior distributions for these parameters are as follows:

β ∼ N (β0,Ω0) (5.6.17)

π(Σ) ∝ |Σ|−(n+1)/2 (5.6.18)

ψ(Σ) ∼ N (ψ0,Λ0) (5.6.19)
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In practice, the prior parameters β0 and Ω0 are set just as for the Minnesota prior. For ψ, the

prior is a bit more complicated. Setting a flat prior on ψ as would be the case for the exogenous

variables in a Minnesota scheme is not possible, for two reasons. The first reason is that the very

purpose of a mean-adjusted VAR is to explicitly integrate prior information about the exogenous

variables into the estimation process. If no such information is available, or is lost anyway in a flat

prior, there is no point into using a mean-adjusted model. The second reason is technical: Villani

(2009) shows that when an uninformative prior is used for exogenous variables, the Gibbs sampler

may behave badly and generate draws for ψ that are remote from the actual posterior. To avoid

this, a prior that is at least moderately informative is required. The simplest solution is then for the

researcher to specify a (subjective) 95% probability interval for the prior values, and to calculate the

prior mean and variance retrospectively from this interval.

Turn now to the derivation of the posterior distribution. Similarly to the normal-diffuse prior,

there exist no analytical posterior distributions for β,Σ and ψ. It is however possible to derive

conditional posterior distributions, and integrate them to the usual Gibbs sampler process.

To derive the posterior distribution, define first the demeaned data vector ŷt as :

ŷt = yt − Fxt (5.6.20)

Then, the mean-adjusted model 5.6.3 may rewrite as:

A(L)ŷt = εt (5.6.21)

Villani (2009) then remarks that 5.6.21 is just a standard form VAR for ŷt = yt−Fxt . Therefore,

conditional on F (that is, on ψ ), the conditional posterior distributions for β and Σ are simply those

obtained with a normal-diffuse prior. Therefore, the conditional posteriors are similar to 3.6.7 and

3.6.9 and given by:

π(β|Σ, ψ, y) ∼ N (β̄, Ω̄) (5.6.22)

with

Ω̄ = [Ω−1
0 + Σ−1 ⊗ X̂ ′X̂]−1 (5.6.23)

and

β̄ = [Ω−1
0 β0 + (Σ−1 ⊗ X̂ ′)ŷ] (5.6.24)

where X̂ and ŷ are defined as X and y in 5.6.10 and 5.6.13, using ŷt rather than yt.
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π(Σ|β, ψ, y) ∼ IW(S̃, T ) (5.6.25)

with

S̃ = (Ŷ − X̂B)′(Ŷ − X̂B) (5.6.26)

where Ŷ is defined in accordance with 5.6.10, using ŷt rather than yt.

Deriving the posterior distribution of ψ is more complex, but Villani (2009) shows (See Appendix

A. in Villani (2005) for a complete derivation) that it is given by:

π(ψ|β,Σ, y) ∼ N (ψ̄, Λ̄) (5.6.27)

with

Λ̄ = [Λ−1
0 + U

′
(Z
′
Z ⊗ Σ−1)U ]−1 (5.6.28)

and

ψ̄ = Λ̄[Λ−1
0 ψ0 + U

′
vec(Σ−1(Y −XB)

′
Z)] (5.6.29)

With these values, it is now possible to introduce the Gibbs algorithm used to estimate a mean-

adjusted VAR:

Algorithm 3.5.1 (Gibbs algorithm for mean-adjusted VAR, normal-diffuse prior)

1. Define the number of iterations It of the algorithm, and the burn-in sample Bu .

2. Define initial values β(0), B(0) and Σ(0) for the algorithm. Obtain the initial value for U from

β(0).

3. At iteration n , draw ψ(n) conditional on β(n−1) and Σ(n−1). Draw ψ(n) from a multivariate

normal with mean ψ̄ and covariance matrix Λ̄:

π(ψ|β(n−1)Σ(n−1), y) ∼ N (ψ̄, Λ̄)

with

Λ̄ = [Λ−1
0 + U

′
(Z
′
Z ⊗ Σ−1

(n−1))U ]−1

and

ψ̄ = Λ̄[Λ−1
0 ψ0 + U

′
vec(Σ−1

(n−1)(Y −XB
′

(n−1))Z)]

Reshape ψ(n) to obtain F(n) .

4. use F(n) to obtain Ŷ , X̂ and ŷ.
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5. Draw the value Σ(n), conditional on B(n−1) and ψ(n). Draw Σ(n) from an inverse Wishart

distribution with scale matrix S̃ and degrees of freedom T :

π(Σ(n)|B(n−1), ψ(n), y) ∼ IW(S̃, T )

with:

S̃ = (Ŷ − X̂B(n−1))
′
(Ŷ − X̂B(n−1))

6. Finally, draw β(n) conditional on Σ(n) and ψ(n), and reshape into B(n). Draw β(n) from a

multivariate normal with mean β̄ and covariance matrix Ω̄:

π(β(n)|Σ,(n) ψ(n), y) ∼ N (β̄, Ω̄)

with Ω̄ = [Ω−1
0 + Σ−1

(n) ⊗ X̂
′
X̂]−1

and

β̄ = [Ω−1
0 β0 + (Σ−1

(n) ⊗ X̂
′
)ŷ]

Update U from B(n).

7. Repeat until It iterations are realized, then discard the first Bu iterations.
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6 Bayesian Panel VARs

6.1 Panel VAR models

VAR models are convenient tools to analyse the economic dynamics of economic entities such as

countries, financial markets, trade areas or monetary unions. However, it may sometimes be desir-

able to push the analysis further and study the dynamic interactions of several entities at a time,

rather than limit the analysis to a single entity. For instance, one may want to study the interactions

existing between several countries (for instance, several Euro area countries, as they are characterised

by the same monetary policy, or several emerging Asian economies if they trade intensively). In this

case, the specific class of VAR models constituted by the panel VAR models, which considers the

dynamics of several entities considered in parallel, are appropriate. These models are typically richer

than simple VAR models because they do not only consider naively the interaction between variables

as would a normal VAR model do, but they also add a cross-subsectional structure to the model.

This allows to separate components which are common from components which are specific, be it

in terms of countries, variables, time periods and so on, and then use this structural information to

improve the quality of the estimation.

The terminology of Panel VAR models is now introduced. The approach followed in this subsec-

tion and the incoming ones owes much to Canova and Ciccarelli (2013), and additional references

can be found in this survey paper. Formally, a panel VAR model comprises N entities or “units”,

which can be countries, economic sectors or industries, firms, and so on. As for a standard VAR,

each unit includes n endogenous variables, and p lags, defined over T periods. Only balanced panels

are considered, that is, panels for which the n variables are the same for each units, and defined over

the same T time periods. The model also includes m exogenous variables, assumed to be common

across units.

In its most general form, the panel VAR model for unit i (with i = 1, 2, . . . , N) writes as:

yi,t =
N∑
j=1

p∑
k=1

Akij,tyj,t−k + Ci,txt + εi,t

= A1
i1,ty1,t−1 + . . .+ Api1,ty1,t−p

+A1
i2,ty2,t−1 + . . .+ Api2,ty2,t−p

+ . . .

+A1
iN,tyN,t−1 + . . .+ ApiN,tyN,t−p

+Ci,txt + εi,t (6.1.1)
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with: yi,t =


yi1,t

yi2,t
...

yin,t


︸ ︷︷ ︸

n×1

Akij,t =


akij,11,t akij,12,t · · · akij,1n,t

akij,21,t akij,22,t · · · akij,2n,t
...

...
. . .

...

akij,n1,t akij,n2,t · · · akij,nn,t


︸ ︷︷ ︸

n×n

Ci,t =


ci1,1,t ci1,2,t · · · ci1,m,t

ci2,1,t ci2,2,t · · · ci2,m,t
...

...
. . .

...

cin,1,t cin,2,t · · · cin,m,t


︸ ︷︷ ︸

n×m

xt =


x1,t

x2,t

...

xm,t


︸ ︷︷ ︸

m×1

εi,t =


εi1,t

εi2,t
...

εin,t


︸ ︷︷ ︸

n×1

(6.1.2)

yi,t denotes a n× 1 vector comprising the n endogenous variables of unit i at time t, while yij,t is the

jth endogenous variables of unit i. Akij,t is a n × n matrix of coefficients providing the response of

unit i to the kth lag of unit j at period t. For matrix Akij,t, the coefficient akij,lm,t gives the response of

variable l of unit i to the kth lag of variable m of unit j. xt is the m×1 vector of exogenous variables,

and Ci,t is the n × m matrix relating the endogenous variables to these exogenous variables. For

Ci,t, the coefficient cij,l,t gives the response of endogenous variable j of unit i to the lth exogenous

variable. Finally, εi,t denotes a n× 1 vector of residuals for the variables of unit i, with the following

properties:

εi,t ∼ N (0,Σii,t) (6.1.3)

with:

Σii,t = E(εi,tε
,
i,t) = E


εi,1,t

εi,2,t
...

εi,n,t


(
ε,i,1,t ε,i,2,t · · · ε,i,n,t

)
=


σii,11,t σii,12,t · · · σii,1n,t

σii,21,t σii,22,t · · · σii,2n,t
...

...
. . .

...

σii,n1,t σii,n2,t · · · σii,nn,t


︸ ︷︷ ︸

n×n

(6.1.4)

εi,t is assumed to be non-autocorrelated, so that E(εi,tε
,
i,t) = Σii,t, while E(εi,tε

,
i,s) = 0 when t 6= s.

Note that in this general setting the variance-covariance matrix for the VAR residuals is allowed to

be period-specific, which implies a general form of heteroskedasticity.

For each variable in unit i, the dynamic equation at period t contains a total of k = Nnp + m
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coefficients to estimate, implying q = n(Nnp+m) coefficients to estimate for the whole unit. Stack-

ing over the N units, the model reformulates as:

yt =

p∑
k=1

Akt yt−k + Ctxt + εt

= A1
tyt−1 + . . .+ Aptyt−p + Ctxt + εt (6.1.5)

or: 
y1,t

y2,t

...

yN,t

 =


A1

11,t A1
12,t · · · A1

1N,t

A1
21,t A1

22,t · · · A1
2N,t

...
...

. . .
...

A1
N1,t A1

N2,t · · · A1
NN,t



y1,t−1

y2,t−1

...

yN,t−1

+ · · ·

+


Ap11,t Ap12,t · · · Ap1N,t
Ap21,t Ap22,t · · · Ap2N,t

...
...

. . .
...

ApN1,t ApN2,t · · · ApNN,t



y1,t−p

y2,t−p
...

yN,t−p

+


C1,t

C2,t

...

CN,t

xt +


ε1,t

ε2,t

...

εN,t

 (6.1.6)

with:

yt =


y1,t−p

y2,t−p
...

yN,t−p


︸ ︷︷ ︸

Nn×1

Akt =


Ak11,t Ak12,t · · · Ak1N,t
Ak21,t Ak22,t · · · Ak2N,t

...
...

. . .
...

AkN1,t AkN2,t · · · AkNN,t


︸ ︷︷ ︸

Nn×Nn

Ct =


C1,t

C2,t

...

CN,t


︸ ︷︷ ︸
Nn×m

εt =


ε1,t

ε2,t

...

εN,t


︸ ︷︷ ︸
Nn×1

(6.1.7)

The vector of residuals εt has the following properties:

εt ∼ N (0,Σt) (6.1.8)

with:
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Σt = E(εtε
,
t) = E


ε1,t

ε2,t

...

εN,t


(
ε,1,t ε,2,t · · · ε,N,t

)
=


Σ11,t Σ12,t · · · Σ1N,t

Σ21,t Σ22,t · · · Σ2N,t

...
...

. . .
...

ΣN1,t ΣN2,t · · · ΣNN,t


︸ ︷︷ ︸

Nn×Nn

(6.1.9)

The assumption of absence of autocorrelation is then extended to the whole model: E(εtε
,
t) = Σt

while E(εtε
,
s) = 0 when t 6= s. Formulation (6.1.6) of the model now implies that there are

h = Nq = Nn(Nnp+m) coefficients to estimate.

This is the most general form of the panel VAR model. Under this form, it is characterised by

four properties:

1. Dynamic interdependencies: the dynamic behaviour of each unit is determined by lagged val-

ues of itself, but also by lagged values of all the other endogenous variables of all other units. In

other words, Akij,t 6= 0 when i 6= j.

2. Static interdependencies: the εi,t are allowed to be correlated across units. That is, in gen-

eral, Σij,t 6= 0 when i 6= j.

3. Cross-subsectional heterogeneity: the VAR coefficients and residual variances are allowed to

be unit-specific. In other words, Alik,t 6= Aljk,t, Ci,t 6= Cj,t and Σii,t 6= Σjj,t when i 6= j.

4. Dynamic heterogeneity: the VAR coefficients and the residual variance-covariance matrix are

allowed to be period-specific. In other words, Akij,t 6= Akij,s and Σij,t 6= Σij,s when t 6= s.

In practice, this general form may be too complex to produce accurate estimates. As it consumes

many degrees of freedom, if one has legitimate reasons to assume that some of the properties will

not hold, better estimates can be obtained by relaxing them and opt for less degrees-of-freedom

consuming procedures. For instance, if one considers a group of countries that are very homogenous

and tend to react in a similar way to structural economic shocks, it may be reasonable to relax

property 3. For the sake of convenience, the incoming developments will thus present the models by

increasing order of complexity, from the simplest one (all properties relaxed) to the most complex

one (all properties satisfied).

Example
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Before turning to the different estimation methodologies, it may be useful to provide a simple ex-

ample. Assume a panel VAR model with 2 units so that N = 2, 2 endogenous variables per unit so

that n = 2, one common exogenous variable so that m = 1, and p = 1 lag. This implies that for

each period, every individual equation comprises k = Nnp + m = 2 × 2 × 1 + 1 = 5 coefficients to

estimate. Each unit then implies q = n(Nnp+m) = 2× (2× 2× 1 + 1) = 2× 5 = 10 coefficients to

estimate, and the full model comprises h = Nk = 2× 10 = 20 coefficients.

This gives the following model in the form of (6.1.1):(
y11,t

y12,t

)
=

(
a1

11,11,t a1
11,12,t

a1
12,11,t a1

12,12,t

)(
y11,t−1

y12,t−1

)
+

(
a1

11,21,t a1
11,22,t

a1
12,21,t a1

12,22,t

)(
y21,t−1

y22,t−1

)
+

(
c11,1,t

c12,1,t

)(
x1,t

)
+

(
ε11,t

ε12,t

)
(
y21,t

y22,t

)
=

(
a1

21,11,t a1
21,12,t

a1
22,11,t a1

22,12,t

)(
y11,t−1

y12,t−1

)
+

(
a1

21,21,t a1
21,22,t

a1
22,21,t a1

22,22,t

)(
y21,t−1

y22,t−1

)
+

(
c21,1,t

c22,1,t

)(
x1,t

)
+

(
ε21,t

ε22,t

)

And the residuals are characterised by the following variance-covariance matrices:

Σ11,t =

(
σ11,11,t σ11,12,t

σ11,21,t σ11,22,t

)
and Σ22,t =

(
σ22,11,t σ22,12,t

σ22,21,t σ22,22,t

)

The full model, under the form (6.1.5) is given by:
y11,t

y12,t

y21,t

y22,t

 =


a1

11,11,t a1
11,12,t a1

11,21,t a1
11,22,t

a1
12,11,t a1

12,12,t a1
12,21,t a1

12,22,t

a1
21,11,t a1

21,12,t a1
21,21,t a1

21,22,t

a1
22,11,t a1

22,12,t a1
22,21,t a1

22,22,t



y11,t−1

y12,t−1

y21,t−1

y22,t−1

+


c11,1,t

c12,1,t

c21,1,t

c22,1,t


(
x1,t

)
+


ε11,t

ε12,t

ε21,t

ε22,t


And (6.1.9) yields:

Σt =


σ11,11,t σ11,12,t σ12,11,t σ12,12,t

σ11,21,t σ11,22,t σ12,21,t σ12,22,t

σ21,11,t σ21,12,t σ22,11,t σ22,12,t

σ21,21,t σ21,22,t σ22,21,t σ22,22,t



6.2 A preliminary OLS model: the mean-group estimator

A standard way to estimate panel VAR models in a non-Bayesian way is to use the so-called mean-

group estimator described in Pesaran and Smith (1995). These authors show that in a standard

maximum likelihood framework, this estimation technique yields consistent estimates. By contrast,
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other classical estimators such as the pooled estimators, aggregate estimators and cross-subsection

estimators are either inconsistent (for the pooled and aggregate estimators), or consistent only un-

der certain conditions (for the cross-subsection estimator). This makes the mean-group estimator

preferable to most conventional estimators. It is fairly straightforward to integrate the Pesaran and

Smith methodology into the general panel VAR framework developed so far.

In the Pesaran and Smith framework, it is assumed that the N units of the model are charac-

terised by heterogenous VAR coefficients, but that these coefficients are random processes sharing a

common mean. Therefore, the parameters of interest are the average, or mean effects of the group.

If the same assumption is formed about the residual variance-covariance matrix, namely that it is

heterogenous across units but is characterised by a common mean, then a single and homogenous

VAR model is estimated for all the units. Hence, in this model, the four panel properties are relaxed.

Start from the general formulation (6.1.6). Given these assumptions, one obtains:
y1,t

y2,t

...

yN,t

 =


A1

1 0 · · · 0

0 A1
2 · · · 0

...
...

. . .
...

0 0 · · · A1
N



y1,t−1

y2,t−1

...

yN,t−1

+ · · ·

+


Ap1 0 · · · 0

0 Ap2 · · · 0
...

...
. . .

...

0 0 · · · ApN



y1,t−p

y2,t−p
...

yN,t−p

+


C1,t

C2,t

...

CN,t

xt +


ε1,t

ε2,t

...

εN,t

 (6.2.1)

and 
Σ1 0 · · · 0

0 Σ2 · · · 0
...

...
. . .

...

0 0 · · · ΣN

 (6.2.2)

Because each unit only responds to itself, the double subscripts ii in Alii and Σii can be dropped

without ambiguity in favour of Ali and Σi. Consider individual unit i. From (6.2.1), one obtains:

yi,t = A1
i yi,t−1 + · · ·+ Api yi,t−p + Cixt + εi,t (6.2.3)

with:

εi,t ∼ N (0,Σi) (6.2.4)
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Transpose (6.2.3):

y,i,t = y,i,t−1(A1
i )
, + · · ·+ y,i,t−p(A

p
i )
, + x,tC

,
i + ε,i,t (6.2.5)

In compact form:

y,i,t =
(
y,i,t−1 · · · y,i,t−p x,t

)


(A1
i )
,

...

(Api )
,

C ,
i

+ ε,i,t (6.2.6)

Stack over the T sample periods:
y,i,1
y,i,2
...

y,i,T

 =


y,i,0 · · · y,i,1−p x,1

y,i,1 · · · y,i,2−p x,2
...

. . .
...

...

y,i,T−1 · · · y,i,T−p x,T




(A1
i )
,

...

(Api )
,

C ,
i

+


ε,i,1
ε,i,2
...

ε,i,T

 (6.2.7)

or:

Yi = XiBi + Ei (6.2.8)

with:

Yi =


y,i,1
y,i,2
...

y,i,T


︸ ︷︷ ︸
T×n

Xi =


y,i,0 · · · y,i,1−p x,1

y,i,1 · · · y,i,2−p x,2
...

. . .
...

...

y,i,T−1 · · · y,i,T−p x,T


︸ ︷︷ ︸

T×(np+m)

Bi =


(A1

i )
,

...

(Api )
,

C ,
i


︸ ︷︷ ︸
(np+m)×n

Ei =


ε,i,1
ε,i,2
...

ε,i,T


︸ ︷︷ ︸
T×n

(6.2.9)

Using A.1.5 and A.1.9, the model (6.2.8) reformulates in vectorised form as:

vec(Yi) = (In ⊗Xi) vec(Bi) + vec(Ei) (6.2.10)
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or:

yi1,1

yi1,2
...

yi1,T
...

yin,1

yin,2
...

yin,T


︸ ︷︷ ︸
nT×1

=



y,i,0 · · · y,i,1−p x,1 0 · · · · · · 0

y,i,1 · · · y,i,2−p x,2
...

. . .
...

...
. . .

...
...

...
. . .

...

y,i,T−1 · · · y,i,T−p x,T 0 · · · · · · 0
. . .

0 · · · · · · 0 y,i,0 · · · y,i,1−p x,1
...

. . .
... y,i,1 · · · y,i,2−p x,2

...
. . .

...
...

. . .
...

...

0 · · · · · · 0 y,i,T−1 · · · y,i,T−p x,T


︸ ︷︷ ︸

nT×n(np+m)



A
1(1)
i
...

A
p(1)
i

C
(1)
i
...

A
1(n)
i
...

A
p(n)
i

C
(n)
i


︸ ︷︷ ︸
n(np+m)×1

+



εi,1,1

εi,1,2
...

εi,1,T
...

εi,n,1

εi,n,2
...

εi,n,T


︸ ︷︷ ︸

nT×1

(6.2.11)

where A
k(j)
i and C

(j)
i respectively denote the transpose of row j of matrix Aki and Ci. (6.2.10) makes

it clear that each unit comprises a total of q = n(np+m) coefficients to estimate. (6.2.10) rewrites:

yi = X̄iβi + εi (6.2.12)

with:

yi = vec(Yi)︸ ︷︷ ︸
nT×1

X̄i = (In ⊗Xi)︸ ︷︷ ︸
nT×q

βi = vec(Bi)︸ ︷︷ ︸
q×1

εi = vec(Ei)︸ ︷︷ ︸
nT×1

(6.2.13)

Also, from (6.2.4), it follows that:

εi ∼ N (0, Σ̄i) , Σ̄i = Σi ⊗ IT︸ ︷︷ ︸
nT×nT

(6.2.14)

Consider the VAR model written in the form (6.2.12). The mean-group estimator model assumes

that for each unit i, βi can be expressed as:

βi = b+ bi (6.2.15)

with b a k × 1 vector of parameters and bi ∼ N (0,Σb). (6.2.15) implies that the coefficients of the

VAR in different units will differ, but have similar means and variances. In the Pesaran and Smith

approach, the main parameter of interest is the average or mean effect b. To obtain it, Pesaran and

Smith propose the following strategy. First, obtain an estimate of βi for each unit by standard OLS.
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That is, obtain:

β̂i =
(
X̄ ,
iX̄i

)−1
X̄ ,
iyi (6.2.16)

As for the standard OLS VAR, it may be more efficient to obtain a similar estimator by using (6.2.8)

rather than (6.2.12). Then what is estimated is:

B̂i = (X ,
iXi)

−1X ,
iYi (6.2.17)

β̂i can then be obtained by vectorising B̂i. Once the estimator β̂i is obtained for all units, the

mean-group estimator for b in (6.2.15) is simply obtained from the following formula:

b̂ =
1

N

N∑
i=1

β̂i (6.2.18)

The standard error for the mean-group estimator is then given by:

Σ̂b =
1

N(N − 1)

N∑
i=1

(β̂i − b̂)(β̂i − b̂), (6.2.19)

A similar strategy is followed for the mean-group estimate of the residual variance-covariance matrix

Σ. For each unit i, an estimate of Σi is obtained from:

Σ̂i =
1

T − k − 1
E ,iEi (6.2.20)

And the mean group estimator then obtains from:

Σ̂ =
1

N

N∑
i=1

Σ̂i (6.2.21)

This concludes the subsection dedicated to OLS panel VAR models. The incoming subsections will

discuss panel VAR models from a Bayesian perspective only. Once again, treatement is done by

increasing order of complexity: from the simplest model (all properties relaxed) to the most complex

one (all properties satisfied).
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6.3 The simplest case: a pooled estimator (relaxing all the properties)

In the simplest case, all the properties are relaxed. The only panel feature in this model is that

the data set as a whole comes from multiple units. In this case, the estimator is simply a pooled

estimator. Start from (6.1.6). Relaxing properties 1, 2, 3 and 4, it rewrites:


y1,t

y2,t

...

yN,t

 =


A1 0 . . . 0

0 A1 . . . 0
...

...
. . .

...

0 0 . . . A1



y1,t−1

y2,t−1

...

yN,t−1

+ . . .

+


Ap 0 . . . 0

0 Ap . . . 0
...

...
. . .

...

0 0 . . . Ap



y1,t−p

y2,t−p
...

yN,t−p

+


C

C
...

C

xt +


ε1,t

ε2,t

...

εN,t

 (6.3.1)

where both units and time subscripts have been dropped from the Akij,t coefficient matrices since

the dynamic coefficients are homogenous across units, and coefficients are time-invariant. The zero

entries reflect the fact that each unit is determined only by its own variables, and is independent

from the other units. Also, relaxing property 2 and 3 implies that:

Σii,t = E(εi,tε
,
i,t) = Σc ∀i, while E(εi,tε

,
j,t) = 0, for i 6= j (6.3.2)

The c subscript in Σc emphasises the fact that that the value is both time invariant and common to

all units. Then, from (6.1.9):

Σt =


Σ11t Σ12t · · · Σ1Nt

Σ21t Σ22t · · · Σ2Nt
...

...
. . .

...

ΣN1t ΣN2t · · · ΣNNt

 =


Σc 0 · · · 0

0 Σc · · · 0
...

...
. . .

...

0 0 · · · Σc

 = IN ⊗ Σc (6.3.3)

ECB Working Paper 1934, July 2016 150



Suppressing the unnecessary zero entries in (6.3.1), it reformulates as:

y1,t = A1y1,t−1 + · · ·+ Apy1,t−p + Cxt + ε1,t

y2,t = A1y2,t−1 + · · ·+ Apy2,t−p + Cxt + ε2,t

...

yN,t = A1yN,t−1 + · · ·+ ApyN,t−p + Cxt + εN,t (6.3.4)

Take transposes:

y,1,t = y,1,t−1(A1), + · · ·+ y,1,t−p(A
p), + x,tC

, + ε,1,t

y,2,t = y,2,t−1(A1), + · · ·+ y,2,t−p(A
p), + x,tC

, + ε,2,t
...

y,N,t = y,N,t−1(A1), + · · ·+ y,N,t−p(A
p), + x,tC

, + ε,N,t (6.3.5)

Reformulated in compact form:
y,1,t

y,2,t
...

y,N,t


︸ ︷︷ ︸
N×n

=


y,1,t−1 · · · y,1,t−p x,t

y,2,t−1 · · · y,2,t−p x,t
...

. . .
...

...

y,N,t−1 · · · y,N,t−p x,t


︸ ︷︷ ︸

N×(np+m)


(A1),

...

(Ap),

C ,


︸ ︷︷ ︸
(np+m)×n

+


ε,1,t

ε,2,t
...

ε,N,t


︸ ︷︷ ︸
N×n

(6.3.6)

or:

Yt = XtB + Et (6.3.7)

with:

Yt =


y,1,t

y,2,t
...

y,N,t

 Xt =


y,1,t−1 · · · y,1,t−p x,t

y,2,t−1 · · · y,2,t−p x,t
...

. . .
...

...

y,N,t−1 · · · y,N,t−p x,t

 B =


(A1),

...

(Ap),

C ,

 Et =


ε,1,t

ε,2,t
...

ε,N,t

 (6.3.8)
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Stacking over the T time periods:
Y1

Y2

...

YT


︸ ︷︷ ︸
NT×n

=


X1

X2

...

XT


︸ ︷︷ ︸

NT×(np+m)

B︸︷︷︸
(np+m)×n

+


E1

E2

...

ET


︸ ︷︷ ︸
NT×n

(6.3.9)

or:

Y = XB + E (6.3.10)

As usual, using A.1.5 , it is possible to reformulate the model in vectorised form as:

vec(Y )︸ ︷︷ ︸
NnT×1

= (In ⊗X)︸ ︷︷ ︸
NnT×n(np+m)

vec(B)︸ ︷︷ ︸
n(np+m)×1

+ vec(E)︸ ︷︷ ︸
NnT×1

(6.3.11)

or:

y = X̄β + ε (6.3.12)

It also follows from (6.3.2) that:

ε ∼ N (0, Σ̄), with Σ̄ = Σc ⊗ INT (6.3.13)

This model is smaller in dimension than the general model. As a single VAR is estimated for the

whole set of units, each equation in the model only implies k = np + m coefficients to estimate,

implying h = q = n(np+m) coefficients to estimate at the unit scale (and thus for the entire model).

In this model, there are two object of interest to identify: B, defined in (6.3.7) (or its vectorised

equivalent in (6.3.12)), and Σc, defined in (6.3.2).

Obtaining a Bayesian estimator for the pooled model

In essence, the model described by (6.3.10) and (6.3.12) is just a conventional VAR model. As

such, standard estimation techniques for the derivation of the posterior apply. Here, a traditional

normal-Wishart identification strategy is adopted.
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Start by the likelihood function. Given (6.3.12) and (6.3.13), it is given by:

f(y
∣∣Σ̄) ∝

∣∣Σ̄∣∣−1/2
exp

(
−1

2
(y − X̄β)

,
Σ̄−1(y − X̄β)

)
(6.3.14)

As for the normal-Wishart, the prior for β is assumed to be multivariate normal:

β ∼ N (β0,Σc ⊗ Φ0)

Φ0 is defined similarly to 3.4.7, except that the residual variance terms σ2
1, σ

2
2, ..., σ

2
n are now de-

fined over pooled sample of variables. That is, σ2
1 is estimated by pooling the samples for variable 1

over units 1, 2, · · · , N , and then estimating an autoregressive model over this pooled series. σ2
2, ..., σ

2
n

are defined similarly. The prior density is given by:

π(β) ∝ |Σc|−k/2 exp

[
−1

2
(β − β0),(Σc ⊗ Φ0)−1 (β − β0)

]
(6.3.15)

The prior for Σc is inverse Wishart:

Σc ∼ IW (S0, α0)

Similarly to Φ0, S0 is defined as in 3.4.11, but with residual variance terms σ2
1, σ

2
2, ..., σ

2
n defined

over pooled sample of variables. The prior density is given by:

π(Σc) ∝ |Σc|−(α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1
c S0

}]
(6.3.16)

Using Baye’s rule 3.2.5, one combines the likelihood function with the prior distributions and rear-

range to obtain the posterior distribution:

π(β,Σc |y ) ∝ |Σc|−k/2 exp

[
−1

2
tr
{

Σ−1
c

[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
× |Σc|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1
c S̄

}]
(6.3.17)

with:

Φ̄ =
[
Φ−1

0 +X ,X
]−1

(6.3.18)

B̄ = Φ̄
[
Φ−1

0 B0 +X ,Y
]

(6.3.19)

ᾱ = NT + α0 (6.3.20)
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S̄ = Y ,Y + S0 +B,
0Φ−1

0 B0 − B̄,Φ̄−1B̄ (6.3.21)

Marginalising for β and Σ, one obtains:

π(Σc |y ) ∼ IW
(
ᾱ, S̄

)
(6.3.22)

and:

π(B |y ) ∼ MT (B̄, S̄, Φ̄, α̃) (6.3.23)

with:

α̃ = ᾱ− n+ 1 = NT + α0 − n+ 1 (6.3.24)

6.4 A richer model: the random effect model (introducing cross-subsectional

heterogeneity)

With the introduction of cross-subsectional heterogeneity, one now obtains a domestic VAR for each

unit. Start from (6.1.5). Relaxing properties 1, 2 and 4, but preserving property 3, one obtains:


y1,t

y2,t

...

yN,t

 =


A1

1 0 · · · 0

0 A1
2 · · · 0

...
...

. . .
...

0 0 · · · A1
N



y1,t−1

y2,t−1

...

yN,t−1

+ · · ·

+


Ap1 0 · · · 0

0 Ap2 · · · 0
...

...
. . .

...

0 0 · · · ApN



y1,t−p

y2,t−p
...

yN,t−p

+


C1

C2

...

CN

xt +


ε1,t

ε2,t

...

εN,t

 (6.4.1)

and

Σ =


Σ1 0 · · · 0

0 Σ2 · · · 0
...

...
. . .

...

0 0 · · · ΣN

 (6.4.2)

Because each unit only responds to itself, a single subscript i can be used without ambiguity in Alii
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and Σi. Consider individual unit i. From (6.4.1), one obtains:

yi,t = A1
i yi,t−1 + · · ·+ Api yi,t−p + Cixt + εi,t (6.4.3)

with:

εi,t ∼ N (0,Σi) (6.4.4)

(6.4.3) implies that each individual equation comprises k = np+m coefficients to estimate.

Transpose:

y,i,t = y,i,t−1(A1
i )
, + · · ·+ y,i,t−p(A

p
i )
, + x,tC

,
i + ε,i,t (6.4.5)

In compact form:

y,i,t =
(
y,i,t−1 · · · y,i,t−p x,t

)


(A1
i )
,

...

(Api )
,

C ,
i

+ ε,i,t (6.4.6)

Stack over the T time periods:
y,i,1
y,i,2
...

y,i,T

 =


y,i,0 · · · y,i,1−p x,0

y,i,1 · · · y,i,2−p x,1
...

. . .
...

...

y,i,T−1 · · · y,i,T−p x,T




(A1
i )
,

...

(Api )
,

C ,
i

+


ε,i,1
ε,i,2
...

ε,i,T

 (6.4.7)

or:

Yi = XiBi + Ei (6.4.8)

with:

Yi =


y,i,1
y,i,2
...

y,i,T


︸ ︷︷ ︸
T×n

Xi =


y,i,0 · · · y,i,1−p x,0

y,i,1 · · · y,i,2−p x,1
...

. . .
...

...

y,i,T−1 · · · y,i,T−p x,T


︸ ︷︷ ︸

T×k

Bi =


(A1

i )
,

...

(Api )
,

C ,
i


︸ ︷︷ ︸

k×n

Ei =


ε,i,1
ε,i,2
...

ε,i,T


︸ ︷︷ ︸
T×n

(6.4.9)

Using A.1.5 and A.1.9, model (6.4.8) reformulates in vectorised form as:

vec(Yi) = (In ⊗Xi) vec(Bi) + vec(Ei) (6.4.10)
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or:

yi1,1

yi1,2
...

yi1,T
...

yin,1

yin,2
...

yin,T


︸ ︷︷ ︸
nT×1

=



y,i,0 · · · y,i,1−p x,1 0 · · · · · · 0

y,i,1 · · · y,i,2−p x,2
...

. . .
...

...
. . .

...
...

...
. . .

...

y,i,T−1 · · · y,i,T−p x,T 0 · · · · · · 0
. . .

0 · · · · · · 0 y,i,0 · · · y,i,1−p x,1
...

. . .
... y,i,1 · · · y,i,2−p x,2

...
. . .

...
...

. . .
...

...

0 · · · · · · 0 y,i,T−1 · · · y,i,T−p x,T


︸ ︷︷ ︸

nT×n(np+m)



A
1(1)
i
...

A
p(1)
i

C
(1)
i
...

A
1(n)
i
...

A
p(n)
i

C
(n)
i


︸ ︷︷ ︸
n(np+m)×1

+



εi1,1

εi1,2
...

εi1,T
...

εin,1

εin,2
...

εin,T


︸ ︷︷ ︸
nT×1

(6.4.11)

where A
k(j)
i and C

(j)
i respectively denote the transpose of row j of matrices Aki and Ci. (6.4.11)

shows that each unit comprises q = n(np+m) coefficients to estimate, implying h=Nq=Nn(np+m)

coefficients to estimate for the whole model. (6.4.11) can reformulate as:

yi = X̄iβi + εi (6.4.12)

with:

yi = vec(Yi)︸ ︷︷ ︸
nT×1

, X̄i = (In ⊗Xi)︸ ︷︷ ︸
nT×q

, βi = vec(Bi)︸ ︷︷ ︸
q×1

, εi = vec(Ei)︸ ︷︷ ︸
nT×1

(6.4.13)

Also, from (6.4.4), it follows that:

εi ∼ N (0, Σ̄i), with Σ̄i = Σi ⊗ IT︸ ︷︷ ︸
nT×nT

(6.4.14)

Consider the VAR model written in the form (6.4.12). The random coefficient model assumes that

for each unit i, βi can be expressed as:

βi = b+ bi (6.4.15)

with b a k × 1 vector of parameters and bi ∼ N (0,Σb). It follows immediately that:

βi ∼ N (b,Σb) (6.4.16)

(6.4.16) implies that the coefficients of the VAR will differ across units, but are drawn from a dis-

tribution with similar mean and variance. From this setting, different identification strategies are
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possible, typically treating (6.4.16) as an exchangeable prior in order to derive the posterior distri-

bution. Two of these strategies are now described: the Zellner and Hong (1989) approach, and the

hierarchical prior approach developed by Jarocinski (2010b).

6.5 The Zellner and Hong prior

Zellner and Hong (1989) propose a specific prior that results in a posterior distribution combining

unit specific and average sample information. To derive the posterior, stack first the model for its N

units in order to estimate simultaneously the h coefficients of the model. Define:

y =


y1

y2

...

yN


︸ ︷︷ ︸
NnT×1

X̄ =


X̄1 0 · · · 0

0 X̄2
. . .

...
...

. . . . . . 0

0 · · · 0 X̄N


︸ ︷︷ ︸

NnT×h

β =


β1

β2

...

βN


︸ ︷︷ ︸
h×1

ε =


ε1

ε2

...

εN


︸ ︷︷ ︸
NnT×1

Σ̄ = E (εε,) =


Σ̄1 0 · · · 0

0 Σ̄2
. . .

...
...

. . . . . . 0

0 · · · 0 Σ̄N


︸ ︷︷ ︸

NnT×NnT

(6.5.1)

and:

b̄ = 1N ⊗ b =


b

b
...

b


︸ ︷︷ ︸
h×1

Σ̄b = IN ⊗ Σb =


Σb 0 · · · 0

0 Σb
. . .

...
...

. . . . . . 0

0 · · · 0 Σb


︸ ︷︷ ︸

h×h

(6.5.2)

It follows directly from (6.5.1) and (6.5.2) that the model as a whole may rewrite as:

y = X̄β + ε (6.5.3)

with:

ε ∼ N
(
0, Σ̄

)
(6.5.4)
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Also, assuming independence between the βi’s implies that:

β ∼ N
(
b̄, Σ̄b

)
(6.5.5)

Zellner and Hong assume a simple form for Σb and the series of Σi:

Σb = λ1σ
2
εIq (6.5.6)

and

Σi = σ2
εIn ∀i (6.5.7)

σ2
ε is a residual variance term, assumed to be similar across units and endogenous variables, and λ1

represents an overall tightness parameter. It then follows from (6.4.14), (6.5.1) and (6.5.2) that:

Σ̄ = σ2
εINnT (6.5.8)

and:

Σ̄b = λ1σ
2
εIh (6.5.9)

Zellner and Hong then derive a posterior distribution for the model by adopting a Minnesota frame-

work. That is, they assume a fixed and known value for the residual covariance matrix Σ̄, obtained

directly from (6.5.8). Thus, only β remains to be estimated by the model, and (6.5.5) is used as

a prior distribution, conditional on known values for b̄ and Σ̄b. Σ̄b is defined from (6.5.9). Then,

conditional on Σ̄, the likelihood function for the data is given by:

f(y |β ) ∝ exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
(6.5.10)

The prior for β is given by:

π(β) ∝ exp

(
−1

2
(β − b̄),Σ̄−1

b (β − b̄)
)

(6.5.11)

Then, using Bayes rule 3.2.3 and rearranging, one obtains the posterior for β as:

π(β |y ) ∝ exp

[
−1

2
(β − β̄)

,
Ω̄−1
b (β − β̄)

]
(6.5.12)

with:

Ω̄b = σ2
ε

(
λ−1

1 Ih + X̄ ,X̄
)−1

(6.5.13)
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and:

β̄ =
(
λ−1

1 Ih + X̄ ,X̄
)−1 (

X̄ ,y + λ−1
1 b̄
)

(6.5.14)

This is the kernel of a multivariate normal distribution with mean β̄ and covariance matrix Ω̄b. The

marginal posterior distribution for each βi can then be obtained from (6.5.1), by marginalising over

the (βi)’s. From A.2.2.4, each βi then follows a multivariate normal distribution with mean β̄i and

covariance matrix Ω̄bi, where β̄i and Ω̄bi are respectively q×1 partitions of β̄ and q×q partitions of Ω̄b.

The only remaining question is how to define b and σ2
ε , which are respectively required to obtain b̄

from (6.5.2), and Ω̄b from (6.5.13). For b, Zellner and Hong use a pooled estimator, which allows to

integrate average sample information into the prior distribution. It is defined as:

b =

(
N∑
i=1

X̄ ,
iX̄i

)−1( N∑
i=1

X̄ ,
iyi

)
(6.5.15)

For σ2
ε , a simple solution is to substitute b̄ (as defined in (6.5.2)) into (6.5.3) to obtain:

ε = y − X̄b̄ (6.5.16)

σ2
ε can then be obtained by computing the variance of ε.

6.6 A hierarchical prior

A more sophisticated alternative to the strategy proposed by Zellner and Hong is to rely on a hi-

erarchical prior identification scheme. The identification methodology proposed in this subsection

essentially follows that of Jarocinski (2010b). In the simple approach of Zellner and Hong, the only

parameter estimated was β, that is, the set of vectors βi, (i = 1, 2, · · · , N). The other underlying

parameters, that is, the set of residual covariance matrices Σi (i = 1, 2, · · · , N) and the common

mean and covariance of the VAR coefficients b and Σb were assumed to be known. In the hierarchical

prior identification strategy, the model is made richer by also treating these parameters as random

variables and including them in the estimation process. This implies in particular that the series

of Σi’s defined in (6.4.2) is now endogenously estimated by the model. βi is still characterized by

(6.4.16), but the hyperparameters b and Σb are now also treated as random variables, with a hyper-

prior distribution applying to them. Before turning to the specific forms of the likelihood functions

and prior distributions, it is useful to derive formally the version of Bayes rule used for this specific
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problem. First, for notation convenience, denote respectively the sets of coefficients βi and Σi by β

and Σ. That is, define:

β = {β1, β2, · · · , βN} and Σ = {Σ1,Σ2, ...,ΣN} (6.6.1)

The complete posterior distribution for the model is then:

π (β,Σ, b,Σb |y ) (6.6.2)

Using an approach similar to that described in subsection 3.2, it is straightforward to show that it

is given by:

π (β, b,Σb,Σ |y ) ∝ π (y |β,Σ)π (β |b,Σb ) π (b) π (Σb) π (Σ) (6.6.3)

In other words, the full posterior distribution is equal to the product of the data likelihood function

π (y |β,Σ) with the conditional prior distribution π (β |b,Σb ) for β and the prior π (Σ) for Σ, along

with the two hyperpriors π (b) and π (Σb).

The specific forms selected for the likelihood and the priors are now detailed. Unlike the Zellner

and Hong approach, it proves more convenient here not to aggregate the data across units. Start

with the likelihood function. Given (6.4.12) and (6.4.14), it obtains as:

π (y |β,Σ) ∝
∏N

i=1

∣∣Σ̄i

∣∣−1/2
exp

(
−1

2

(
yi − X̄iβi

),(
Σ̄i

)−1 (
yi − X̄iβi

))
(6.6.4)

Following (6.4.16), the vectors of coefficients βi follow a normal distribution, with common mean b

and common variance Σb:

βi ∼ N (b,Σb) (6.6.5)

This implies that the prior density for β is given by:

π (β |b,Σb ) ∝
∏N

i=1
|Σb|−1/2 exp

(
−1

2
(βi − b),(Σb)

−1 (βi − b)
)

(6.6.6)

For the hyperparameters b and Σb, the assumed hyperpriors are the following. For b, the selected

form is simply a diffuse (improper) prior:

π (b) ∝ 1 (6.6.7)

For Σb, the adopted functional form is designed to replicate the VAR coefficient covariance matrix

of the Minnesota prior. It relies on a covariance matrix Ωb, which is a diagonal matrix of dimension
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q × q, defined as follows:

1. For parameters in β relating endogenous variables to their own lags, the variance is given by:

σ2
aii

=

(
1

lλ3

)2

(6.6.8)

2. For parameters in β related to cross-lag coefficients, the variance is given by:

σ2
aij

=

(
σ2
i

σ2
j

)(
λ2

lλ3

)2

(6.6.9)

As for the Minnesota prior, σ2
i and σ2

j represent scaling parameters controlling for the relative coeffi-

cient sizes on variables i and j. They are obtained by fitting autoregressive models by OLS for the n

endogenous variables of the model, and computing their standard deviations. Because the variance

is assumed to be common across units, the autoregressive models are computed by pooling the data

of all the units, for each endogenous variable.

3. For exogenous variables (including constants), the variance is given by:

σ2
ci

= σ2
i (λ4)2 (6.6.10)

λ2, λ3 and λ4 have an interpretation which is similar to that of the Minnesota prior. Compar-

ing (6.6.8)-(6.6.10) with (3.3.5)-(3.3.7), one can see that the terms are similar, save for the overall

tightness parameter λ1. The full covariance matrix is then defined as:

Σb = (λ1 ⊗ Iq) Ωb (6.6.11)

(λ1 ⊗ Iq) is a q × q diagonal matrix with all its diagonal entries being equal to λ1. This way, Σb in

(6.6.11) corresponds to the Minnesota prior covariance matrix 3.3.8, except that the value of λ1 in

the present case corresponds to (λ1)2 in the Minnesota prior6. Considering Ωb as fixed and known,

but treating λ1 as a random variable conveniently reduces the determination of the full prior for Σb

to the determination of the prior for the single parameter λ1.

6It turns out that it is more practical to work with λ1 rather than (λ1)2 in order to derive the conditional posterior
distribution for λ1. Nevertheless, it is straightforward to establish the equivalence with the actual Minnesota prior:
to obtain the λ1 overall tightness value of the Minnesota, simply take the square root of λ1 in this model.
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Note the implications of the value of λ1. When λ1 = 0, prior variance is null and (6.4.16) im-

plies that all the β
′
is will take the identical value b: data is fully pooled and the obtained estimate

is simply the pooled estimator. As λ1 is growing larger, coefficients are allowed to differ more and

more across units, and get closer to the respective single unit estimates. In the limit case λ1 → ∞,

the prior becomes uninformative on b and no sharing of information is applied between units, so that

the coefficients for each unit become their own individual estimates. In-between values for λ1 imply

some degree of information sharing between units, and ideally λ1 should be designed so as to provide

a good balance between individual and pooled estimates. To achieve this result, a traditional choice

for the prior distribution of λ1 is an inverse Gamma distribution with shape s0/2 and scale v0/2:

λ1 ∼ IG (s0/2, v0/2) (6.6.12)

This implies:

π (λ1 |s0/2, v0/2) ∝ λ−
s0
2
−1 exp

(
− v0

2λ1

)
(6.6.13)

However, Jarocinski (2010b) and Gelman (2006) show that such a prior can be problematic as

the results can be quite sensitive to the choice of values for s0/2 and v0/2. When the number of

units is greater than 5, those authors advocate either the use of the uniform uninformative prior

π (λ1) ∝ λ
−1/2
1 , or to make the prior a weakly informative prior by using low values for s0 and v0,

such as s0, v0 ≤ 0.001. The latter solution will be retained for the present model.

Finally, the prior distribution for Σi is simply the classical diffuse prior given by:

π (Σi) ∝ |Σi|−(n+1)/2 (6.6.14)

And this implies that the prior full density for Σ is given by:

π (Σ) ∝
∏N

i=1
|Σi|−(n+1)/2 (6.6.15)

This concludes the description of the model. The likelihood function is given by (6.6.4), while the

prior distributions for the 4 set of parameters of the model (β, b, λ and Σ) are respectively given by

(6.6.6), (6.6.7), (6.6.13) and (6.6.15). Substituting for these expressions in (6.6.3), one may obtain

the full posterior distribution. This posterior distribution however does not allow for any analytical

derivations of the marginal posteriors as the parameters are too much interwoven. One has then

to rely on the numerical methods provided by the Gibbs sampler framework. In this respect, it is
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necessary to obtain the conditional posterior distributions for each parameter. The simplest way to

do so is to start from (6.6.3) and marginalise.

Start with the full conditional distribution for βi. Note first that the conditional posterior is propor-

tional to the joint posterior (6.6.3). Thus, any term in the product which does not involve βi can be

relegated to the proportionality constant. Hence this produces:

π (βi |β−i, y, b,Σb,Σ) ∝ π (y |βi,Σ)π (βi |b,Σb ) (6.6.16)

where β−i is used to denote the set of all β coefficients less βi. Combining (6.6.4) and (6.6.6) in (6.6.16)

and rearranging, it is straightforward to show that the posterior for βi is conditionally multivariate

normal:

π (βi |β−i, y, b,Σb,Σ) ∼ N (β̄i, Ω̄i) (6.6.17)

with:

Ω̄i =
[
Σ−1
i ⊗X

,
iXi + Σ−1

b

]−1
(6.6.18)

and:

β̄i = Ω̄i

[(
Σ−1
i ⊗X

,
i

)
yi + Σ−1

b b
]

(6.6.19)

Because of conditional independence, it is possible to draw each βi in turn by sampling from the

corresponding conditional posterior.

Turn now to the conditional distribution of b. Starting again from (6.6.3) and relegating any term

not involving b to the proportionality constant yields:

π (b |y, β,Σb,Σ) ∝ π (β |b,Σb ) π (b) (6.6.20)

Using (6.6.6) and (6.6.7), and rearranging, this yields:

π (b |y, β,Σb,Σ) ∝ exp

(
−1

2
(b− βm),

(
N−1Σb

)−1
(b− βm)

)
(6.6.21)

with βm = N−1
∑N

i=1 βi denoting the arithmetic mean over the βi vectors. This is the kernel of a

multivariate normal distribution with mean βm and covariance matrix N−1Σb:

π (b |y, β,Σb,Σ) ∼ N
(
βm, N

−1Σb

)
(6.6.22)

Obtain now the conditional posterior for Σb. Using once again (6.6.3) and relegating to the normal-
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ising constant any term not involving Σb, one obtains:

π (Σb |y, β, b,Σ) ∝ π (β |b,Σb ) π (Σb) (6.6.23)

Substituting (6.6.6) and (6.6.13) into (6.6.23) and rearranging, one may eventually obtain:

π (Σb |y, β, b,Σ) ∝ λ
− s̄

2
−1

1 exp

(
− v̄

2

1

λ1

)
(6.6.24)

with:

s̄ = h+ s0 (6.6.25)

and

v̄ = v0 +
N∑
i=1

{
(βi − b),Ω−1

b (βi − b)
}

(6.6.26)

This is the kernel of a inverse Gamma distribution with shape s̄
2

and scale v̄
2
:

π (Σb |y, β, b,Σ) ∼ IG
( s̄

2
,
v̄

2

)
(6.6.27)

Eventually, obtain the conditional posterior distribution for the set of residual covariance matrices

Σ = {Σ1,Σ2, ...,ΣN}. Once again relegating to the proportionality constant any term not involving

Σi in (6.6.3), one obtains:

π (Σi |Σ−i, y, β, b,Σb ) ∝ π (y |β,Σi ) π (Σi) (6.6.28)

Using (6.6.4), (6.6.14) and rearranging, one eventually obtains:

π (Σi |Σ−i, y, β, b,Σb ) ∝ |Σi|−(T+n+1)/2 exp

(
−1

2
tr
[
Σ−1
i S̃i

])
(6.6.29)

with:

S̃i = (Yi −XiBi)
, (Yi −XiBi) (6.6.30)

This is the kernel of an inverse Wishart distribution with scale S̃i and degrees of freedom T :

π (Σi |Σ−i, y, β, b,Σb ) ∼ IW
(
S̃i, T

)
(6.6.31)

Because of conditional independence, it is possible to draw each Σi in turn by sampling from the

corresponding conditional posterior.
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With these elements, it is eventually possible to define the Gibbs sampler procedure allowing to

derive the posterior distribution for the model:

Algorithm 4.6.1 (Gibbs sampler for the hierarchical prior):

1. Define initial values for β, b , Σb and Σ. For β, use OLS estimates: β(0) =
{
β̂1, β̂2, ..., β̂N

}
,

where β̂i denotes the OLS estimate for βi. For b, set b(0) = N−1
N∑
i=1

β̂i. For Σb, set λ
(0)
1 = 0.01,

which implies that

√
λ

(0)
1 = 0.1, so that Σ

(0)
b corresponds to the Ω0 matrix from the Minnesota

prior. Finally, for Σ, use also OLS values: Σ(0) =
{

Σ̂1, Σ̂2, ..., Σ̂N

}
, with Σ̂i defined as in 3.1.10.

2. At iteration n, draw b(n) from a multivariate normal distribution:

b(n) ∼ N
(
β

(n−1)
m , N−1Σ

(n−1)
b

)
with:

β
(n)
m = N−1

∑N
i=1 β

(n−1)
i

3. At iteration n, draw Σ
(n)
b . To do so, draw λ

(n)
1 from an inverse Gamma distribution:

λ
(n)
1 ∼ IG

(
s̄
2
, v̄

2

)
with:

s̄ = h+ s0

and:

v̄ = v0 +
N∑
i=1

{(
β

(n−1)
i − b(n)

), (
Ω−1
b

) (
β

(n−1)
i − b(n)

)}
Then obtain Σ

(n)
b from:

Σ
(n)
b =

(
λ

(n)
1 ⊗ Iq

)
Ωb

4. At iteration n, draw β(n) =
{
β

(n)
1 , β

(n)
2 , ..., β

(n)
N

}
from a multivariate normal distribution:

β
(n)
i ∼ N

(
β̄i, Ω̄i

)
with:

Ω̄i =

[(
Σ

(n−1)
i

)−1

⊗X ,
iXi +

(
Σ

(n)
b

)−1
]−1

and:

β̄i = Ω̄i

[((
Σ

(n−1)
i

)−1

⊗X ,
i

)
yi +

(
Σ

(n)
b

)−1

b(n)

]
5. At iteration n, draw Σ(n) =

{
Σ

(n)
1 ,Σ

(n)
2 , ...,Σ

(n)
N

}
from an inverse Wishart distribution:

Σ
(n)
i ∼ IW

(
S̃i, T

)
with:

S̃i =
(
Yi −XiB

(n)
i

), (
Yi −XiB

(n)
i

)

ECB Working Paper 1934, July 2016 165



This concludes the process.

6.7 Reintroducing static and dynamic interdependencies: a structural

factor approach

While panel VAR models offer the convenient possibility to share information across units and es-

timate pooled estimators, limiting the estimation to these features is sub-optimal. Ideally, one may

want to estimate not only independent models benefiting from some degree of information shar-

ing, but also to allow for direct dynamic interactions between units. In other words, while cross-

subsectional heterogeneity is a nice property, a good panel VAR model should also allow for static

and dynamic interdependencies. This is what separates single VAR models estimated with panel data

from actual panel VAR models where a single model allowing for cross-unit interactions is estimated.

The methodology developed in this subsection essentially follows the factor approach proposed by

Canova and Ciccarelli (2006) and Canova and Ciccarelli (2013).

Start from the general formulation (6.1.5). Allowing for cross-subsectional heterogeneity, static

interdependency and dynamic interdependency, but ignoring dynamic heterogeneity, one obtains the

dynamic equation for the full model at period t as:

yt = A1yt−1 + · · ·+ Apyt−p + Cxt + εt (6.7.1)

Take transpose:

y,t = y,t−1(A1), + · · ·+ y,t−p(A
p), + x,tC

, + ε,t (6.7.2)

Reformulate in compact form:

y,t =
(
y,t−1 · · · y,t−p x,t

)


(A1),

...

(Ap),

C ,

+ ε,t (6.7.3)

or:

y,t = XtB + ε,t (6.7.4)
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with:

Xt =
(
y,t−1 · · · y,t−p x,t

)
︸ ︷︷ ︸

1×k

B =


(A1),

...

(Ap),

C ,


︸ ︷︷ ︸

k×Nn

(6.7.5)

Next, obtain a vectorised form by using A.1.5:

yt = (INn ⊗Xt) vec(B) + εt (6.7.6)

or:

yt = X̄tβ + εt (6.7.7)

with:

X̄t = (INn ⊗Xt)︸ ︷︷ ︸
Nn×h

β = vec(B)︸ ︷︷ ︸
h×1

(6.7.8)

Because one allows for static interdependency in the model, the variance-covariance matrix of the

residual term εt does not have to be block diagonal anymore. In addition, a higher degree of flexibility

is permitted by assuming that the error term εt follows the following distribution:

εt ∼ N(0,Σ) Σ = σΣ̃ =


σ Σ̃11︸︷︷︸

n×n

σΣ̃12 · · · σΣ̃1N

σΣ̃21 σΣ̃22 · · · σΣ̃2N

...
...

. . .
...

σΣ̃N1 σΣ̃N2 · · · σΣ̃NN


︸ ︷︷ ︸

Nn×Nn

=


Σ11︸︷︷︸
n×n

Σ12 · · · Σ1N

Σ21 Σ22 · · · Σ2N

...
...

. . .
...

ΣN1 ΣN2 · · · ΣNN

 (6.7.9)

where σ is a scaling random variable following an inverse Gamma distribution:

σ ∼ IG

(
α0

2
,
δ0

2

)
(6.7.10)

Therefore, the error term follows a distribution which is a mixture of normal and inverse Gamma,

and this can be shown to be actually a Student-t distribution. This formulation thus allows for fat

tail distributions for the error terms, which makes it more flexible than the usual normal assumption.

(6.7.7) takes the form of a standard linear model and could in principle be estimated by any stan-

dard OLS or Bayesian methods. However, it suffers from the curse of dimensionality: the number of
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coefficients is likely to be larger than the size of the data set, which renders estimation untractable.

For instance, a complete data set corresponding to model (6.7.7) would contain NnT elements, while

the number of coefficients to estimate is h = Nn(Nnp + m). Estimation using standard methods

is then possible only if T > Nnp + m, which may not be easily satisfied. Even if the condition is

satisfied, with only few degrees of freedom left, estimation is likely to be of poor quality.

For this reason, it is necessary to find an alternative approach where the dimensionality of the

problem is reduced. Canova and Ciccarelli (2006) propose to simplify the problem by assuming that

the h elements of the vector of coefficients β can be expressed as a linear function of a much lower

number r of structural factors:

β = Ξ1θ1 + Ξ2θ2 + ...+ Ξrθr =
r∑
i=1

Ξiθi (6.7.11)

θ1, θ2, ..., θr are vectors of dimension d1× 1, d2× 1, · · · , dr× 1 containing the structural factors, while

Ξ1,Ξ2, · · · ,Ξr are selection matrices of dimension h × d1, h × d2, · · · , h × dr with all their entries

being either 0 or 1 picking the relevant elements in θ1, θ2, ..., θr. (6.7.11) can then be rewritten in

compact form. Define:

Ξ =
(

Ξ1 Ξ2 · · · Ξr

)
︸ ︷︷ ︸

h×d

θ =


θ1

θ2

...

θr


︸ ︷︷ ︸
d×1

(6.7.12)

Then (6.7.11) rewrites:

β = Ξθ (6.7.13)

Substitute in (6.7.7) to obtain a reformulated model:

yt = X̄tβ + εt

= X̄tΞθ + εt

= (X̄tΞ)θ + εt

or:

yt = X̃tθ + εt (6.7.14)

with:

X̃t = X̄tΞ︸︷︷︸
Nn×d

(6.7.15)
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To identify the model, one may then define the following structural factors:

- a factor θ1 is used to capture a common component. It thus always comprises d1 = 1 coeffi-

cient.

- a factor θ2 is used to capture components which are specific to the unit to which belongs the ex-

plained variable. As there are N units in the model, θ2 comprises d2 = N coefficients.

- a factor θ3 is used to capture components which are specific to the explained variable itself. As

there are n endogenous variables in the model, θ3 comprises d3 = n coefficients.

- a factor θ4 is used to capture lag-specific components. Each equation includes p lags, but in order

to avoid colinearity issues with the common component, θ4 can comprise d4 = p − 1 coefficients at

most (in the incoming applications, the last lag is the one which will be omitted).

- a factor θ5 finally is used to capture exogenous variables components. As there are m exogenous

variables in the model, θ5 comprises d5 = m coefficients.

This parsimonious approach then conveniently reduces the number of coefficients to estimate from

h = Nn(Nnp+m) for a traditional VAR to d = d1 + d2 + d3 + d4 + d5 = 1 +N + n+ (p− 1) +m =

N + n + p + m with the factor approach. Using the example of a moderate size panel VAR model

with N = 8 units, n = 6 endogenous variables, p = 5 lags and m = 1 exogenous variable, a standard

VAR formulation 3.1.12 would involve h = Nn(Nnp + m) = 11568 coefficients to be estimated. On

the other hand, the retained factor approach only requires d = N + n + p + m = 20 elements to

estimate, a much smaller number indeed. Even with additional factors, the number of elements to

estimate would remain significantly lower than with a traditional approach.

The remaining question is then how one should define the series of matrices Ξ1,Ξ2,Ξ3,Ξ4 and Ξ5.

The easiest way to do so is probably to use an example. Hence, consider the case of a panel VAR
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model with N = 2 units, n = 2 endogenous variables, p = 2 lags and m = 1 exogenous variable:
y11,t

y12,t

y21,t

y22,t

 =


a1

11,11 a1
11,12 a1

12,11 a1
12,12

a1
11,21 a1

11,22 a1
12,21 a1

12,22

a1
21,11 a1

21,12 a1
22,11 a1

22,12

a1
21,21 a1

21,22 a1
22,21 a1

22,22



y11,t−1

y12,t−1

y21,t−1

y22,t−1



+


a2

11,11 a2
11,12 a2

12,11 a2
12,12

a1
11,21 a1

11,22 a1
12,21 a1

12,22

a1
21,11 a1

21,12 a1
22,11 a1

22,12

a1
21,21 a1

21,22 a1
22,21 a1

22,22



y11,t−2

y12,t−2

y21,t−2

y22,t−2

+


c1,11

c1,21

c2,11

c2,21

 (x1,t) +


ε11,t

ε12,t

ε21,t

ε22,t

 (6.7.16)

The single common component factor implies that θ1 = (θ11). There are 2 units in this model so

that θ2 =

(
θ21

θ22

)
. There are 2 endogenous variables so that θ3 =

(
θ31

θ32

)
, 2 lags so that θ4 = (θ41)

(the final lag is omitted to avoid colinearity), and one exogenous variable so that θ5 =
(
θ51

)
. Also,

the model comprises h = Nn(Nnp+m) = 36 coefficients. Following, the dimensions of the selection

matrices are: Ξ1 is h × d1 or 36 × 1, Ξ2 is h × d2 or 36 × 2, Ξ3 is h × d3 or 36 × 2, Ξ4 is h × d4 or

36× 1, and Ξ5 is h× d5 or 36× 1.

Consider the explained variable y11,t. As it belongs to unit 1 and represents endogenous variable

1, a representation consistent with the adopted factor structure would be to express its value as:

y11,t = (y11,t−1 + y12,t−1 + y21,t−1 + y22,t−1 + y11,t−2 + y12,t−2 + y21,t−2 + y22,t−2 + x1,t)θ11

+ (y11,t−1 + y12,t−1 + y11,t−2 + y12,t−2)θ21

+ (y11,t−1 + y21,t−1 + y11,t−2 + y21,t−2)θ31

+ (y11,t−1 + y12,t−1 + y21,t−1 + y22,t−1)θ41

+ (x1,t)θ51 + ε11,t (6.7.17)

or:

y11,t = Z11,tθ11 + Z21,tθ21 + Z31,tθ31 + Z41,tθ41 + Z51,tθ51 + ε11,t (6.7.18)

This formulation is motivated as follows:

- Z11,t = y11,t−1 + y12,t−1 + y21,t−1 + y22,t−1 + y11,t−2 + y12,t−2 + y21,t−2 + y22,t−2 + x1,t represents the

common component of the model. It hence includes all the explanatory variables.

- Z21,t = y11,t−1 + y12,t−1 + y11,t−2 + y12,t−2 represents the component specific to unit 1. It hence

includes all the values corresponding to this unit.

- Z31,t = y11,t−1 + y21,t−1 + y11,t−2 + y21,t−2 represents the component specific to variable 1. It hence
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includes all the values corresponding to this variable.

- Z41,t = y11,t−1 +y12,t−1 +y21,t−1 +y22,t−1 represents the component specific to lag 1. It hence includes

all the values corresponding to this lag.

- Z51,t = x1,t represents the contribution of the first (and here, only) exogenous variable of the model.

It hence includes the value of this variable.

Pursuing the same way with the other equations, one obtains:
y11,t

y12,t

y21,t

y22,t

 =


Z11,t

Z11,t

Z11,t

Z11,t

 (θ11) +


Z21,t 0

Z21,t 0

0 Z22,t

0 Z22,t


(
θ21

θ22

)
+


Z31,t 0

0 Z32,t

Z31,t 0

0 Z32,t


(
θ31

θ32

)
+


Z41,t

Z41,t

Z41,t

Z41,t

 (θ41)

+


Z51,t

Z51,t

Z51,t

Z51,t


(
θ51

)
+


ε11,t

ε12,t

ε21,t

ε22,t

 (6.7.19)

with:

Z22,t = y21,t−1 + y22,t−1 + y21,t−2 + y22,t−2

Z32,t = y12,t−1 + y22,t−1 + y12,t−2 + y22,t−2

(6.7.19) can rewrite in compact form as:


y11,t

y12,t

y21,t

y22,t

 =


Z11,t Z21,t 0 Z31,t 0 Z41,t Z51,t

Z11,t Z21,t 0 0 Z32,t Z41,t Z51,t

Z11,t 0 Z22,t Z31,t 0 Z41,t Z51,t

Z11,t 0 Z22,t 0 Z32,t Z41,t Z51,t





θ11

θ21

θ22

θ31

θ32

θ41

θ51


+


ε11,t

ε12,t

ε21,t

ε22,t

 (6.7.20)

or:

yt = Ztθ + εt (6.7.21)
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with:

Zt =


Z11,t Z21,t 0 Z31,t 0 Z41,t Z51,t

Z11,t Z21,t 0 0 Z32,t Z41,t Z51,t

Z11,t 0 Z22,t Z31,t 0 Z41,t Z51,t

Z11,t 0 Z22,t 0 Z32,t Z41,t Z51,t

 (6.7.22)

Comparing (6.7.14) with (6.7.21), one obtains:

X̄tΞ = Zt (6.7.23)

Therefore, the series of matrices Ξ must be defined so that (6.7.23) holds. For the VAR model used

as an example, the series of matrices Ξ1,Ξ2,Ξ3,Ξ4 and Ξ5 must be defined as:

Ξ1 =


19

19

19

19

 Ξ2 =


v1 09

v1 09

09 v2

09 v2

 Ξ3 =


v3 09

09 v4

v3 09

09 v4

 Ξ4 =


v5

v5

v5

v5

 Ξ5 =


v6

v6

v6

v6

 (6.7.24)

Where 1n and 0n respectively denote a n×1 vector of ones and zeros, and v1, v2, v3 and v4 are defined

as:

v1 =



1

1

0

0

1

1

0

0

0


v2 =



0

0

1

1

0

0

1

1

0


v3 =



1

0

1

0

1

0

1

0

0


v4 =



0

1

0

1

0

1

0

1

0


v5 =



1

1

1

1

0

0

0

0

0


v6 =



0

0

0

0

0

0

0

0

1


(6.7.25)

Hence:

Ξ =


19 v1 09 v3 09 v5 v6

19 v1 09 09 v4 v5 v6

19 09 v2 v3 09 v5 v6

19 09 v2 09 v4 v5 v6

 (6.7.26)
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Using (6.7.8), It can be readily verified that:

X̄tΞ

= (I4 ⊗Xt) Ξ

=
(
I4 ⊗

(
y11,t−1 y12,t−1 y21,t−1 y22,t−1 y11,t−2 y12,t−2 y21,t−2 y22,t−2 x1,t

))

×


19 v1 09 v3 09 v5 v6

19 v1 09 09 v4 v5 v6

19 09 v2 v3 09 v5 v6

19 09 v2 09 v4 v5 v6



=


Z11,t Z21,t 0 Z31,t 0 Z41,t Z51,t

Z11,t Z21,t 0 0 Z32,t Z41,t Z51,t

Z11,t 0 Z22,t Z31,t 0 Z41,t Z51,t

Z11,t 0 Z22,t 0 Z32,t Z41,t Z51,t


= Zt (6.7.27)

The procedure can then be extended to any VAR model with an arbitrary number of units, lags,

endogenous and exogenous variables.

This concludes the description of the factor approach. Because X̃t can be computed for each period

t once Ξ is defined, it is possible to stack (6.7.14) over the T periods and estimate the model directly

by OLS methods. From a Bayesian perspective, the objective is to recover the posterior distribution

for the three parameters of interest: θ, Σ̃ and σ. Once this is done, it is possible to draw values for

θ, and thus to recover draws for β from (6.7.13). Also, combining a draw for Σ̃ with a draw for σ,

one may recover a draw for Σ. This allows to recover draws from the original model (6.7.7).

To compute the posterior distribution, obtain first an expression for Bayes rule. Relying on a stan-

dard independence assumption between θ, Σ̃ and σ, 3.2.5 yields:

π(θ, Σ̃, σ |y ) ∝ f(y
∣∣∣θ, σ, Σ̃)π(θ)π(Σ̃)π(σ) (6.7.28)

This is a classical Bayes rule, stating that the posterior distribution is obtained by combining the

data likelihood f(y
∣∣∣θ, σ, Σ̃) with the respective prior distributions for θ, σ and Σ̃, respectively given

by π(θ)π(σ) and π(Σ̃). Start with the likelihood function. Given (6.7.9), it is given by:

f(y
∣∣∣θ, Σ̃, σ) ∝ (σ)−TNn/2

∣∣∣Σ̃∣∣∣−T/2 T∏
t=1

{
exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
(6.7.29)

ECB Working Paper 1934, July 2016 173



Consider next the prior distributions for θ, Σ̃ and σ. The prior for θ is a multivariate normal

distribution with mean θ0 and covariance Θ0:

π(θ |θ0,Θ0) ∝ exp

(
−1

2
(θ − θ0),Θ−1

0 (θ − θ0)

)
(6.7.30)

Because there is no obvious identification strategies for θ0 and Θ0, one simply sets θ0 as a vector of

zeros while Θ0 is set as a diagonal matrix with large values to produce an uninformative prior. For

Σ̃, an uninformative (diffuse) prior is used:

π(Σ̃) ∝
∣∣∣Σ̃∣∣∣−(Nn+1)/2

(6.7.31)

Finally, as already stated,σ follows an inverse Gamma distribution with shape α0

2
and scale δ0

2
:

π(σ) ∝ σ−
α0
2
−1 exp

(
−δ0

2σ

)
(6.7.32)

Using Bayes rule (6.7.28), and combining the likelihood (6.7.29) with the priors (6.7.30), (6.7.31)

and (6.7.32), the joint posterior obtains as:

f(θ, Σ̃, σ |y) ∝
T∏
t=1

{
exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
× exp

(
−δ0

2σ

)
×(σ)−(NnT+α0)/2−1 ×

∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

× exp

(
−1

2
(θ − θ0),Θ−1

0 (θ − θ0)

)
(6.7.33)

As often, the parameters are so interwoven that it is not possible to integrate out the posterior

distributions analytically. One has then to turn to numerical methods. Obtain first the conditional

posterior distributions for θ, Σ̃ and σ. For the conditional posterior of θ, start from (6.7.33) and

relegate any term not involving θ to the proportionality constant. Then, rearranging, one obtains:

π(θ
∣∣∣y, σ, Σ̃) ∝ exp

(
−1

2
(θ − θ̄),Θ̄−1(θ − θ̄)

)
(6.7.34)

with:

Θ̄ =
(
X̃IΣX̃

, + Θ−1
0

)−1

(6.7.35)

and

θ̄ = Θ̄
(
X̃IΣy + Θ−1

0 θ0

)
(6.7.36)
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with:

X̃ =
(
X̃ ,

1 X̃ ,
2 · · · X̃ ,

T

)
︸ ︷︷ ︸

d×NnT

IΣ = (IT ⊗ Σ−1) =


Σ−1 0 · · · 0

0 Σ−1 0
...

. . .
...

0 0 · · · Σ−1


︸ ︷︷ ︸

NnT×NnT

y =


y1

y2
...

yT


︸ ︷︷ ︸
NnT×1

(6.7.37)

This is the kernel of a multivariate normal distribution with mean θ̄ and covariance matrix Θ̄:

π(θ
∣∣∣y, σ, Σ̃) ∼ N (θ̄, Θ̄) (6.7.38)

Then obtain the conditional posterior for Σ̃. Relegating to the proportionality constant any term

not involving Σ̃ in (6.7.33) and rearranging, one obtains:

π(Σ̃ |y, θ, σ ) ∝
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2
tr
{

Σ̃−1S̄
})

(6.7.39)

with:

S̄ = σ−1
(
Y − ẌIθ

)(
Y − ẌIθ

),
(6.7.40)

where:

Y =
(
y1 y2 · · · yT

)
︸ ︷︷ ︸

Nn×T

Ẍ =
(
X̃1 X̃2 · · · X̃T

)
︸ ︷︷ ︸

Nn×Td

Iθ = (IT ⊗θ) =


θ 0 · · · 0

0 θ 0
...

. . .
...

0 0 · · · θ


︸ ︷︷ ︸

Td×T

(6.7.41)

This is the kernel of an inverse Wishart distribution with scale S̄ and T degrees of freedom:

π(θ, Σ̃, σ |y ) ∼ IW (S̄, T ) (6.7.42)

Finally, obtain the conditional posterior for σ. Relegating to the proportionality constant any term

not involving σ in (6.7.33), then rearranging, one obtains:

π(σ
∣∣∣y, θ, Σ̃) ∝ (σ)−

ᾱ
2
−1 exp

(
− δ̄

2σ

)
(6.7.43)
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with:

ᾱ = NnT + α0 (6.7.44)

and:

δ̄ =
[
tr
(

(Y − ẌIθ)(Y − ẌIθ),Σ̃−1
)

+ δ0

]
(6.7.45)

This is the kernel of an inverse Gamma distribution with shape ᾱ
2

and scale δ̄
2
:

π(σt

∣∣∣y, θ, Σ̃) ∼ IG

(
ᾱ

2
,
δ̄

2

)
(6.7.46)

With these elements at hand, it is eventually possible to derive the Gibbs sampling algorithm for the

posterior distribution of the full model:

Algorithm 4.7.1 (Gibbs sampling algorithm for a panel VAR model with a factor approach):

1. Define starting values θ(0), Σ̃(0) and σ(0). For θ(0), use the OLS value θ̂. For Σ̃(0), use (6.7.14)

to obtain εt = yt − X̃tθ̂, and obtain Σ̃(0) = 1/T
T∑
t=1

εtε
,
t. For σ(0), the value is set to 1 , which

implies Σ(0) = Σ̃(0). Then compute I
(0)
Σ = IT ⊗ (Σ(0))

−1
and I

(0)
θ = IT ⊗ θ(0).

2. At iteration n, draw Σ̃(n) from π
(

Σ̃(n)
∣∣y, θ(n−1), σ(n−1)

)
∼ IW (S̄, T ), with:

S̄ = (σ(n−1))
−1
(
Y − ẌI(n−1)

θ

)(
Y − ẌI(n−1)

θ

),
3. At iteration n, draw σ(n) from π

(
σ(n)

∣∣∣y, θ(n−1), Σ̃(n)
)
∼ IG

(
ᾱ
2
, δ̄

2

)
, with:

ᾱ = NnT + α0

and:

δ̄ =
[
tr
(

(Y − ẌI(n−1)
θ )(Y − ẌI(n−1)

θ ),(Σ̃(n))
−1
)

+ δ0

]
4. At iteration n, compute Σ(n) = σ(n)Σ̃(n), and use it to compute I

(n)
Σ = IT ⊗ (Σ(n))

−1
.

5. At iteration n, draw θ(n) from π

(
θ(n)
∣∣∣y, σ(n), Σ̃

(n)
)
∼ N (θ̄, Θ̄), with:

Θ̄ =
(
X̃I

(n)
Σ X̃ , + Θ−1

0

)−1

and

θ̄ = Θ̄
(
X̃I

(n)
Σ y + Θ−1

0 θ0

)−1

6. At iteration n, compute I
(n)
θ = IT ⊗ θ(n).

7. Repeat until (It−Bu) iterations are realised.
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6.8 Adding dynamic heterogeneity to the model: a dynamic factor ap-

proach

The most flexible version of the Bayesian panel VAR model is eventually introduced. It integrates all

the four possible panel properties: dynamic and static interdependencies, cross-subsectional hetero-

geneity, and also dynamic heterogeneity. This latter aspect is important as modern macroeconomic

methodologies consider seriously the possibility that dynamic coefficients may evolve over time. The

approach developed in this subsection essentially follows Canova and Ciccarelli (2013) and Ciccarelli

et al. (2012), and builds on the structural factor approach previously introduced for static coeffi-

cients. Some modifications have been applied to the original methodology of Canova and Ciccarelli

(2013) in order to implement a proper dynamic heteroskedasticity scheme, and to replace the Kalman

smoother used by these authors by a faster sparse matrix approach. While this dynamic approach is

numerically heavier than the static one, adaptation to a time-varying context is relatively straight-

forward.

Start again from the general formulation 6.1.5, but do not relax dynamic heterogeneity. The dynamic

equation for the model at period t is then given by:

yt = A1
tyt−1 + · · ·+ Aptyt−p + Ctxt + εt (6.8.1)

Take transpose:

y,t = (A1
t )
,
y,t−1 + · · ·+ (Apt )

,y,t−p + (Ct)
,x,t + ε,t (6.8.2)

Reformulate in compact form:

y,t =
(
y,t−1 · · · y,t−p x,t

)


(A1
t )
,

...

(Apt )
,

(Ct)
,

+ ε,t (6.8.3)

or:

y,t = XtBt + ε,t (6.8.4)

with:

Xt =
(
y,t−1 · · · y,t−p x,t

)
︸ ︷︷ ︸

1×k

Bt =


(A1

t )
,

...

(Apt )
,

(Ct)
,


︸ ︷︷ ︸

k×Nn

(6.8.5)
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Obtain a vectorised form by using A.1.5:

yt = (INn ⊗Xt) vec(Bt) + εt (6.8.6)

or:

yt = X̄tβt + εt (6.8.7)

with:

X̄t = (INn ⊗Xt)︸ ︷︷ ︸
Nn×h

βt = vec(Bt)︸ ︷︷ ︸
h×1

(6.8.8)

A general form of heteroskedasticity is introduced for the error. Precisely, it is assumed that the

error term is independently distributed across periods according to:

εt ∼ N (0,Σt) with Σt = exp(ζt)Σ̃ (6.8.9)

Hence:

Σt = E (εtε
,
t) = exp(ζt)Σ̃ = exp(ζt)︸ ︷︷ ︸

1×1


Σ̃11︸︷︷︸
n×n

Σ̃12 · · · Σ̃1N

Σ̃21 Σ̃22 · · · Σ̃2N

...
...

. . .
...

Σ̃N1 Σ̃N2 · · · Σ̃NN


︸ ︷︷ ︸

Nn×Nn

(6.8.10)

ζt is a dynamic coefficient whose law of motion is defined as:

ζt = γζt−1 + υt (6.8.11)

The initial value of the process ζ0 is set to be 0, which implies initial homoscedasticity. υt is a

disturbance following a normal distribution:

υt ∼ N (0, ϕ) (6.8.12)

A final layer of uncertainty is integrated by assuming that ϕ is also a random variable, which follows

an inverse Gamma distribution:

ϕ ∼ IG

(
α0

2
,
δ0

2

)
(6.8.13)

Note the implications of the setting. Thanks to (6.8.11), heteroskedasticity is modelled in a flexible

fashion: when γ = 0, ζt is determined by a white noise process, so that the residuals are heteroskedas-

tic in a purely random way. When 0 < γ < 1, the model allows for inertia in heteroskedasticity which

then resembles that of a traditional ARCH model. Finally, when γ = 1 the residual follow a random
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walk form of heteroskedasticity, implying permanent jumps on the volatility of the disturbances. The

random variable ϕ determines if there exists heteroskedasticity altogether: a value of 0 implies that

all υt shocks endorse the mean value of 0, so that exp(ζt) = 1 for all t and the model is homoscedastic.

Then the larger ϕ, the larger the disturbance volatility implied by the setting.

This basically concludes the description of the model. (6.8.7) is a standard linear model which

suffers however from the same curse of dimensionality issue than its static counterpart. The problem

is actually made even worse in a time-varying context: because the model is period-specific, there

are h = Nn(Nnp + m) coefficients to estimate, but only Nn data points available. This renders

estimation impossible with classical methods. Canova and Ciccarelli (2013) thus propose to adopt

a structural factor approach similar to that developed in the previous subsection. Concretely, the

vector of coefficients βt is decomposed into r structural factors:

βt = Ξ1θ1,t + Ξ2θ2,t + ...+ Ξrθr,t =
r∑
i=1

Ξiθi,t (6.8.14)

Once again, θ1,t, θ2,t, ..., θr,t are vectors of dimension d1×1, d2×1, · · · , dr×1 containing the structural

factors, while Ξ1,Ξ2, · · · ,Ξr are selection matrices of dimension h × d1, h × d2, · · · , h × dr with all

their entries being either 0 or 1 picking the relevant elements in θ1,t, θ2,t, · · · , θr,t. Unlike the static

version of the model, all the factors are now allowed to be time-varying. A compact form of the

factor decomposition can be obtained as:

βt = Ξθt (6.8.15)

with:

Ξ =
(

Ξ1 Ξ2 · · · Ξr

)
︸ ︷︷ ︸

h×d

and θt =


θ1,t

θ2,t

...

θr,t


︸ ︷︷ ︸
d×1

(6.8.16)
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Substitute (6.8.14) in (6.8.7) to obtain a reformulated model:

yt = X̄tβt + εt

= X̄t

(
r∑
i=1

Ξiθi,t

)
+ εt

=

(
r∑
i=1

X̄tΞiθi,t

)
+ εt

=
r∑
i=1

(
X̄tΞi

)
θi,t + εt

or:

yt = X̃1,tθ1,t + X̃2,tθ2,t + · · ·+ X̃r,tθr,t + εt (6.8.17)

with:

X̃i,t = X̄tΞi, i = 1, 2, · · · , r (6.8.18)

Similarly, a compact form can be recovered using (6.8.15) in (6.8.7):

yt = X̃tθt + εt (6.8.19)

with:

X̃t = X̄tΞ (6.8.20)

Finally, define the law of motion of θt. A simple form is the general autoregressive process:

θt = (1− ρ)θ̄ + ρθt−1 + ηt (6.8.21)

with:

ηt ∼ N (0, B) (6.8.22)

0 ≤ ρ ≤ 1 determines the persistence of the process, while the constant term θ̄ represents the long-

run value of the model. This form is flexible and allows for many particular representations . For

instance, a common special case nested in this general specification is the random walk, corresponding

to ρ = 1:

θt = θt−1 + ηt (6.8.23)
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B is a block diagonal matrix for which each block i = 1, 2, · · · , r corresponds to one of the r structural

factors and is of dimension di. It is defined as:

B =


B1 0 · · · 0

0 B2
. . .

...
...

. . . . . . 0

0 · · · 0 Br

 =


b1Id1 0 · · · 0

0 b2Id2

. . .
...

...
. . . . . . 0

0 · · · 0 brIdr

 (6.8.24)

This concludes the time varying factor approach. The models comprises 5 sets of parameters of inter-

est to be estimated: the factor coefficients θ = {θt}Tt=1, the set of VAR coefficient variances b = {bi}ri=1,

the homoskedastic residual covariance matrix Σ̃, the set of dynamic coefficients ζ = {ζt}Tt=1, and the

heteroskedasticity variance coefficient ϕ. The considered setting is hierarchical, since θ is obtained

conditional on b, and ζ obtains conditional on ϕ.

Obtaining the prior for θ = {θt}Tt=1 is troublesome since (6.8.21) implies that each term depends

on the previous period value θt−1. The strategy to obtain a simple joint formulation relies on the

sparse matrix approach by Chan and Jeliazkov (2009)7. It essentially consists in noticing that every

value θt ultimately depends on the initial condition θ0, the long-run value θ̄, and the set of shocks

ηt, t = 1, 2, · · · , T . (6.8.21) can be reformulated for all the periods simultaneously as:

HΘ = Θ̃ + η (6.8.25)

with:

H =



Id 0 0 · · · 0

−ρId Id 0 · · · 0

0 −ρId Id
...

...
. . . . . . 0

0 · · · 0 −ρId Id


︸ ︷︷ ︸

Td×Td

Θ =



θ1

θ2

θ3

...

θT


︸ ︷︷ ︸
Td×1

7The authors are grateful to Aubrey Poon (Australian National University) and Matteo Ciccarelli (European Central
Bank) for suggesting this approach.
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Θ̃ =



(1− ρ)θ̄ + ρθ0

(1− ρ)θ̄

(1− ρ)θ̄
...

(1− ρ)θ̄


︸ ︷︷ ︸

Td×1

η =



η1

η2

η3

...

ηT


︸ ︷︷ ︸
Td×1

(6.8.26)

Assuming independence between the errors ηt, it follows from (6.8.22) that:

η ∼ N (0, B̃) with B̃ = IT ⊗B (6.8.27)

Then (6.8.25) implies that:

Θ = H−1Θ̃ +H−1η (6.8.28)

And from A.2.2.6, (6.8.27) and (6.8.28), one can eventually conclude that:

Θ ∼ N (H−1Θ̃, H−1B̃(H−1)
,
) or Θ ∼ N (Θ0, B0) (6.8.29)

with:

Θ0 = H−1Θ̃ and B0 = H−1B̃(H−1)
,

(6.8.30)

Thus the prior distribution for the whole series θ = {θt}Tt=1 can be expressed in stacked form as:

π(θ |b) ∝ |B0| exp

(
−1

2
(Θ−Θ0),B−1

0 (Θ−Θ0)

)
(6.8.31)

It remains to determine the values for θ0 and θ̄. These two values are set as the OLS estimate of the

static version of (6.8.19).

The prior distribution for each bi is inverse Gamma with scale a0

2
and shape b0

2
:

π (bi |a0, b0 ) ∝ b
−(

a0
2

)−1

i exp

(
−b0

2bi

)
(6.8.32)

The prior for Σ̃ is a standard diffuse prior:

π(Σ̃) ∝
∣∣∣Σ̃∣∣∣−(Nn+1)/2

(6.8.33)
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The prior for ζ = {ζt}Tt=1 faces the same dynamic dependence as θ, so that the same identification

strategy is retained. Reformulate (6.8.11) simultaneously for all periods as:

GZ = υ (6.8.34)

with:

G =



1 0 0 · · · 0

−γ 1 0 · · · 0

0 −γ 1
...

...
. . . . . . 0

0 · · · 0 −γ 1


︸ ︷︷ ︸

T×T

Z =



ζ1

ζ2

ζ3

...

ζT


︸ ︷︷ ︸
T×1

υ =



υ1

υ2

υ3

...

υT


︸ ︷︷ ︸
T×1

(6.8.35)

where use has been made of the fact that ζ0 = 0. Assuming independence between the errors υt, it

follows from (6.8.12) that:

υ ∼ N (0, ϕIT ) (6.8.36)

Then (6.8.34) implies that Z = G−1υ, and from (A.2.5) one concludes that:

Z ∼ N (0, G−1ϕIT (G−1)
,
) (6.8.37)

or:

Z ∼ N (0,Φ0) with Φ0 = ϕ(G,G)−1 (6.8.38)

The prior distribution for the whole series ζ = {ζt}Tt=1 can thus be expressed in stacked form as:

π(Z |ϕ) ∝ |Φ0|−1/2 exp

(
−1

2
Z ,Φ−1

0 Z

)
(6.8.39)

Finally, the prior for ϕ is given by (6.8.13), so that:

π (ϕ) ∝ ϕ−
α0
2
−1 exp

(
−δ0

2ϕ

)
(6.8.40)

To obtain the posterior distribution, obtain first an expression for Bayes rule. Relying on a standard

independence assumption between θ,Σ and ζ, and following the hierarchical setting described in

subsection 3.2 one obtains:

π(θ, b, Σ̃, ζ, ϕ |y ) ∝ f(y
∣∣∣θ, Σ̃, ζ )π(θ |b)π(b)π(Σ̃)π(ζ |ϕ)π(ϕ) (6.8.41)
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Given (6.8.9) and (6.8.19), the likelihood function π(y |θ,Σ, ζ ) is given by:

f(y
∣∣∣θ, Σ̃, ζ) ∝

∣∣∣Σ̃∣∣∣−T/2 exp

(
−1

2

T∑
t=1

{
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt) +Nnζt

})
(6.8.42)

From Bayes rule (6.8.41), the likelihood (6.8.42) and the priors (6.8.31), (6.8.32), (6.8.33), (6.8.39)

and (6.8.40), one can derive the full posterior distribution:

π(θ, b, Σ̃, ζ, ϕ |y ) ∝
∣∣∣Σ̃∣∣∣−T/2 exp

(
−1

2

T∑
t=1

{
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt) +Nnζt

})
× |B0| exp

(
−1

2
(Θ−Θ0),B−1

0 (Θ−Θ0)

)
×

r∏
i=1

b
−(a0/2)−1
i exp

(
−b0

2bi

)
×
∣∣∣Σ̃∣∣∣−(Nn+1)/2

×|Φ0|−1/2 exp

(
−1

2
Z ,Φ−1

0 Z

)
×ϕ−α0/2−1 exp

(
−δ0

2ϕ

)
(6.8.43)

The complexity of the formula makes any analytical marginalisation intractable, so that one relies

as usual on the numerical framework provided by the Gibbs sampler.

Obtain the full set of conditional posterior distributions. Derive first the conditional posterior for

θ = {θt}Tt=1. Given Bayes rule (6.8.41), relegate to the proportionality constant any term that does

not involve θ to obtain:

π(θ
∣∣∣y, b, Σ̃, ζ, ϕ) ∝ f(y

∣∣∣θ, Σ̃, ζ )π(θ |b) (6.8.44)

However, because the prior for θ is formulated in terms of Θ (defined in (6.8.26)), the likelihood

must also be reformulated in terms of Θ in order to derive the posterior. This can be done easily by

considering a stacked form of (6.8.19):

y = X̃Θ + ε (6.8.45)

with:

y =


y1

y2

...

yT


︸ ︷︷ ︸
NnT×1

X̃ =


X̃1 0 · · · 0

0 X̃2

...
. . .

...

0 · · · X̃T


︸ ︷︷ ︸

NnT×Td

ε =


ε1

ε2

...

εT


︸ ︷︷ ︸
NnT×1

(6.8.46)
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Also, from (6.8.9), the error terms εt are independently distributed so that:

ε ∼ N (0,Σ) with Σ =


Σ1 0 · · · 0

0 Σ2

...
. . .

...

0 · · · ΣT


︸ ︷︷ ︸

NnT×NnT

(6.8.47)

The likelihood function for the full model may then rewrite as:

f(y
∣∣∣Θ, Σ̃, ζ) ∝ |Σ|−1/2 exp

(
−1

2
(y − X̃Θ)

,
Σ−1(y − X̃Θ)

)
(6.8.48)

From (6.8.44), one combines the likelihood (6.8.48) with the prior (6.8.31), and rearranges to obtain:

π(θ
∣∣∣y, b, Σ̃, ζ, ϕ) ∝ exp

(
−1

2
(Θ− Θ̄)

,
B̄−1(Θ− Θ̄)

)
(6.8.49)

with:

B̄ =
(
X̃ ,Σ−1X̃ +B−1

0

)−1

(6.8.50)

and:

Θ̄ = B̄
(
X̃ ,Σ−1y +B−1

0 Θ0

)
(6.8.51)

This is the kernel of a multivariate normal distribution with mean Θ̄ and covariance B̄:

Θ ∼ N (Θ̄, B̄) (6.8.52)

Obtain then the conditional posterior for b = {bi}ri=1. Because the bis are conditionally indepen-

dent, the posteriors can be derived individually. Using Bayes rule (6.8.41) and relegating to the

proportionality constant any term not involving bi yields:

π(bi |y, θ, b−i, Σ̃, ζ, ϕ) ∝ π(θi |bi )π(bi) (6.8.53)

Using (6.8.53) to combine (6.8.22)-(6.8.23) with (6.8.32) and then rearranging eventually yields:

π(bi |y, θ, b−i, Σ̃, ζ, ϕ) ∝ b
− āi

2
−1

i exp

(
− b̄i

2bi

)
(6.8.54)

with:

āi = Tdi + a0 (6.8.55)
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and:

b̄i =
T∑
t=1

(θi,t − θi,t−1),(θi,t − θi,t−1) + b0 (6.8.56)

This is the kernel of an inverse Gamma distribution with shape ā
2

and scale b̄
2
:

π(bi |y, θ, b−i, Σ̃, ζ, ϕ) ∼ IG

(
āi
2
,
b̄i
2

)
(6.8.57)

Obtain the conditional posterior for Σ̃. Starting from Bayes rule (6.8.41) and relegating to the

proportionality constant any term not involving Σ̃, one obtains:

π(Σ |y , θ, b, ζ, ϕ) ∝ f(y |θ,Σ, ζ )π(Σ) (6.8.58)

Using (6.8.42) and (6.8.33) and rearranging, one obtains:

π(Σ̃ |y, θ, b, ζ, ϕ) ∝
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2
tr
{

Σ̃−1S̄
})

(6.8.59)

with:

S̄ =
T∑
t=1

(yt − X̃tθt) exp(−ζt)(yt − X̃tθt)
,

(6.8.60)

This the kernel of an inverse Wishart distribution with scale S̄ and degrees of freedom T :

π(Σ̃ |y, θ, b, ζ, ϕ) ∼ IW (S̄, T ) (6.8.61)

Compute the conditional posterior for ϕ. Starting from Bayes rule (6.8.41) and relegating to the

proportionality constant any term not involving ϕ yields:

π(ϕ
∣∣∣y, θ, b, Σ̃, ζ ) ∝ π(ζ |ϕ)π(ϕ) (6.8.62)

From (6.8.39), (6.8.40) and rearranging, one eventually obtains:

π(θ, b, Σ̃, ζ, ϕ |y ) ∝ ϕ−
ᾱ
2
−1 exp

(
− δ̄

2ϕ

)
(6.8.63)

with:

ᾱ = T + α0 (6.8.64)

and:

δ̄ = Z ,G,GZ + δ0 (6.8.65)
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This is the kernel of an inverse Gamma distribution with scale ᾱ
2

and shape δ̄
2
:

π(ϕ
∣∣∣y, θ, b, Σ̃, ζ ) ∼ IG

(
ᾱ

2
,
δ̄

2

)
(6.8.66)

Obtain finally the conditional posterior for ζ = {ζt}Tt=1. Consider Bayes rule (6.8.41) and relegate to

the proportionality constant any term not involving ζ:

π(ζ
∣∣∣y, θ, b, Σ̃, ϕ) ∝ f(y

∣∣∣θ, Σ̃, ζ )π(ζ |ϕ) (6.8.67)

Using (6.8.42) and (6.8.39) and rearranging, one obtains:

π(ζ
∣∣∣y, θ, b, Σ̃, ϕ)

∝ exp

(
−1

2

[
T∑
t=1

{
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt) +Nnζt

}
+ Z ,Φ−1

0 Z

])
(6.8.68)

(6.8.68) is problematic: it does not correspond to a known distribution. Because its form is non-

standard, it is not possible to sample directly from it, which renders the Gibbs sampler methodology

inapplicable. There exists a solution to solve this issue, but this comes at the cost of additional tech-

nical complications. The methodology to be used in this case is known as the Metropolis-Hastings

algorithm, and it can be shown to be a generalisation of the Gibbs sampler, applicable even in cases

where the posterior distribution takes an unknown form. The technical details behind the method-

ology are beyond the scope of this manual so that only the principles will be introduced8.

The idea of the Metropolis-Hastings methodology is the following: while for the Gibbs sampler

a new draw from the conditional distribution was obtained and accepted at every iteration of the

algorithm, with the Metropolis-Hastings algorithm a new draw will only be accepted with a certain

probability. If the draw is rejected, the previous iteration value is retained.

Concretely, the algorithm works as follows: consider any parameter θ for which one wants to obtain

draws from the posterior distribution. The analytical formula π(θ) corresponding to the posterior

distribution is identified so that one can calculate the density value (as in the case of (6.8.68)), but

this formula does not correspond to a known distribution, so that it is not possible to sample di-

rectly from π(θ). One has then to define what is known as a transition kernel q(θ(n−1), θ(n)), which

is a distribution establishing how to obtain at iteration n a value θ(n) from the previous iteration

value θ(n−1). Since many distributions can be used as a possible transition kernel, the choice has to

8Readers interested in a more formal treatment may find valuable content in Greenberg (2008), chapters 6 and 7, and
Chib and Greenberg (1995).
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be made based on convenience. Finally, given π(θ) and q(θ(n−1), θ(n)), one has to define a function

α(θ(n−1), θ(n)) which determines the probability that the draw obtained in the current iteration will

be accepted. This function is always the same and given by:

α(θ(n−1), θ(n)) =

{
min

{
1, π(θ(n))q(θ(n),θ(n−1))

π(θ(n−1))q(θ(n−1),θ(n))

}
if π(θ(n))q(θ(n), θ(n−1)) 6= 0

0 otherwise
(6.8.69)

It can then be shown that given the chosen transition kernel q(θ(n−1), θ(n)), the distribution obtained

from α(θ(n−1), θ(n)) corresponds to the unconditional posterior distribution for θ. The Gibbs sampler

can thus be seen as a special case of the Metropolis-Hastings algorithm where the acceptance prob-

ability α(θ(n−1), θ(n)) for the current draw is always equal to 1. The general algorithm then goes as

follows:

Algorithm 4.8.1 (Metropolis-Hastings algorithm for a generic parameter θ):

1. Obtain the posterior density π(θ).

2. Define a transition kernel q(θ(n−1), θ(n)).

3. Start iterating over θ values: at iteration n, obtain a candidate value θ̃ from the transition

kernel q(θ(n−1), θ(n)).

4. At iteration n, obtain an acceptance probability α(θ(n−1), θ(n)) from (6.8.69).

5. At iteration n, draw a random number x from a uniform distribution x ∼ U (0, 1).

6. If x ≤ α(θ(n−1), θ(n)), then the draw is accepted: define θ(n) = θ̃. If x > α(θ(n−1), θ(n)), the draw

is rejected, keep the former value: define θ(n) = θ(n−1).

7. Return to step 3 and repeat until the desired number of iterations is realised.

The Metropolis-Hastings algorithm can be integrated to a wider setting. If there are several blocks

of parameters (for instance, in the present model: θ, b, Σ̃ and ϕ in addition to ζ), it is possible to run

the Metropolis-Hastings only for the blocks characterised by posterior distributions with unknown

forms. For the blocks with known forms, a standard Gibbs sampling approach can be applied. All

the draws, from the Gibbs sampler or from the Metropolis-Hastings algorithm, have to be realised

conditional on the other block values.

The final question is then the determination of the transition kernel q(θ(n−1), θ(n)). Ideally, a good

kernel should allow for sufficient variability in the value of θ between two iterations. This ensures that
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a large part of the support of π(θ) will be covered by the iterations of the algorithm, which improves

the mixing between iterations and the quality of the posterior. However, larger differences between

θ(n) and θ(n−1) typically imply larger differences between π(θ(n)) and π(θ(n−1)), which increases the

probability of rejection from (6.8.69). Then some values may be repeated often and the algorithm

may perform poorly. The kernel must thus be chosen to generate the most efficient compromise

between these two aspects.

A common choice is the random walk kernel defined as:

θ(n) = θ(n−1) + ω (6.8.70)

with ω an error term with a known distribution. Typically, ω is defined as a (multivariate) normal

random variable:

ω ∼ N (0,Ω) (6.8.71)

Ω is of particular importance as it determines how much variability is permitted by the transition

kernel, and thus sets the compromise between variability and acceptance. (6.8.70) then implies that

the transition kernel is given by:

q(θ(n−1), θ(n)) ∼ N (θ(n−1),Ω) (6.8.72)

This definition of the kernel is particularly convenient as one can use the symmetry of the normal

distribution for ω to simplify (6.8.69). Indeed, from (6.8.70), one obtains the following result for the

transition kernel:

q(θ(n−1), θ(n)) = π(θ(n)
∣∣θ(n−1) ) = π(ω = θ(n) − θ(n−1))

= π(ω = θ(n−1) − θ(n)) (symmetry) (6.8.73)

= π(θ(n−1)
∣∣θ(n) ) = q(θ(n), θ(n−1)) (6.8.74)

Then (6.8.69) simplifies to:

α(θ(n−1), θ(n)) =

{
min

{
1, π(θ(n))

π(θ(n−1))

}
if π(θ(n))q(θ(n), θ(n−1)) 6= 0

0 otherwise
(6.8.75)

This choice is retained for the transition kernel, which is then defined as:

Z(n) = Z(n−1) + ω (6.8.76)
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The covariance matrix Ω is set as Ω = ψIT , where ψ is some parameter determining the variance

of the draw. As previously discussed, the value of ψ must be chosen to achieve a good compromise

between the variability of the draw and its acceptance probability. In practice, it is calibrated so as

to obtain an acceptance rate of 20-30%, with the adequate value determined by trial and error.

Following, (6.8.68) and (6.8.76) imply that the acceptance probability for the Metropolis-Hastings

algorithm is given by:

α(Z(n−1), Z(n)) =
π(Z(n))

π(Z(n−1))

= exp

(
−1

2

T∑
t=1

(yt − X̃tθt)
,
Σ̃−1(yt − X̃tθt)

{
exp(−ζ(n)

t )− exp(−ζ(n−1)
t )

})

× exp

(
−Nn

2

T∑
t=1

{
ζ

(n)
t − ζ

(n−1)
t

})
× exp

(
−1

2

{
(Z(n))

,
Φ−1

0 Z(n) − (Z(n−1))
,
Φ−1

0 Z(n−1)
})

(6.8.77)

This completes the derivations of the model. It is finally possible to derive the full algorithm for the

posterior distribution:

Algorithm 4.8.2 (Gibbs sampling/Metropolis-Hastings algorithm for a time-varying

panel VAR model):

1. Define starting values θ(0) =
{
θ

(0)
t

}T
t=1

, b(0) =
{
b

(0)
i

}r
i=1

, Σ̃(0), ζ(0) =
{
ζ

(0)
t

}T
t=1

and ϕ(0). For

θ(0), use the long run value θ̄ for all t. For b(0), the value is set to b
(0)
i = 105 for all factors

i = 1, 2, · · · , r, which amounts to setting a diffuse prior on θ. For Σ̃(0), use (6.8.19) to obtain

εt = yt − X̃tθt, then obtain Σ̃(0) = 1/T
T∑
i=1

εtε
,
t. For ζ(0), the value is set to ζ

(0)
t = 0 for all t,

which implies no heteroskedasticity at the initiation of the algorithm. Finally, ϕ(0) is set to 1,

which corresponds to a standard normal distribution for the heteroskedasticity disturbance.

2. At iteration n, draw Σ̃(n) from π(Σ̃(n) |y , θ(n−1), b(n−1), ζ(n−1), ϕ(n−1)) ∼ IW (S̄, T ), with:

S̄ =
T∑
t=1

(yt − X̃tθ
(n−1)
t ) exp(−ζ(n−1)

t )(yt − X̃tθ
(n−1)
t )

,

3. At iteration n, draw ζ(n) =
{
ζ

(n)
t

}T
t=1

by using the Metropolis-Hastings algorithm (XXX). The

candidate is drawn from:

Z(n) = Z(n−1) + ω with ω ∼ N (0, ψIT )
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And the acceptance function is:

α(Z(n−1), Z(n))

= exp

(
−1

2

T∑
t=1

(yt − X̃tθ
(n−1)
t )

,
(Σ̃(n))−1(yt − X̃tθ

(n−1)
t )

{
exp(−ζ(n)

t )− exp(−ζ(n−1)
t )

})

× exp

(
−Nn

2

T∑
t=1

{
ζ

(n)
t − ζ

(n−1)
t

})
× exp

(
−1

2

{
(Z(n))

,
Φ−1

0 Z(n) − (Z(n−1))
,
Φ−1

0 Z(n−1)
})

4. At iteration n, draw ϕ(n) from π(ϕ(n)
∣∣∣y, θ(n−1), b(n−1), Σ̃(n), ζ(n) ) ∼ IG( ᾱ

2
, δ̄

2
), with:

ᾱ = T + α0

and:

δ̄ = (Z(n))
,
G,GZ(n) + δ0

5. At iteration n, draw b(n) =
{
b

(n)
i

}r
i=1

from π(bi
∣∣y, θ(n−1), Σ̃(n), ζ(n), ϕ(n)) ∼ IG( āi

2
, b̄i

2
), with:

āi = Tdi + a0

and:

b̄i =
T∑
t=1

(θ
(n−1)
i,t − θ(n−1)

i,t−1 )
,
(θ

(n−1)
i,t − θ(n−1)

i,t−1 ) + b0

6. At iteration n, draw θ(n) =
{
θ

(n)
t

}T
t=1

from π(θ
∣∣∣y, b(n), Σ̃(n), ζ(n), ϕ(n) ) ∼ N (Θ̄, B̄), with:

B̄ =
(
X̃ ,Σ−1X̃ +B−1

0

)−1

and:

Θ̄ = B̄
(
X̃ ,Σ−1y +B−1

0 Θ0

)
where:

Σ =


exp(ζ

(n)
1 )Σ̃(n) 0 · · · 0

0 exp(ζ
(n)
2 )Σ̃(n)

...
. . .

...

0 · · · exp(ζ
(n)
T )Σ̃(n)


and

B0 = H−1
(
IT ⊗B(n)

)
(H−1)

,

7. At iteration n, recover Σ(n) from:

Σ
(n)
t = exp(ζ

(n)
t )Σ̃(n)

This concludes the model.
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6.9 Applications with panel VARs: forecasts, impulse response func-

tions, forecast error variance decomposition

Producing forecasts with Bayesian panel VARs is straightforward. Indeed, any panel VAR ultimately

results in the estimation of a (set of) standard VAR models. In the case of the OLS mean-group

estimator and Bayesian pooled estimator, a single homogenous model is estimated for all the units.

In the case of the random effect model (Zellner and Hong or hierarchical), a set of N independent

VAR models are obtained. Finally, for the static factor model, a single large VAR model in which all

units are interacting is estimated. As all these models are of standard form, producing forecasts can

be realised by direct application of the forecast algorithm 2.1.1 for regular Bayesian VAR models,

and the presentation will not enter into further details.

The case of the dynamic factor model however is more complicated. In this case, it is not pos-

sible to apply naively the methodology proposed for a static model since the usual methodology

ignores the possibility that the VAR coefficients and residual covariance matrix may evolve across

time. It is however possible to extend directly the static approach to time-varying models by inte-

grating the laws of motion for the parameters into the sampling process. The equations of interest

for the time-varying factor approach are stated again for the sake of convenience:

yt = X̄tβt + εt (6.9.1)

εt ∼ N (0,Σt) with Σt = exp(ζt)Σ̃ (6.9.2)

ζt = γζt−1 + υt with υt ∼ N (0, ϕ) (6.9.3)

βt = Ξθt (6.9.4)

θt = (1− ρ)θ̄ + ρθt−1 + ηt with ηt ∼ N (0, B) (6.9.5)

Σ̃, ϕ and B are static parameters for which posterior draws have been obtained from the Gibbs sam-

pling process. The trick then consists in noticing that thanks to ϕ and B it is possible to draw series

of disturbances υt and ηt for any forecast period, and then to use the laws of motion (6.9.3) and

(6.9.5) to evaluate sequentially ζT+1, ..., ζT+h and θT+1, ..., θT+h. Concretely, the following adaptation

of algorithm 2.1.1 to dynamic models is developed:

Algorithm 4.9.1 (forecasts with a panel VAR model (dynamic factor approach):
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1. define the number of iterations (It−Bu) of the algorithm, and the forecast horizon h.

2. set the period to T + 1.

3. at iteration n, draw Σ(n) from its posterior distributions. To do so, recycle draw n from the

Gibbs sampler.

4. at iteration n, draw ϕ(n) from its posterior distributions. To do so, recycle draw n from

the Gibbs sampler. Then draw υ
(n)
T+1 from υT+1 ∼ N (0, ϕ(n)). Finally, obtain ζ

(n)
T+1 from

ζ
(n)
T+1 = γζ

(n)
T + υ

(n)
T+1.

5. obtain Σ
(n)
T+1 = exp(ζ

(n)
T+1)Σ̃(n). Draw the simulated residual ε̃

(n)
T+1.

6. at iteration n, draw B(n) from its posterior distributions. To do so, recycle draw n from

the Gibbs sampler. Then draw η
(n)
T+1 from η

(n)
T+1 ∼ N (0, B(n)). Finally, obtain θ

(n)
T+1 from

θ
(n)
T+1 = (1− ρ)θ̄ + ρθ

(n)
T + η

(n)
T+1.

7. at iteration n, obtain β
(n)
T+1 = Ξθ

(n)
T+1.

8. at iteration n, obtain y
(n)
T+1 = X̄T+1β

(n)
T+1 + ε

(n)
T+1

9. repeat steps 3-9 for T + 2, · · · , T + h.

10. repeat steps 2-10 until (It−Bu) iterations are realised. This produces:{
ỹ

(n)
T+1 |yT , ỹ

(n)
T+2 |yT , ..., ỹ

(n)
T+h |yT

}It−Bu
n=1

a sample of independent draws from the joint predictive distribution which can be used for

inference and computation of point estimates.

The logic for impulse response functions and forecast error variance decomposition is rigorously

similar to that of forecasts and is not developed further. In the case of impulse response functions

standard identification schemes apply. Two standard choices are the usual Choleski and triangular

factorisation.

6.10 Historical decomposition

Similarly to the previous applications, historical decomposition is straightforward to estimate for

the first five panel VAR models developed so far, simply following the standard Bayesian VAR

methodology. For the dynamic factor model, however, the time-varying properties of the impulse
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response functions involve some adaptation of the traditional methodology. Start again from the

general panel VAR model (6.1.5):

yt = A1
tyt−1 + · · ·+ Aptyt−p + Ctxt + εt (6.10.1)

For the present purpose, it is convenient to reformulate the model in companion form, that is, to

reformulate it as a VAR(1) model:

yt

yt−1

...

yt+2−p

yt+1−p


︸ ︷︷ ︸

Nnp×1

=



A1
t A2

t · · · Ap−1
t Apt

INn 0 · · · 0 0

0 INn 0 0
...

. . .
...

...

0 0 · · · INn 0


︸ ︷︷ ︸

Nnp×Nnp



yt−1

yt−2

...

yt+1−p

yt−p


︸ ︷︷ ︸

Nnp×1

+



Ct

0
...

0

0


︸ ︷︷ ︸
Nnp×m

(xt)︸︷︷︸
m×1

+



εt

0
...

0

0


︸ ︷︷ ︸
Nnp×1

(6.10.2)

or:

ȳt = Atȳt−1 + C̄tx̄t + ε̄t (6.10.3)

The advantage of formulation (6.10.3) over formulation (6.10.1) is that an AR(1) model makes it a

lot easier to solve for past values by backward substitution. Thus, use (6.10.3) to obtain a general

formulation for ȳt:

ȳt = Atȳt−1 + C̄tx̄t + ε̄t

= At(At−1ȳt−2 + C̄t−1x̄t−1 + ε̄t−1) + C̄tx̄t + ε̄t

= AtAt−1ȳt−2 + AtC̄t−1x̄t−1 + C̄tx̄t + Atε̄t−1 + ε̄t

Go one step further:

ȳt = AtAt−1ȳt−2 + AtC̄t−1x̄t−1 + C̄tx̄t + Atε̄t−1 + ε̄t

= AtAt−1(At−2ȳt−3 + C̄t−2x̄t−2 + ε̄t−2) + AtC̄t−1x̄t−1 + C̄tx̄t + Atε̄t−1 + ε̄t

= AtAt−1At−2ȳt−3 + AtAt−1C̄t−2x̄t−2 + AtC̄t−1x̄t−1 + C̄tx̄t + AtAt−1ε̄t−2 + Atε̄t−1 + ε̄t

Going on this way, one recovers the general formulation:

ȳt =

(
t−1∏
i=0

Āt−i

)
ȳ0 +

t−1∑
i=0

(
i∏

j=1

Āt+1−j

)
C̄t−ix̄t−i +

t−1∑
i=0

(
i∏

j=1

Āt+1−j

)
ε̄t−i (6.10.4)
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Note that similarly to 5.2.10, the first two terms represent the contribution of deterministic variables

(exogenous variables and initial conditions), while the final term represents the contribution of the

residuals:

ȳt =

(
t−1∏
i=0

At−i

)
ȳ0 +

t−1∑
i=0

(
i∏

j=1

At+1−j

)
C̄t−ix̄t−i︸ ︷︷ ︸

historical contribution of deterministic variables

+
t−1∑
i=0

(
i∏

j=1

At+1−j

)
ε̄t−i︸ ︷︷ ︸

historical contribution
of residuals

(6.10.5)

It is thus convenient to simplify (6.10.5) by defining the whole deterministic contribution as d̄(t), and

then rewrite as:

ȳt = d̄(t) +
t−1∑
i=0

Ψ̄t,iε̄t−i (6.10.6)

However, ȳt, d̄
(t) and Ψ̄t,i represents elements of model (6.10.3), while what is of interest is the original

model (6.10.1). In order to recover the original elements, use the following selection matrix:

J =
(
INn 0 0 · · · 0

)
︸ ︷︷ ︸

Nn×Nnp

(6.10.7)

Then note that the original elements can be recovered from:

yt = Jȳt d(t) = Jd̄(t) Ψt,i = JΨ̄t,iJ
, εt−i = Jε̄t−i (6.10.8)

Therefore, premultiplying both sides of (6.10.6) by J and manipulating, this rewrites as:

ȳt = d̄(t) +
t−1∑
i=0

Ψ̄t,iε̄t−i ⇔ Jȳt = Jd̄(t) +
t−1∑
i=0

JΨ̄t,iJJ
,ε̄t−i ⇔ yt = d(t) +

t−1∑
i=0

Ψt,iεt−i (6.10.9)

with the series of period-specific impulse response functions recovered from:

Ψt,i = J

(
i∏

j=1

At+1−j

)
J , (6.10.10)

Also, using the period-specific structural matrix Dt, recovered from the period-specific residual co-

variance matrix Σt, one obtains:

Ψt,iεt−i = Ψt,iDtD
−1
t εt−i = Ψ̃t,iηt−i (6.10.11)
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And (6.10.9) reformulates as:

yt = d(t) +
t−1∑
i=0

Ψ̃t,iηt−i (6.10.12)

This formulation is similar to 5.2.11, except for the facts that the impulse response functions are

now period-specific. (6.10.12) can thus be used to recover the historical decomposition in a standard

way, simply accounting for time-specificity. The following algorithm is thus proposed:

Algorithm 4.10.1 (historical decomposition for the dynamic factor panel model):

1. define the number of iterations (It−Bu) of the algorithm. Then run the algorithm:

2. At iteration n, draw θ
(n)
t and Σ

(n)
t from their posterior distributions, for t = 1, 2, · · · , T . Simply

recycle draws from the Gibbs sampler.

3. Recover β
(n)
t from β

(n)
t = Ξθ

(n)
t , and use it to obtain At from (6.10.2), for t = 1, 2, · · · , T .

4. Calculate Ψt,i = J

(
i∏

j=1

At+1−j

)
J ,, for t = 1, 2, · · · , T .

5. Obtain the structural matrix Dt from Σt, and compute Ψ̃t,i = Ψt,iDt, for t = 1, 2, · · · , T .

6. Obtain the historical decomposition in a regular way, using 6.10.12.

6.11 Conditional forecasts

Estimating conditional forecasts in the context of panel VAR models results in a situation which is

similar to that of historical decomposition: conditional forecasts can be computed in a regular way

for the first five models, since the latter are nothing but regular VAR models (or groups thereof). For

the last panel model, however, the dynamic heterogeneity property implies that the coefficients are

time varying so that impulse response functions become period-specific. This leads to apply some

modifications to the traditional methodology.

Start again from the general panel VAR model (6.1.5):

yt = A1
tyt−1 + · · ·+ Aptyt−p + Ctxt + εt (6.11.1)
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Similarly to the estimation of historical decomposition, it is convenient to work with a model in

companion form. Thus, reformulate (6.11.1) as a VAR(1) model:

yt

yt−1

...

yt+2−p

yt+1−p


︸ ︷︷ ︸

Nnp×1

=



A1
t A2

t · · · Ap−1
t Apt

INn 0 · · · 0 0

0 INn 0 0
...

. . .
...

...

0 0 · · · INn 0


︸ ︷︷ ︸

Nnp×Nnp



yt−1

yt−2

...

yt+1−p

yt−p


︸ ︷︷ ︸

Nnp×1

+



Ct

0
...

0

0


︸ ︷︷ ︸
Nnp×m

(xt)︸︷︷︸
m×1

+



εt

0
...

0

0


︸ ︷︷ ︸
Nnp×1

(6.11.2)

or:

ȳt = Atȳt−1 + C̄tx̄t + ε̄t (6.11.3)

Then consider forecasting for period T+h. Rather than iterating backward as in the case of historical

decomposition, forward iteration is used. Consider period T + 1:

ȳT+1 = AT+1ȳt + C̄T+1x̄T+1 + ε̄T+1 (6.11.4)

Iterate one step forward to obtain the value at period T + 2:

ȳT+2 = AT+2ȳT+1 + C̄T+2x̄T+2 + ε̄T+2

= AT+2

(
AT+1ȳT + C̄T+1x̄T+1 + ε̄T+1

)
+ C̄T+2x̄T+2 + ε̄T+2

= AT+2AT+1ȳT + AT+2C̄T+1x̄T+1 + C̄T+2x̄T+2 + AT+2ε̄T+1 + ε̄T+2 (6.11.5)

Iterate again one step forward to obtain an expression for period T + 3:

ȳT+3 = AT+3ȳT+2 + C̄T+3x̄T+3 + ε̄T+3

= AT+3

(
AT+2AT+1ȳT + AT+2C̄T+1x̄T+1 + C̄T+2x̄T+2 + AT+2ε̄T+1 + ε̄T+2

)
+ C̄T+3x̄T+3 + ε̄T+3

= AT+3AT+2AT+1ȳT + AT+3AT+2C̄T+1x̄T+1 + AT+3C̄T+2x̄T+2 + C̄T+3x̄T+3

+ AT+3AT+2ε̄T+1 + AT+3ε̄T+2 + ε̄T+3 (6.11.6)

Going on this way, one obtains a general formula:

ȳT+h =

(
h∏
i=1

At+1+h−i

)
ȳT +

h∑
i=1

(
h−1∏
j=i

AT+h+i−j

)
C̄T+ix̄T+i +

h∑
i=1

(
h−1∏
j=i

AT+h+i−j

)
ε̄T+i (6.11.7)
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The first two terms give the predicted values in the absence of shocks and hence represent the regular

forecasts. The final term represents the dynamic impact of past residuals at period T + h. It then

represents the series of impulse response functions specific to this period. Therefore, (6.11.7) can be

written as:

ȳT+h =

(
h∏
i=1

At+1+h−i

)
ȳT +

h∑
i=1

(
h−1∏
j=i

AT+h+i−j

)
C̄T+ix̄T+i︸ ︷︷ ︸

Forecast in the absence of shocks

+
h∑
i=1

(
h−1∏
j=i

AT+h+i−j

)
ε̄T+i︸ ︷︷ ︸

Dynamic impact of residuals

(6.11.8)

or:

ȳT+h = ˜̄yT+h +
h∑
i=1

Ψ̄T+h,h−iε̄T+i (6.11.9)

Because this formula provides values for ȳT+h, while only yT+h is of interest, define the selection

matrix:

J =
(
INn 0 0 · · · 0

)
︸ ︷︷ ︸

Nn×Nnp

(6.11.10)

Then note that:

ȳT+h = ˜̄yT+h +
h∑
i=1

Ψ̄T+h,h−iε̄T+i

⇔ JȳT+h = J ˜̄yT+h +
h∑
i=1

JΨ̄T+h,h−iJ
,Jε̄T+i

⇔ yT+h = ỹT+h +
h∑
i=1

ΨT+h,h−iεT+i (6.11.11)

Therefore, the regular forecasts can be recovered from:

ỹT+h = J

[(
h∏
i=1

At+1+h−i

)
ȳT +

h∑
i=1

(
h−1∏
j=i

AT+h+i−j

)
C̄T+ix̄T+i

]
(6.11.12)

And the series of period-specific impulse response functions obtains from:

ΨT+h,h−i = J

(
h−1∏
j=i

AT+h+i−j

)
J , (6.11.13)
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Also, using the period-specific structural matrix DT+h, recovered from the period-specific residual

covariance matrix ΣT+h, one obtains:

ΨT+h,h−iεT+i = ΨT+h,h−iDT+hD
−1
T+hεT+i = Ψ̃T+h,h−iηT+i (6.11.14)

And (6.11.11) reformulates as:

yT+h = ỹT+h +
h∑
i=1

Ψ̃T+h,h−iηT+i (6.11.15)

It can be seen that (6.11.15) is similar to 5.4.1, save for the fact that the impulse response functions

are period-specific. Therefore, (6.11.15) can be used to recover conditional forecasts in a standard

way, simply accounting for time-specificity. The following algorithm is thus proposed:

Algorithm 4.11.1 (conditional forecasts for the dynamic factor panel model):

1. define the number of iterations (It−Bu) of the algorithm. Then run the algorithm:

2. At iteration n, draw θ
(n)
T , ζ

(n)
T , Σ̃(n) and B(n) from their posterior distributions. Simply recycle

draws from the Gibbs sampler.

3. At iteration n, obtain recursively θ
(n)
T+i from:

θ
(n)
T+i = (1− ρ)θ̄ + ρθ

(n)
T+i−1 + η

(n)
T+i with: η

(n)
T+i ∼ N (0, B(n)) , for i = 1, 2, . . . , h.

4. At iteration n, obtain β
(n)
T+i = Ξθ

(n)
T+i and use it to obtain A

(n)
T+i and C̄

(n)
T+i from (6.11.2), for

i = 1, 2, · · · , h.

5. At iteration n, obtain the unconditional forecast ỹ
(n)
T+h from:

ỹ
(n)
T+h = J

[(
h∏
i=1

A
(n)
t+1+h−i

)
ȳT +

h∑
i=1

(
h−1∏
j=i

A
(n)
T+h+i−j

)
C̄

(n)
T+ix̄T+i

]
6. At iteration n, obtain the series of impulse response functions ΨT+h,h−i, from:

Ψ
(n)
T+h,h−i = J

(
h−1∏
j=i

A
(n)
T+h+i−j

)
J , , for i = 1, 2, . . . , h

7. At iteration n, obtain recursively ζ
(n)
T+i from:

ζ
(n)
T+i = γζ

(n)
T+i−1 + υ

(n)
T+i with υ

(n)
T+i ∼ N (0, ϕ(n)) , for i = 1, 2, . . . , h

8. At iteration n, obtain Σ
(n)
T+h = exp(ζ

(n)
T+h)Σ̃

(n), then obtain the structural matrix D
(n)
T+h from

Σ
(n)
T+h.
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9. At iteration n, obtain the structural impulse response functions Ψ̃T+h,h−i from:

Ψ̃T+h,h−i = ΨT+h,h−iDT+h , for i = 1, 2, . . . , h

10. Obtain the conditional forecasts in a regular way, using (6.11.15).
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7 Summary and Conclusions

Bayesian econometrics has now become a very dynamic field, with innovative research as well as

promising applications being released on a regular basis. We have created BEAR by believing that

it would be a dynamic tool and could always remain at the frontier of current econometric research.

While BEAR offers already a wide range of applications, we believe there is still room for improve-

ment. Significant contributions have been recently produced in terms of Bayesian VAR modeling,

and these developments should be integrated to BEAR at some point.

Two fields seem particularly attractive. The first one is the category of mixed frequency models

which has been recently developing at a fast pace, mainly under the motivation of improved fore-

cast performances. Mixed frequency models are indeed constructed to integrate high frequency data

within lower frequency frameworks, allowing to update forecasts as soon as new data is released. This

may represent a significant advance for economists for whom now-casting and short-run forecasting

represent a central concern. The approach is now getting more firmly established, see for instance

Schorfheide and Song (2016). The second field is that of time-varying models. Economists now

consider seriously the possibility that the dynamic process of a model may change over time, which

motivates the development of such approaches. Research is still on-going and alternative Bayesian

methodologies currently coexist: see for instance Primiceri (2005), the state-space approach of Durbin

and Koopman (2002), or the sparse matrix approach of Chan and Eisenstat (2015). Other method-

ologies are worth mentioning and could be profitably integrated to BEAR. Error correction models

remain relevant, all the more since it is often customary to use macroeconomic data in log levels.

Threshold models are useful to account for non-linearities in the data, and this issue has become

prominent since the financial crisis. Markov-switching models could also represent an option to model

data characterised by non-linear behaviour.

Keeping in mind these possible developments, the main objectives of BEAR remain unchanged:

providing an easy access to innovative Bayesian applications to the widest possible audience, from

expert practitioners to newcomers in Bayesian methods.
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A Appendix

A.1 Preliminary mathematical results

While the derivations of the different posterior distributions are often not difficult intrinsically, they

rely heavily on certain results related to linear algebra. This appendix hence states these results, in

order to make the incoming derivations easier to read. Most results are standard, so that their proofs

are omitted. For further details on the derivations of these results, one may consult mathematics

textbooks such as Bernstein (2005) or Simon and Blume (1994). Proofs are developed for non

standard results.

Results related to Kronecker products:

(A⊗B), = A, ⊗B, (A.1.1)

(A⊗B)−1 = A−1 ⊗B−1 (A.1.2)

For matrices A,B,C and D, such that AC and BD are defined:

(A⊗B) (C ⊗D) = (AC)⊗ (BD) (A.1.3)

For a matrix A of dimension n× n, and a matrix B of dimension p× p, one has:

|A⊗B| = |A|p|B|n (A.1.4)

vec(ABC) = (C , ⊗ A)vec(B) (A.1.5)

Proof: See Hamilton (1994), proposition 10.4 and proof p 289.

Results related to the trace of a square matrix:

tr(A+B) = tr(A) + tr(B) (A.1.6)

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC) (cyclical property) (A.1.7)

tr(A,B) = vec(A), × vec(B) (A.1.8)
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Results related to vectorisation:

vec(A+B) = vec(A) + vec(B) (A.1.9)

For matrices V,X,M,U, Y and N , such that V is n×n and symmetric, U is k× k, and X,M, Y and

N are k × n, one has:

tr
{
V −1(X −M),U−1(Y −N)

}
= (vec(X)− vec(M)),(V ⊗ U)−1 (vec(Y )− vec(N)) (A.1.10)

Proof :

tr
{
V −1(X −M),U−1(Y −N)

}
= tr

{
(X −M),U−1(Y −N)V −1

}
A.17.15

= vec(X −M), × vec
(
U−1(Y −N)V −1

)
A.1.8

= vec(X −M), × (V −1 ⊗ U−1)vec(Y −N)A.1.5 and symmetry

= (vec(X)− vec(M)),(V −1 ⊗ U−1) (vec(Y )− vec(N))A.1.9

= (vec(X)− vec(M)),(V ⊗ U)−1 (vec(Y )− vec(N))A.1.2

Results related to determinants and eigenvalues:

Let A be a triangular matrix. Then the determinant of A is equal to the product of its diagonal terms.

(A.1.11)

Corollary:

Let A be a diagonal matrix. Then the determinant of A is equal to the product of its diagonal terms.

(A.1.12)

Let A and B be k × k matrices. Then:

|AB| = |A| |B| (A.1.13)

Let c be any scalar and A be a k × k matrix. Then

|cA| = ck |A| (A.1.14)

Let A be a k × k matrix. Then ∣∣A−1
∣∣ = |A|−1 (A.1.15)
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Let B be a k ×m matrix, and C be a m× k matrix. Then:

|Ik +BC| = |Im + CB| by Sylvesters determinant theorem. (A.1.16)

generalisation:

Let A be any invertible k × k matrix, B be a k × m matrix, and C be a m × k matrix. Then:

|A+BC| = |A| . |Im + CA−1B|
proofs: see Pozrikidis (2014) p 271.

Let A be a k × k matrix. If λ is an eigenvalue of A , then λ+ t is an eigenvalue of

A+ tIk, (A.1.17)

where t is some scalar. When t = 1, this says that if λ is an eigenvalue of A , then λ + 1 is an

eigenvalue of A+ Ik.

proof: because λ is an eigenvalue of A, there exists some eigenvector u such that Au = λu. Then:

Au = λu ⇒ Au + tu = λu + tu ⇒ Au + tIku = λu + tu ⇒ (A + tIk)u = (λ + t)u. Therefore, by

definition, λ+ t is an eigenvalue of A+ tIk.

- let A be a k × k symmetric positive definite matrix. Then:

|Ik + A| =
∏k

i=1
(1 + λi(A)) (A.1.18)

where λi(A) denotes the ith eigenvalue of A. In other words, the determinant of Ik+A can be obtained

from the product of 1 plus the eigenvalues of A. proof: because the determinant of a matrix is equal

to the product of its eigenvalues, one can write:

|Ik + A| =
∏k

i=1 λi (Ik + A) where λi (Ik + A) denotes the ith eigenvalue of Ik + A

=
∏k

i=1 (1 + λi (A)) by direct application of A.1.17

A.2 Statistical distributions

Bayesian analysis in general may rely on a very large number of different statistical distributions.

This section does not aim at being exhaustive and only provides a brief introduction for the families

of distribution used at some point in this guide. Proofs for the results do not constitute the main

object of this guide and are thus omitted. For a more formal presentation, textbooks such as Casella

and Berger (2001) can be consulted.
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A.2.1 Uniform distribution

The scalar random variable x follows a continuous uniform distribution over the interval [a, b]:

x ∼ U (a, b) (A.2.1.1)

if its density is given by:

f (x |a, b) =

{
1
b−a for x ∈ [a, b]

0 otherwise
(A.2.1.2)

It has the following properties:

E(x) =
a+ b

2
and var(x) =

(b− a)2

12
(A.2.1.3)

A.2.2 Multivariate normal distribution

A k-dimensional random vector x is said to follow a multivariate normal distribution with location

µ and covariance Σ:

x ∼ Nk (µ,Σ)

if its density is given by:

f(x |µ,Σ) = (2π)−k/2|Σ|−1/2 exp

(
−1

2
(x− µ),Σ−1(x− µ)

)
(A.2.2.1)

where µ is k × 1 vector and Σ is k × k symmetric positive definite matrix. Its kernel is given by:

f(x |µ,Σ) ∝ exp

(
−1

2
(x− µ),Σ−1(x− µ)

)
(A.2.2.2)

It has the following properties:

E(x) = µ and V ar(x) = Σ (A.2.2.3)

If x ∼ Nr1+r2 (µ,Σ), and x, µ and Σ are partitioned in the following way:

x =

(
x1

x2

)
r1

r2

, µ =

(
µ1

µ2

)
r1

r2

and

(
Σ11 Σ12

Σ21 Σ22

)
r1 r2

r1

r2

Then:
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x1 ∼ Nr1 (µ1,Σ11) and x2 ∼ Nr2 (µ2,Σ22) (A.2.2.4)

In other words, a subset of multivariate normal distribution is itself a multivariate normal dis-

tribution, with mean and covariance matrices defined as the corresponding subset of the original

distribution.

The converse property holds in case of independence: let x1 be a k1 × 1 random vector following

a multivariate normal distribution with mean µ1 and covariance Σ1, and x2 be a k2 × 1 random

vector following a multivariate normal distribution with mean µ2 and covariance Σ2. If x1 and x2 are

independent, then the k × 1 random vector x follows a multivariate normal distribution with mean

µ and covariance Σ with:

k = k1 + k2 x =

(
x1

x2

)
µ =

(
µ1

µ2

)
Σ =

(
Σ1 0

0 Σ2

)
(A.2.2.5)

A final important property is the affine or linear property of the multivariate normal distribution:

let x ∼ Nk (µ,Σ) and let A and b respectively denote a m×k matrix and a m×1 vector of coefficients.

Then the random vector y = Ax+b also follows a multivariate normal distribution with mean Aµ+b

and covariance matrix AΣA,. That is:

x ∼ Nk(µ,Σ)⇒ y = Ax+ b ∼ Nm(Aµ+ b, AΣA,) (A.2.2.6)

Therefore, an affine combination of a multivariate normal random variable is itself multivariate nor-

mal, with mean and covariance matrices defined in accordance with the affine function.

This property can be used to generate easily multivariate random numbers with an arbitrary

mean and covariance from a multivariate standard normal draw:

Algorithm a.2.2.1 (random number generator for the multivariate normal distribution): in or-

der to generate a k × 1 random vector y from a multivariate normal distribution with mean µ and

covariance matrix Σ:

1. first draw a k × 1 random vector x from a multivariate standard normal distribution, that is,

draw x from x ∼ Nk(0, Ik).

2. estimate A, where A is any matrix such that AA, = Σ. Typically, A will be chosen as the

(lower triangular) Choleski factor of Σ, but other choices are possible. For instance, A could

be chosen as the square root matrix of Σ).
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3. eventually compute y = µ+ Ax. Then from the affine property y = µ+ Ax is a random draw

from Nk(µ,Σ).

A.2.3 Matrix Normal Distribution

A k× n random matrix X is said to follow a matrix normal distribution with location M , and scale

matrices Σ and Φ:

X ∼ MNk,n(M,Σ,Φ)

if its density is given by:

f(X |M,Φ,Σ) = (2π)−nk/2|Σ|−k/2|Φ|−n/2 exp

(
−1

2
tr
[
Σ−1(X −M),Φ−1(X −M)

])
(A.2.3.1)

where M is k × n matrix, and Σ is n × n symmetric positive definite matrix, and Φ is k × k

symmetric positive definite matrix.

Its kernel is given by:

f(X |M,Φ,Σ) ∝ exp

(
−1

2
tr
[
Σ−1(X −M),Φ−1(X −M)

])
(A.2.3.2)

It has the following properties:

E(X) = M V ar(X) =

{
Φ (among rows)

Σ (among columns)
(A.2.3.3)

Equivalence of the matrix normal distribution with the multivariate normal distribution:

X ∼ MNk,n(M,Φ,Σ) if and only if vec(X) ∼ Nkn(vec(M),Σ⊗ Φ). (A.2.3.4)

Proof: the proof consists in showing that the density of the two distributions are equivalent, and

it follows directly from A.1.4 and A.1.10.

To illustrate this relation, it is now shown how the data density can be conveniently rewritten

in terms of a matrix normal distribution, rather than a multivariate normal. Start from the data

density 3.3.1:

f(y
∣∣β, Σ̄) = (2π)−nT/2

∣∣Σ̄∣∣−1/2
exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
(A.2.3.5)

From 3.1.13, y = vec(Y ), X̄ = In ⊗X, and β = vec(B), so that it is possible to rewrite:
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y − X̄β = vec(Y −XB) (A.2.3.6)

Also, from 3.1.14, Σ̄ = Σ ⊗ IT . With these elements, it is possible to reformulate the data

multivariate normal density as:

f(y
∣∣β, Σ̄) ∼ NTn (vec(Y −XB),Σ⊗ IT ) (A.2.3.7)

Now, apply A.2.3.4, and conclude that equivalently, the data density may be expressed a matrix

normal distribution:

f(y |B,Σ) ∼ MNT,n (Y −XB,Σ, IT ) (A.2.3.8)

From A.2.3.1, this implies the following density function:

f(y |B,Σ) = (2π)−nT/2|Σ|−T/2|IT |−n/2 exp

(
−1

2
tr
[
Σ−1(Y −XB),IT

−1(Y −XB)
])

And this simplifies to:

f(y |B,Σ) = (2π)−nT/2|Σ|−T/2 exp

(
−1

2
tr
[
Σ−1(Y −XB),(Y −XB)

])
(A.2.3.9)

The advantage of A.2.3.9 over A.2.3.5 is that it is computationally more efficient. In practical

applications, such as in the calculation of the data density for the marginal likelihood 3.9.36, it is

thus this formulation which will be retained.

Eventually, a feature of central interest is to be able to obtain random draws from a matrix normal

distribution. An algorithm to draw from a matrix normal distribution is provided by Karlsson (2012)

(see algorithm 19).

algorithm a.2.3.1 (random number generator for the matrix normal distribution): In order to

obtain a k×n random draw X from a matrix normal distribution with location matrix M , and scale

matrices Σ and Φ:

1. first compute the Choleski factors C and P of Σ and Φ, so that CC , = Σ and PP , = Σ.

2. draw a kn×1 random vector w from a multivariate standard normal distribution, and redimen-

sion it to transform it into a k×n random draw W from a standard matrix normal distribution,

using A.2.3.4.

3. finally, obtain X = M + PWC , . Then X is a random draw from MNk,n(M,Σ,Φ).
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A.2.4 Inverse Wishart distribution

The n × n symmetric positive definite matrix Σ follows an inverse Wishart distribution with scale

matrix S and degrees of freedom α:

Σ ∼ IW(S, α)

If its density is given by:

f(Σ |S, α) =
1

2αn/2Γn
(
α
2

) |S|α/2|Σ|−(α+n+1)/2 exp

(
−1

2
tr
{

Σ−1S
})

(A.2.4.1)

where S is n × n symmetric positive definite matrix, and α is an integer value. Γn is the multi-

variate Gamma function, defined as:

Γn(x) = πp(p−1)/4

n∏
i=1

Γ (x+ (1− i)/2) (A.2.4.2)

with Γ(x) the (univariate) Gamma function defined as:

Γ (x) =

∫ ∞
0

tx−1e−tdt

The kernel of the inverse Wishart distribution is given by:

f(Σ |S, α) ∝ |Σ|−(α+n+1)/2 exp

(
−1

2
tr
{

Σ−1S
})

(A.2.4.3)

It has the following properties:

E(Σ) =
S

α− n− 1
for α > n+ 1 (A.2.4.4)

For σi,j ∈ Σ:

V ar(σi,j) =
(α− n+ 1)s2

i,j + (α− n− 1)si,isj,j
(α− n)(α− n− 1)(α− n− 3)

(A.2.4.5)

where si,j is the entry of row i and column j of the matrix S.

Similarly to the matrix normal distribution, an important feature in practical applications is how

to obtain a random draw from the inverse Wishart distribution. A simple algorithm is proposed by

Karlsson (2012) (see algorithms 20 and 21).

Algorithm a.2.4.1 (random number generator for the inverse Wishart distribution): In order to

obtain a n×n random draw Σ from an inverse Wishart distribution with scale matrix S and degrees

of freedom α:
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1. compute the lower triangular Choleski factor C of the scale matrix S.

2. draw α random vectors z1, z2, . . . , zα from a multivariate standard normal distribution: Z ∼
Nn(0, In).

3. arrange those vectors into a α× n matrix Z, where row i of Z is the transpose of zi.

4. eventually estimate X = C(Z ,Z)−1C ,. Then X is a random draw from IWn(S, α).

A.2.5 Matrix variate student distribution

This distribution may have several different definitions. The definition retained here is that of Gupta

and Nagar (1999). A k × n random matrix X is said to follow a matrix normal distribution with

location M , scale matrices Σ and Φ, and degrees of freedom α :

X ∼ Mtk,n(M,Σ,Φ, α) (A.2.5.1)

if its density is given by:

f(X |M,Σ,Φ, α) =
Γk ([α + k + n− 1]/2)

πkn/2Γk ([α + k − 1]/2)
|Σ|−k/2|Φ|−n/2

∣∣In + Σ−1(X −M),Φ−1(X −M)
∣∣−(α+n+k−1)/2

(A.2.5.2)

where M is k×n matrix, and Σ is n×n symmetric positive definite matrix, Φ is k×k symmetric

positive definite matrix, and α is an integer value. Γk is the multivariate Gamma function.

Its kernel is given by:

f(X |M,Σ,Φ, α) ∝
∣∣In + Σ−1(X −M),Φ−1(X −M)

∣∣−(α+n+k−1)/2
(A.2.5.3)

It has the following properties:

E(X) = M and V ar(vec(X)) =
1

α− 2
(Σ⊗ Φ) for α > 2 (A.2.5.4)

Another important property of the matrix-variate student is the following theorem (theorem 4.3.9

in Gupta and Nagar (1999)):

Let X ∼ Mtk,n(M,Σ,Φ, α), and partition X,M,Σ and Φ as:

X =

(
Xr1

Xr2

)
r1

r2

=
(Xc1 Xc2)

c1 c2
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M =

(
Mr1

Mr2

)
r1

r2

=
(Mc1 Mc2)

c1 c2

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
c1

c2

c1 c2

and

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
r1

r2

r1 r2

then:

Xr1 ∼ Mtr1,n(Mr1,Σ,Φ11, α)

and

Xc1 ∼ Mtk,c1(Mc1,Σ11,Φ, α)

In other words, if one partitions a matrix-student distribution with α degrees of freedom, then

the sub-partition remains a matrix-student distribution with α degrees of freedom, with mean and

covariance defined in accordance with the partitions. Going on with partitioning up to individual

entries of X, this result implies that:

Xij ∼ t(Mij,Φii × Σjj, α) (A.2.5.5)

That is, each individual element Xij of X follows a univariate student distribution with mean

Mij, scale parameter Φii × Σjj and degrees of freedom α. This provides the mean and variance Xij,

but no direct way to compute confidence intervals. Because the definition of the matrix student

distribution provided by Gupta and Nagar (1999) differs from the classical student distribution with

respect to the scale parameter, some translation is required to compute correct results. Hence, to

obtain confidence intervals, consider a classical univariate location-scale student distribution with

location parameter µ and scale parameter σ, such that:

X = µ+ σT

where T follows a classical univariate student distribution. Then this distribution has the following
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properties:

E(X) = µ and V ar(X) = σ2 α
α−2

with α the degrees of freedom of the distribution. This implies that the univariate scale parameter

σ can be expressed as a function of the variance and degrees of freedom as:

σ =

√
α− 2

α
V ar(X) (A.2.5.6)

Because V ar(X) can be directly obtained for the matrix student distribution from A.2.5.4, a γ

confidence interval for the distribution can then be obtained in a classical way from:

Mij ± t(γ/2,α)σ (A.2.5.7)

where t(γ,α) is the is the γth quantile of the standard student distribution with α degrees of

freedom.

Eventually, in a way similar to the matrix normal and inverse Wishart distributions, an algorithm

to draw from the matrix student distribution is now introduced (see Karlsson (2012), algorithm 22).

algorithm a.2.5.1 (random number generator for the matrix variate student distribution):

In order to obtain a k × n random draw X from a matrix variate student distribution with location

M , scale matrices Σ and Φ, and degrees of freedom α:

1. first draw a n× n random matrix V from an inverse Wishart distribution with scale matrix Σ

and degrees of freedom α : V ∼ IWn(Σ, α), using algorithm a.2.2.

2. draw a k × n random matrix X from a matrix normal distribution: Z ∼ MNk,n(M,V,Φ),

using algorithm a.2.1. Then X is a random draw from Mtk,n(M,Σ,Φ, α).

A.2.6 Gamma distribution

The scalar random variable x follows a Gamma distribution with shape parameter a and scale

parameter b:

x ∼ G (a, b) (A.2.6.1)

If its density is given by:

f (x |a, b) =
b−a

Γ(a)
xa−1 exp

(
−x
b

)
(A.2.6.2)

Γ(a) denotes as usual the (univariate) Gamma function. The kernel of the distribution is given by:

f (x |a, b) ∝ xa−1 exp
(
−x
b

)
(A.2.6.3)
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It has the following properties:

E(x) = ab and var(x) = ab2 (A.2.6.4)

To sample from G (a, b), it is possible to use the following algorithm proposed by Marsaglia and

Tsang (2000):

algorithm a.2.6.1 (random number generator for the Gamma distribution):

step 1. generate a random number from G (a, 1):

If a ≥ 1:

1. set d = a− 1/3 and c = 1/
√

9d.

2. generate z ∼ N (0, 1) and u ∼ U (0, 1) independently.

3. generate v = (1 + cz)3.

4. if v > 0 and log(u) < 0.5z2 + d− dv + d× log(v), then set x = dv.

5. otherwise, go back to 2.

If 0 < a < 1:

1. generate a random number x̃ from G (a+ 1, 1), using the above algorithm.

2. generate u ∼ U (0, 1)

3. define x = x̃u1/a; then x ∼ G (a, 1)

step 2. transform into a random number from G (a, b):

1. generate a random number x̄ from G (a, 1), using step 1.

2. define x = x̄b; then x ∼ G (a, b)

A.2.7 Inverse Gamma distribution

The scalar random variable x follows an inverse Gamma distribution with shape parameter a and

scale parameter b:

x ∼ IG (a, b) (A.2.7.1)

if its density is given by:

f (x |a, b) =
ba

Γ(a)
x−a−1 exp

(
−b
x

)
(A.2.7.2)
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Γ(a) denotes as usual the (univariate) Gamma function. The kernel of the distribution is given by:

f (x |a, b) ∝ x−a−1 exp

(
−b
x

)
(A.2.7.3)

It has the following properties:

E(x) =
b

a− 1
for a>1 and var(x) =

b2

(a− 1)2(a− 2)
for a>2 (A.2.7.4)

Another important property of the inverse Gamma is the following: if x follows a Gamma distribution

with shape a and scale b, then 1/x follows an inverse Gamma distribution with shape a and scale

1/b. That is:

x ∼ G(a, b) ⇒ 1/x ∼ IG(a, 1/b) (A.2.7.5)

It is then simple to propose the following algorithm to draw from IG(a, b):

algorithm a.2.7.1 (random number generator for the Inverse Gamma distribution):

1. draw a random number x̃ from G(a, 1/b).

2. set x = 1/x̃; then x is a random draw from IG(a, b).

Also, it turns out that the inverse Gamma distribution is a special univariate case of the inverse

Wishart distribution. To see this, consider the inverse Wishart density A.2.4.1 when n = 1 (univariate

case) so that Σ = x, S = 2b, α = 2a and compare with (A.2.7.2).

A.3 Derivations of the posterior distribution with a Minnesota prior

The derivation of the posterior distribution with a Minnesota prior remains relatively simple. It

starts with equation 3.3.15:

π(β |y ) ∝ exp

[
−1

2

{(
y − X̄β

),
Σ̄−1

(
y − X̄β

)
+ (β − β0),Ω−1

0 (β − β0)
}]

(A.3.1)

To transform this expression, consider only the exponential part in the curly brackets and develop

it:

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)
+ (β − β0),Ω−1

0 (β − β0)

= y,Σ̄−1y + β,X̄ ,Σ̄−1X̄β − 2β,X̄ ,Σ̄−1y + β,Ω−1
0 β + β,0Ω−1

0 β0 − 2β,
(
Ω−1

0

),
β0

= y,Σ̄−1y + β,
(
Ω−1

0 + X̄ ,Σ̄−1X̄
)
β − 2β,

(
Ω−1

0 β0 + X̄ ,Σ̄−1y
)

+ β,0Ω−1
0 β0 (A.3.2)
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Notice that A.3.1 resembles the kernel of a normal distribution, but with a sum of squares rather

than a single square term within the exponential part. It would therefore be nice to replace this

sum by a single square, to obtain the kernel of a normal distribution. This can be done by applying

the manipulations known as ”completing the square”. This most of the time amounts to adding and

subtracting an additional matrix term, and inserting the product of a matrix with its inverse. After

factoring, this will eventually lead to a single squared form, while the additional terms created will

be independent of β and will hence be relegated to the proportionality constant. Hence, complete

the squares in A.3.2):

= y,Σ̄−1y + β,
(
Ω−1

0 + X̄ ,Σ̄−1X̄
)
β − 2β,Ω̄−1Ω̄

(
Ω−1

0 β0 + X̄ ,Σ̄−1y
)

+ β,0Ω−1
0 β0 + β̄,Ω̄−1β̄ − β̄,Ω̄−1β̄

(A.3.3)

Note that A.3.3 holds whatever the definition of Ω̄ and β̄ (as long as dimensions agree). Never-

theless, one may obtain the desired squared form from A.3.3 by defining:

Ω̄ =
(
Ω−1

0 + X̄ ,Σ̄−1X̄
)−1

and (A.3.4)

β̄ = Ω̄
(
Ω−1

0 β0 + X̄ ,Σ̄−1y
)

(A.3.5)

For then, A.3.3 rewrites:

= y,Σ̄−1y + β,Ω̄−1β − 2β,Ω̄−1β̄ + β,0Ω−1
0 β0 + β̄,Ω̄−1β̄ − β̄,Ω̄−1β̄

=
(
β,Ω̄−1β − 2β,Ω̄−1β̄ + β̄,Ω̄−1β̄

)
+
(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,Σ̄−1y
)

=
(
β − β̄

),
Ω̄−1

(
β − β̄

)
+
(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,Σ̄−1y
)

(A.3.6)

Substituting back A.3.6 in A.3.1), one obtains:

π(β |y ) ∝ exp

[
−1

2

{(
β − β̄

),
Ω̄−1

(
β − β̄

)
+
(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,Σ̄−1y
)}]

∝ exp

[
−1

2

(
β − β̄

),
Ω̄−1

(
β − β̄

)]
× exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,Σ̄−1y
)]

∝ exp

[
−1

2

(
β − β̄

),
Ω̄−1

(
β − β̄

)]
(A.3.7)

where the last line obtains by noting that the second term in row 2 does not involve β and can
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hence be relegated to the proportionality constant. Therefore, one finally obtains:

π(β |y ) ∝ exp

[
−1

2

(
β − β̄

),
Ω̄−1

(
β − β̄

)]
(A.3.8)

Which is 3.3.16 in the text. Finally, one may obtain a rewriting of A.3.5 and A.3.6.

Consider X̄ ,Σ̄−1X̄ in A.3.5:

X̄ ,Σ̄−1X̄ =(In ⊗X),(Σ⊗ IT )−1(In ⊗X)

=(In ⊗X ,)(Σ−1 ⊗ IT )(In ⊗X)A.1.1A.1.2

=(Σ−1 ⊗X ,)(In ⊗X)A.1.3

=Σ−1 ⊗X ,XA.1.3 (A.3.9)

Hence, A.3.5 rewrites:

Ω̄ =
[
Ω−1

0 + Σ−1 ⊗X ,X
]−1

(A.3.10)

Similarly, consider the part X̄ ,Σ̄−1y in A.3.6:

X̄ ,Σ̄−1y =(In ⊗X),(Σ⊗ IT )−1y

(In ⊗X ,)(Σ−1 ⊗ IT )y A.1.1, A.1.2

=(Σ−1 ⊗X ,)y A.1.3 (A.3.11)

Therefore, A.1.5 rewrites:

β̄ = Ω̄
[
Ω−1

0 β0 + (Σ−1 ⊗X ,)y
]

(A.3.12)

The advantage of A.3.9 and A.3.10 over A.3.5 and A.3.6 is that they are numerically much faster

to compute. One can then eventually recognise A.3.9 and A.3.10 as 3.3.17 and 3.3.18 in the text.

A.4 Derivations of the posterior distribution with a normal-Wishart

prior

Computing the posterior distributions for β and Σ from 3.2.5 requires the identification of a likelihood

function for the data, and of prior distributions for β and Σ. Start with the likelihood. One may

first want to show how to rewrite the likelihood 3.6.2 in the form of 3.6.3. Start from 3.6.2:
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f(y |β,Σ) ∝
∣∣Σ̄∣∣−1/2

exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
For our purpose, it will be easier to use 3.1.13 and 3.1.14 to reformulate the likelihood as:

f(y |β,Σ) ∝ |Σ⊗ IT |−1/2 exp

[
−1

2

{
(y − (In ⊗X)β),(Σ⊗ IT )−1 (y − (In ⊗X)β)

}]
(A.4.1)

Consider only the part within the curly brackets and develop it:

(y − (In ⊗X)β),(Σ⊗ IT )−1 (y − (In ⊗X)β)

= (y, − β,(In ⊗X),)
(
Σ−1 ⊗ IT

)
(y − (In ⊗X)β)A.1.2

= y,
(
Σ−1 ⊗ IT

)
y − 2β,(In ⊗X),

(
Σ−1 ⊗ IT

)
y + β,(In ⊗X),

(
Σ−1 ⊗ IT

)
(In ⊗X)β

= y,
(
Σ−1 ⊗ IT

)
y − 2β,(Σ−1 ⊗X ,)y + β,(Σ−1 ⊗X ,X)β A.1.1, A.1.3

Now complete the squares:

= y,
(
Σ−1 ⊗ IT

)
y − 2β̂,

(
Σ−1 ⊗X ,

)
y + 2β̂,

(
Σ−1 ⊗X ,

)
y − 2β,

(
Σ−1 ⊗X ,

)
y + β,

(
Σ−1 ⊗X ,X

)
β

= y,
(
Σ−1 ⊗ IT

)
y − 2β̂,

(
Σ−1 ⊗X ,

)
y + 2β̂,

(
Σ−1 ⊗X ,X

) (
Σ−1 ⊗X ,X

)−1 (
Σ−1 ⊗X ,

)
y

− 2β,
(
Σ−1 ⊗X ,X

) (
Σ−1 ⊗X ,X

)−1 (
Σ−1 ⊗X ,

)
y + β,

(
Σ−1 ⊗X ,X

)
β (A.4.2)

Define β̂, the OLS estimate of β, as:

β̂ =
(
Σ−1 ⊗X ,X

)−1 (
Σ−1 ⊗X ,

)
y. (A.4.3)

Then, A.4.2 rewrites:
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= y,
(
Σ−1 ⊗ IT

)
y − 2β̂,

(
Σ−1 ⊗X ,

)
y + 2β̂,

(
Σ−1 ⊗X ,X

)
β̂

− 2β,
(
Σ−1 ⊗X ,X

)
β̂ + β,

(
Σ−1 ⊗X ,X

)
β

= y,
(
Σ−1 ⊗ IT

)
y − 2β̂,

(
Σ−1 ⊗X ,

)
y + β̂,

(
Σ−1 ⊗X ,X

)
β̂

+ β̂,
(
Σ−1 ⊗X ,X

)
β̂ − 2β,

(
Σ−1 ⊗X ,X

)
β̂ + β,

(
Σ−1 ⊗X ,X

)
β

= y,
(
Σ−1 ⊗ IT

)
y − 2β̂,

(
Σ−1 ⊗X ,

)
y + β̂,

(
Σ−1 ⊗X ,X

)
β̂

+ (β − β̂)
, (

Σ−1 ⊗X ,X
)

(β − β̂)

= y,
(
Σ−1 ⊗ IT

)
y − 2β̂,

(
Σ−1 ⊗X ,

)
y + β̂,

(
Σ−1 ⊗X ,X

)
β̂

+ (β − β̂)
,(

Σ⊗ (X ,X)−1)−1
(β − β̂) A.1.2 (A.4.4)

The second row of A.4.4 has a nice squared form, while the first row requires some additional

work. Hence, focus on the first row only:

y,
(
Σ−1 ⊗ IT

)
y − 2β̂,

(
Σ−1 ⊗X ,

)
y + β̂,

(
Σ−1 ⊗X ,X

)
β̂

= y,
(
Σ−1 ⊗ IT

)
y − 2β̂,(In ⊗X),

(
Σ−1 ⊗ IT

)
y + β̂,

(
Σ−1 ⊗X ,

)
(In ⊗X) β̂ A.1.3

= y,
(
Σ−1 ⊗ IT

)
y − 2

(
(In ⊗X) β̂

), (
Σ−1 ⊗ IT

)
y + β̂,(In ⊗X),

(
Σ−1 ⊗ IT

)
(In ⊗X) β̂ A.1.3

= y,(Σ⊗ IT )−1y − 2
(

(In ⊗X) β̂
),

(Σ⊗ IT )−1y + β̂,(In ⊗X),(Σ⊗ IT )−1 (In ⊗X) β̂ A.1.2

= tr
{

Σ−1Y ,ITY
}
− 2tr

{
Σ−1(XB̂)

,
ITY

}
+ tr

{
Σ−1B̂,X ,ITXB̂

}
A.1.10

= tr
{
Y Σ−1Y ,

}
− 2tr

{
Y Σ−1B̂,X ,

}
+ tr

{
XB̂Σ−1B̂,X ,

}
A.17.15

= tr
{
Y Σ−1Y , − 2Y Σ−1B̂,X , +XB̂Σ−1B̂,X ,

}
A.17.15

= tr
{

(Y −XB̂)Σ−1(Y −XB̂)
,
}

= tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}
A.1.1

Replace the obtained expression in A.4.4 to obtain finally:

(y − (In ⊗X)β),(Σ⊗ IT )−1 (y − (In ⊗X)β) =

= tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}
+ (β − β̂)

,(
Σ⊗ (X ,X)−1)−1

(β − β̂) (A.4.5)

Before turning back to A.4.1, note also that Kronecker property A.1.4 implies that the determinant

part of A.4.1 can rewrite as:
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|Σ⊗ IT |−1/2 =
(
|Σ|T |IT |n

)−1/2

= |Σ|−T/2 = |Σ|−k/2|Σ|−(T−k)/2 = |Σ|−k/2|Σ|−[(T−k−n−1)+n+1]/2

(A.4.6)

Substituting A.4.5 and A.4.6 in A.4.1, one eventually obtains:

f(y |β,Σ) ∝ |Σ|−k/2|Σ|−[(T−k−n−1)+n+1]/2

× exp

[
−1

2

{
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}
+ (β − β̂)

,(
Σ⊗ (X ,X)−1)−1

(β − β̂)
}]

f(y |β,Σ) ∝ |Σ|−k/2 exp

[
−1

2
(β − β̂)

,(
Σ⊗ (X ,X)−1)−1

(β − β̂)

]
×

× |Σ|−[(T−k−n−1)+n+1]/2 exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(A.4.7)

A.4.7 is just 3.6.3 in the text. It can be recognised as the product of two kernels: the kernel of

a multivariate normal distribution for β (given Σ), with mean β̂ and covariance
(
Σ⊗ (X ,X)−1)−1

and the kernel of an inverse Wishart distribution for Σ, with scale matrix (Y −XB̂)
,
(Y −XB̂) and

degrees of freedom T − k − n− 1.

With the likelihood determined it is now possible to estimate the posterior distribution for β and

Σ. As it will be more convenient to work with all equations expressed in terms of trace operators,

start by reshaping the first row of A.4.7. This is easily done by noting that:

(β − β̂)
,(

Σ⊗ (X ,X)−1)−1
(β − β̂) = tr

{
Σ−1

(
B − B̂

),
(X ,X)

(
B − B̂

)}
A.1.10

Hence, using the previous expression, and collecting powers on |Σ|, A.4.7 rewrites as:

f(y |β,Σ) ∝ |Σ|−T/2 exp

[
−1

2
tr
{

Σ−1
(
B − B̂

),
(X ,X)

(
B − B̂

)}]
∝ exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(A.4.8)

Also, using once again A.1.10, the prior density for β A.1.9 rewrites as:

π(β) ∝ |Σ|−k/2 exp

[
−1

2
(β − β0),(Σ⊗ Φ0)−1 (β − β0)

]
∝ |Σ|−k/2 exp

[
−1

2
tr
{

Σ−1(B −B0),Φ−1
0 (B −B0)

}]
(A.4.9)
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Applying Bayes rule 3.2.5 on the likelihood A.4.8 and the priors A.4.9 and 3.4.14, one obtains:

π(β,Σ |y ) ∝ f(y |β,Σ)π(β)π(Σ)

∝ |Σ|−T/2 exp

[
−1

2
tr
{

Σ−1
(
B − B̂

),
(X ,X)

(
B − B̂

)}]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
× |Σ|−k/2 exp

[
−1

2
tr
{

Σ−1(B −B0),Φ−1
0 (B −B0)

}]
× |Σ|−(α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1S0

}]
(A.4.10)

Rearrange:

π(β,Σ |y ) ∝ |Σ|−(T+k+α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1
[(
B − B̂

),
(X ,X)

(
B − B̂

)
+ (B −B0),Φ−1

0 (B −B0)
]}]

× exp

[
−1

2
tr
{

Σ−1
[
S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
(A.4.11)

Focus first on the term in the curly brace in the first row of A.4.11 :

= Σ−1
[(
B − B̂

),
(X ,X)

(
B − B̂

)
+ (B −B0),Φ−1

0 (B −B0)
]

= Σ−1
[
B,X ,XB + B̂,X ,XB̂ − 2B,X ,XB̂ +B,Φ−1

0 B +B,
0Φ−1

0 B0 − 2B,Φ−1
0 B0

]
= Σ−1

[
B,
(
X ,X + Φ−1

0

)
B − 2B,

(
X ,XB̂ + Φ−1

0 B0

)
+ B̂,X ,XB̂ +B,

0Φ−1
0 B0

]
Complete the squares:

= Σ−1[B,
(
X ,X + Φ−1

0

)
B−2B,Φ̄−1Φ̄

(
X ,XB̂ + Φ−1

0 B0

)
+B̄,Φ̄−1B̄−B̄,Φ̄−1B̄+B̂,X ,XB̂+B,

0Φ−1
0 B0]

Now, define:

Φ̄ =
[
Φ−1

0 +X ,X
]−1

(A.4.12)

and

B̄ = Φ̄
[
Φ−1

0 B0 +X ,XB̂
]

(A.4.13)
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Then, the previous expression rewrites:

= Σ−1
[
B,Φ̄−1B − 2B,Φ̄−1B̄ + B̄,Φ̄−1B̄ − B̄,Φ̄−1B̄ + B̂,X ,XB̂ +B,

0Φ−1
0 B0

]
= Σ−1

[
(B − B̄)

,
Φ̄−1(B − B̄)− B̄,Φ̄−1B̄ + B̂,X ,XB̂ +B,

0Φ−1
0 B0

]
= Σ−1

[
(B − B̄)

,
Φ̄−1(B − B̄)

]
+ Σ−1

[
B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

]
Substituting back in A.4.11, the posterior becomes:

π(β,Σ |y ) ∝

|Σ|−(T+k+α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̄)

,
Φ̄−1(B − B̄)

]
+ Σ−1

[
B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

]}]
× exp

[
−1

2
tr
{

Σ−1
[
S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
= |Σ|−(T+k+α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
× exp

[
−1

2
tr
{

Σ−1
[
S0 + (Y −XB̂)

,
(Y −XB̂) + B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

]}]
= |Σ|−k/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
× |Σ|−(T+α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1
[
S0 + (Y −XB̂)

,
(Y −XB̂) + B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

]}]
Define:

ᾱ = T + α0 (A.4.14)

and

S̄ =
(
Y −XB̂

), (
Y −XB̂

)
+ S0 + B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄ (A.4.15)

This allows to rewrite the previous expression as:

π(β,Σ |y ) ∝ |Σ|−k/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
× |Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

(A.4.16)

This can be recognised as the product of a matrix-variate normal distribution with mean B̄ and
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variance matrices Σ and Φ̄, and an inverse Wishart distribution with scale matrix S̄ and degrees of

freedom ᾱ. Alternatively, using A.1.10, one can rewrite A.4.16 as:

π(β,Σ |y ) ∝ |Σ|−k/2 exp

[
−1

2
(β − β̄)

,(
Σ⊗ Φ̄

)−1
(β − β̄)

]
× |Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

(A.4.17)

and recognise for β the kernel of a multivariate normal distribution with mean β̄ = vec(B̄) and

covariance matrix Σ⊗ Φ̄.

Note finally that this is a joint distribution, while the objects of interest are the marginal distribu-

tions for β and Σ. Deriving the marginal for Σ using 3.2.7 is quite trivial: it is easy to integrate out

β as it only appears in the first term of A.4.17 as a multivariate normal variable. Doing so leaves us

only with the second term. The details are as follows:

π(Σ |y ) =

∫
β

π(β,Σ |y )dβ

∝
∫
β

|Σ|−k/2 exp

[
−1

2
(β − β̄)

,(
Σ⊗ Φ̄

)−1
(β − β̄)

]
× |Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

dβ

= |Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]
×
∫
β

|Σ|−k/2 exp

[
−1

2
(β − β̄)

,(
Σ⊗ Φ̄

)−1
(β − β̄)

]
dβ

= |Σ|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1S̄
}]

(A.4.18)

Which is once again immediately recognised as the kernel of an inverse Wishart distribution :

π(Σ |y ) ∼ IW
(
ᾱ, S̄

)
(A.4.19)

Deriving the posterior for β is trickier. Start by regrouping terms in A.4.16, then integrate with

respect to Σ :

π(β |y ) =

∫
Σ

π(β,Σ |y )dΣ

∝
∫

Σ

|Σ|−(k+ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̄)

,
Φ̄−1(B − B̄) + S̄

]}]
dΣ

Since the integrand has the form of an inverse Wishart distribution with scale matrix (B − B̄)
,
Φ̄−1(B−
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B̄)+ S̄ and degrees of freedom k+ ᾱ, integration yields the reciprocal of the constant of that function
9:

π(β |y ) ∝ 2
(k+ᾱ)n

2 Γn

(
k + ᾱ

2

)
×
∣∣S̄ + (B − B̄)

,
Φ̄−1(B − B̄)

∣∣− k+ᾱ
2 (A.4.20)

But only the final term contains B. Accordingly, eliminating from A.4.20 the terms belonging to

the proportionality constant, one obtains:

π(β |y ) ∝
∣∣S̄ + (B − B̄)

,
Φ̄−1(B − B̄)

∣∣− k+ᾱ
2

=
∣∣S̄ {In + S̄−1(B − B̄)

,
Φ̄−1(B − B̄)

}∣∣− k+T+α0
2

=
∣∣S̄∣∣− k+T+α0

2
∣∣In + S̄−1(B − B̄)

,
Φ̄−1(B − B̄)

∣∣− k+T+α0
2

∝
∣∣In + S̄−1(B − B̄)

,
Φ̄−1(B − B̄)

∣∣− k+T+α0
2

=
∣∣In + S̄−1(B − B̄)

,
Φ̄−1(B − B̄)

∣∣− [T+α0−n+1]+n+k−1
2

Hence:

π(β |y ) ∝
∣∣In + S̄−1(B − B̄)

,
Φ̄−1(B − B̄)

∣∣− [T+α0−n+1]+n+k−1
2 (A.4.21)

This is the kernel of a matrix-variate student distribution with mean B̄, scale matrices S̄ and Φ̄,

and degrees of freedom α = T + α0 − n+ 1.

B ∼ MT (B̄, S̄, Φ̄, α̃) (A.4.22)

A.2.5.5 then implies that each individual elementBi,j ofB follows a univariate student distribution

with mean B̄i,j, scale parameter Φ̄i,i × S̄j,j and degrees of freedom α.

Bi,j ∼ t(B̄i,j, Φ̄i,i × S̄j,j, α̃) (A.4.23)

Therefore, conditional on prior choices for β0,Φ0, S0 and α0, point estimates and inference can

be realised on β and Σ from A.4.19 and A.4.22 , A.4.23 .

It should also be clear now why the Kronecker structure Σ⊗Φ0 is imposed on the variance matrix

of the prior distribution for β. Without this structure, it would be impossible to transform the prior

distribution π(β) into a trace argument as done in A.4.9. It would then not be possible to complete

the squares and reformulate the posterior as in A.4.16, which is necessary to derive the unconditional

9Indeed, if a random variable X has density f(X) = c×g(X), with c the proportionality constant and g(X) the variable
part, then from the definition of a density, one obtains 1 =

∫
X
f(X)dX = c

∫
X
g(X)dX, so that

∫
X
g(X)dX = 1

c .
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marginal posterior of B as a student distribution.

Finally, notice that it is possible to simplify some of the expressions derived in this section. The

first term that can be simplified is S̄, defined in A.4.15. Keeping in mind definition 3.7.2 of the OLS

estimate B̂, notice that:

(Y −XB̂)
,
(Y −XB̂) + B̂,X ,XB̂

= Y ,Y − Y ,XB̂ − (XB̂)
,
Y + (XB̂)

,
(XB̂) + B̂,X ,XB̂

= Y ,Y − Y ,XB̂ − B̂,X ,Y + B̂,X ,XB̂ + B̂,X ,XB̂

= Y ,Y − Y ,XB̂ − B̂,X ,Y + 2B̂,X ,XB̂

= Y ,Y − Y ,X
{

(X ,X)−1X ,Y
}
−
{

(X ,X)−1X ,Y
},
X ,Y + 2

{
(X ,X)−1X ,Y

},
X ,X

{
(X ,X)−1X ,Y

}
= Y ,Y − Y ,X(X ,X)−1X ,Y − Y ,X(X ,X)−1X ,Y + 2Y ,X(X ,X)−1X ,X(X ,X)−1X ,Y

= Y ,Y − 2Y ,X(X ,X)−1X ,Y + 2Y ,X(X ,X)−1X ,Y

= Y ,Y

Therefore, S̄ can rewrite as:

S̄ = (Y −XB̂)
,
(Y −XB̂) + S0 + B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

= Y ,Y + S0 +B,
0Φ−1

0 B0 − B̄,Φ̄−1B̄ (A.4.24)

From a similar reasoning, B̄ defined in A.4.13 can be reformulated as:

B̄ = Φ̄
[
Φ−1

0 B0 +X ,XB̂
]

= Φ̄
[
Φ−1

0 B0 +X ,X
{

(X ,X)−1X ,Y
}]

= Φ̄
[
Φ−1

0 B0 +X ,Y
]

A.5 Derivations of the posterior distribution with an independent normal-

Wishart prior

Obtaining the posterior distribution for β and Σ requires as usual a likelihood function for the data,

and a prior for β and Σ.

The likelihood is similar as that of a normal Wishart and is thus given by 3.4.3, rewritten here

with simplified powers on |Σ|:
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f(y |β,Σ) ∝ |Σ|−T/2 exp

[
−1

2

(
β − β̂

),(
Σ⊗ (X ,X)−1)−1

(
β − β̂

)]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(A.5.1)

The prior for β is given by 3.5.3, and that for Σ is given by 3.5.5. Using Bayes rule 3.2.5, the

posterior is then given by:

π(β,Σ |y ) ∝ |Σ|−T/2 exp

[
−1

2

(
β − β̂

),(
Σ⊗ (X ,X)−1)−1

(
β − β̂

)]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
× exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
× |Σ|−(α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1S0

}]
(A.5.2)

Or, rearranging and using A.1.2 and A.17.15:

π(β,Σ |y ) ∝ |Σ|−(T+α0+n+1)/2 exp

[
−1

2

{(
β − β̂

), (
Σ−1 ⊗X ,X

) (
β − β̂

)
+ (β − β0),Ω−1

0 (β − β0)
}]

× exp

[
−1

2
tr
{

Σ−1
[
S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
(A.5.3)

Consider only the term in the curly brackets in the first row:

(
β − β̂

), (
Σ−1 ⊗X ,X

) (
β − β̂

)
+ (β − β0),Ω−1

0 (β − β0)

= β,
(
Σ−1 ⊗X ,X

)
β + β̂,

(
Σ−1 ⊗X ,X

)
β̂ − 2β,

(
Σ−1 ⊗X ,X

)
β̂

+ β,Ω−1
0 β + β,0Ω−1

0 β0 − 2β,Ω−1
0 β0

= β,
[
Ω−1

0 + Σ−1 ⊗X ,X
]
β − 2β,

[
Ω−1

0 β0 +
(
Σ−1 ⊗X ,X

)
β̂
]

+ β̂,
(
Σ−1 ⊗X ,X

)
β̂ + β,0Ω−1

0 β0

Complete the squares:
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= β,
[
Ω−1

0 + Σ−1 ⊗X ,X
]
β − 2β,Ω̄−1Ω̄

[
Ω−1

0 β0 +
(
Σ−1 ⊗X ,X

)
β̂
]

+ β̄,Ω̄−1β̄ − β̄,Ω̄−1β̄

+ β̂,
(
Σ−1 ⊗X ,X

)
β̂ + β,0Ω−1

0 β0

Define:

Ω̄ =
[
Ω−1

0 + Σ−1 ⊗X ,X
]−1

(A.5.4)

β̄ = Ω̄
[
Ω−1

0 β0 +
(
Σ−1 ⊗X ,X

)
β̂
]

(A.5.5)

Then the above rewrites:

= β,Ω̄−1β − 2β,Ω̄−1β̄ + β̄,Ω̄−1β̄ − β̄,Ω̄−1β̄ + β̂,
(
Σ−1 ⊗X ,X

)
β̂ + β,0Ω−1

0 β0

= (β − β̄)
,
Ω̄−1(β − β̄)− β̄,Ω̄−1β̄ + β̂,

(
Σ−1 ⊗X ,X

)
β̂ + β,0Ω−1

0 β0

Substituting back in A.5.3:

π(β,Σ |y ) ∝ |Σ|−(T+α0+n+1)/2 exp

[
−1

2
(β − β̄)

,
Ω̄−1(β − β̄)

]
× exp

[
−1

2

{
β̂,
(
Σ−1 ⊗X ,X

)
β̂ + β,0Ω−1

0 β0 − β̄,Ω̄−1β̄
}]

× exp

[
−1

2
tr
{

Σ−1
[
S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
(A.5.6)

A.5.6 is recognised as 3.5.8 in the text. Note also that A.5.5 can be simplified. Consider the part

(Σ−1 ⊗X ,X) β̂, and use definition A.4.3 of β̂ to obtain:

(
Σ−1 ⊗X ,X

)
β̂

=
(
Σ−1 ⊗X ,X

) (
Σ−1 ⊗X ,X

)−1 (
Σ−1 ⊗X ,

)
y

=
(
Σ−1 ⊗X ,

)
y

Hence, A.5.5 rewrites as:

β̄ = Ω̄
[
Ω−1

0 β0 + (Σ−1 ⊗X ,)y
]

(A.5.7)

A.5.4 and A.5.7 are then recognised as 3.5.9 and 3.5.10 in the text. One may also note that A.5.7
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and 3.3.18 are similar, implying that the independent normal Wishart prior yields a (conditional)

posterior comparable to the Minnesota posterior with respect to β.

Now compute the conditional distributions. Relegating any term not involving β in A.5.6 to a

proportionality constant, one obtains the distribution of β, conditional on Σ:

π(β |Σ, y ) ∝ |Σ|−(T+α0+n+1)/2 exp

[
−1

2
(β − β̄)

,
Ω̄−1(β − β̄)

]
(A.5.8)

This is recognised as the kernel of a multivariate normal distribution:

π(β |Σ, y) ∼ N(β̄, Ω̄) (A.5.9)

To obtain the posterior for Σ, conditional on β, it is easier to work directly on A.5.3, since A.5.6

contains β̄ and Ω̄, which are complicated functions of Σ and do not allow transformations into trace

arguments. Hence consider the posterior A.5.3, ignore terms not involving Σ, and notice that the

remaining terms rewrite as:

π(Σ |β, y ) ∝ |Σ|−(T+α0+n+1)/2 exp

[
−1

2

{
(β − β̂)

,(
Σ⊗ (X ,X)−1)−1

(β − β̂)
}]

A.1.2

× exp

[
−1

2
tr
{

Σ−1
[
S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
= |Σ|−(T+α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1(B − B̂)
,
(X ,X)(B − B̂)

}]
A.1.2

× exp

[
−1

2
tr
{

Σ−1
[
S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
= |Σ|−[(T+α0)+n+1]/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̂)

,
(X ,X)(B − B̂) + S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
(A.5.10)

One then recognises in A.5.10 the kernel of an inverse Wishart distribution

π(Σ |β, y ) ∼ IW (Ŝ, α̂) (A.5.11)

with scale matrix:

Ŝ = (B − B̂)
,
(X ,X)(B − B̂) + S0 + (Y −XB̂)

,
(Y −XB̂) (A.5.12)

and degrees of freedom:

α̂ = T + α0 (A.5.13)
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Eventually, note that similarly to the normal-Wishart prior, it is possible to apply some simpli-

fications. Consider Ŝ, defined in A.5.12. Using once again definition 3.7.2 of the OLS estimate B̂,

simplify:

(B − B̂)
,
(X ,X)(B − B̂) + (Y −XB̂)

,
(Y −XB̂)

= B,(X ,X)B −B,(X ,X)B̂ − B̂,(X ,X)B + B̂,(X ,X)B̂

+ Y ,Y − Y ,XB̂ − (XB̂)
,
Y + (XB̂)

,
(XB̂)

= B,X ,XB −B,X ,XB̂ − B̂,X ,XB + B̂,X ,XB̂

+ Y ,Y − Y ,XB̂ − B̂,X ,Y + B̂,X ,XB̂

= B,X ,XB −B,X ,X
{

(X ,X)−1X ,Y
}
−
{

(X ,X)−1X ,Y
},
X ,XB +

{
(X ,X)−1X ,Y

},
X ,X

{
(X ,X)−1X ,Y

}
+ Y ,Y − Y ,X

{
(X ,X)−1X ,Y

}
−
{

(X ,X)−1X ,Y
},
X ,Y +

{
(X ,X)−1X ,Y

},
X ,X

{
(X ,X)−1X ,Y

}
= B,X ,XB −B,X ,X(X ,X)−1X ,Y − Y ,X(X ,X)−1X ,XB + Y ,X(X ,X)−1X ,X(X ,X)−1X ,Y

+ Y ,Y − Y ,X(X ,X)−1X ,Y − Y ,X(X ,X)−1X ,Y + Y ,X(X ,X)−1X ,X(X ,X)−1X ,Y

= B,X ,XB −B,X ,Y − Y ,XB + Y ,X(X ,X)−1X ,Y

+ Y ,Y − Y ,X(X ,X)−1X ,Y − Y ,X(X ,X)−1X ,Y + Y ,X(X ,X)−1X ,Y

= Y ,Y − Y ,XB −B,X ,Y +B,X ,XB

= (Y −XB),(Y −XB)

(A.5.14)

Therefore, one can rewrite:

Ŝ = (B − B̂)
,
(X ,X)(B − B̂) + S0 + (Y −XB̂)

,
(Y −XB̂)

= (Y −XB),(Y −XB) + S0

(A.5.15)

And A.5.10 can rewrite:

π(Σ |β, y ) ∝ |Σ|−[(T+α0)+n+1]/2 exp

[
−1

2
tr
{

Σ−1 [(Y −XB),(Y −XB) + S0]
}]

(A.5.16)
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A.6 Derivations of the posterior distribution with a normal-diffuse prior

Obtaining the posterior distribution for β and Σ requires the usual likelihood function for the data,

and a prior for β and Σ. The likelihood is given by 3.6.1:

f(y |β,Σ) ∝ |Σ|−T/2 exp

[
−1

2

(
β − β̂

),(
Σ⊗ (X ,X)−1)−1

(
β − β̂

)]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(A.6.1)

The priors for β and Σ are respectively given by 3.6.2 and 3.6.3:

π(β) ∝ exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
(A.6.2)

and

π(Σ) ∝ |Σ|−(n+1)/2 (A.6.3)

Using Bayes rule 3.2.5, the posterior is then given by:

π(β,Σ |y ) ∝ |Σ|−T/2 exp

[
−1

2

(
β − β̂

),(
Σ⊗ (X ,X)−1)−1

(
β − β̂

)]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
× exp

[
−1

2
(β − β0),Ω−1

0 (β − β0)

]
× |Σ|−(n+1)/2

(A.6.4)

Or, rearranging and using A.1.2:

π(β,Σ |y ) ∝|Σ|−T/2 exp

[
−1

2

(
β − β̂

),(
Σ−1 ⊗ (X

′
X)
−1
)(

β − β̂
)

+ (β − β0)
′
Ω−1

0 (β − β0)

]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(A.6.5)

The expression in the curly brackets appearing in the first term is similar to that in A.5.3. Hence,

using the same process as in Appendix A.5, one shows that it rewrites as:
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(
β − β̂

), (
Σ−1 ⊗X ,X

) (
β − β̂

)
+ (β − β0),Ω−1

0 (β − β0)

= (β − β̄)
,
Ω̄−1(β − β̄)− β̄,Ω̄−1β̄ + β̂,

(
Σ−1 ⊗X ,X

)
β̂ + β,0Ω−1

0 β0 (A.6.6)

β̄ and Ω̄ are defined as in Appendix A.5 as:

Ω̄ =
[
Ω−1

0 + Σ−1 ⊗X ,X
]−1

(A.6.7)

and

β̄ = Ω̄
[
Ω−1

0 β0 + (Σ−1 ⊗X ,)y
]

(A.6.8)

Therefore, A.6.5 rewrites as:

π(β,Σ |y ) ∝ |Σ|−(T+n+1)/2 exp

[
−1

2
(β − β̄)

,
Ω̄−1(β − β̄)

]
× exp

[
−1

2

{
β̂,
(
Σ−1 ⊗X ,X

)
β̂ + β,0Ω−1

0 β0 − β̄,Ω̄−1β̄
}]

× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(A.6.9)

Now compute the conditional distributions. Relegating any term not involving β in A.6.9 to a

proportionality constant, one obtains the distribution of β, conditional on Σ:

π(β |Σ, y ) ∝ exp

[
−1

2
(β − β̄)

,
Ω̄−1(β − β̄)

]
(A.6.10)

This is recognised as the kernel of a multivariate normal distribution:

π(β |Σ, y) ∼ N (β̄, Ω̄) (A.6.11)

To obtain the posterior for Σ, conditional on β, it is once again easier to work directly on the

primary posterior expression A.6.5, rather than with the modified expression A.6.9. Hence consider

the posterior A.6.5, ignore terms not involving Σ, and notice that the remaining terms rewrite as:
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π(Σ |β, y ) ∝ |Σ|−(T+n+1)/2 exp

[
−1

2

(
β − β̂

), (
Σ−1 ⊗X ,X

) (
β − β̂

)]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
= |Σ|−(T+n+1)/2 exp

[
−1

2
tr
{

Σ−1(B − B̂)
,
(X ,X)(B − B̂)

}]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
= |Σ|−(T+n+1)/2 exp

[
−1

2
tr
{

Σ−1
[
(B − B̂)

,
(X ,X)(B − B̂) + (Y −XB̂)

,
(Y −XB̂)

]}]
(A.6.12)

From A.5.14, A.6.12 simplifies to:

π(Σ |β, y ) ∝ |Σ|−[(T+α0)+n+1]/2 exp

[
−1

2
tr
{

Σ−1 [(Y −XB),(Y −XB)]
}]

One then recognises in A.6.12 the kernel of an inverse Wishart distribution

π(Σ |β, y ) ∼ IW(S̃, T ) (A.6.13)

with S̃ the scale matrix defined as:

S̃ = (Y −XB),(Y −XB) (A.6.14)

and degrees of freedom equal to T .

A.7 Derivations for the dummy observation prior

The kernel of the posterior distribution is given by:

f(β,Σ |y ) ∝ |Σ|−(T+n+1)/2 exp

[
−1

2
tr
{

Σ−1(B − B̂)
,
(X ,X)(B − B̂)

}]
× exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(A.7.1)

Reformulate first to obtain a form that will be easier to integrate:
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f(β,Σ |y ) ∝ |Σ|−k/2 exp

[
−1

2
tr
{

Σ−1(B − B̂)
,
(X ,X)(B − B̂)

}]
× |Σ|−(T−k+n+1)/2 exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(A.7.2)

Integrate first with respect to β to obtain the posterior for Σ :

f(Σ |y ) ∝
∫
B

|Σ|−k/2 exp

[
−1

2
tr
{

Σ−1(B − B̂)
,
(X ,X)(B − B̂)

}]
dB

× |Σ|−(T−k+n+1)/2 exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
= |Σ|−(T−k+n+1)/2 exp

[
−1

2
tr
{

Σ−1(Y −XB̂)
,
(Y −XB̂)

}]
(A.7.3)

This is the kernel of an inverse Whishart distribution: Σ ∼ IW
(
Ŝ, α̂

)
, with scale matrix :

Ŝ = (Y −XB̂)
,
(Y −XB̂) (A.7.4)

and degrees of freedom

α̂ = T − k (A.7.5)

Now integrate with respect to Σ to obtain the posterior for β. To make things easier, gather first

terms in A.7.1:

f(β,Σ |y ) ∝ |Σ|−(T+n+1)/2 exp

[
−1

2
tr
{

Σ−1
[
Ŝ + (B − B̂)

,
(X ,X)(B − B̂)

]}]
(A.7.6)

This can be recognized as the kernel of an inverse-Wishart density with scale matrix Ŝ +

(B − B̂)
,
(X ,X)(B − B̂) and degrees of freedom T . To integrate, note that similarly to appendix

4, integration will yield the reciprocal of the normalizing constant of the inverse-Wishart density:

π(β |y ) ∝
∫

Σ

|Σ|−(T+n+1)/2 exp

[
−1

2
tr
{

Σ−1
[
Ŝ + (B − B̂)

,
(X ,X)(B − B̂)

]}]
dΣ

∝ 2
Tn
2 Γn

(
T

2

) ∣∣∣Ŝ + (B − B̂)
,
(X ,X)(B − B̂)

∣∣∣−T2
Since only the determinant term comprises B, eliminate the other parts:
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π(β |y ) ∝
∣∣∣Ŝ + (B − B̂)

,
(X ,X)(B − B̂)

∣∣∣−T2
=
∣∣∣Ŝ {I + Ŝ−1(B − B̂)

,
(X ,X)(B − B̂)

}∣∣∣−T2
=
∣∣∣Ŝ∣∣∣−T2 ∣∣∣{I + Ŝ−1(B − B̂)

,
(X ,X)(B − B̂)

}∣∣∣−T2
∝
∣∣∣{In + Ŝ−1(B − B̂)

,
(X ,X)(B − B̂)

}∣∣∣−T2
∝
∣∣∣{In + Ŝ−1(B − B̂)

,
((X ,X)−1)

−1
(B − B̂)

}∣∣∣− (T−n−k+1)+n+k−1
2

This is recognized as the kernel of a matrix student distribution: B˜MT (B̂, Ŝ, Φ̂,
_
α), with B̂ and

Ŝ defined by 3.7.2 and 3.7.6, and:

Φ̂ = (X ,X)−1 (A.7.7)

And

_
α = T − n− k + 1 (A.7.8)

It is now shown how to recover a VAR in error correction form from a standard VAR formulation.

In general, a reduced-form VAR with p lags writes as:

yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt

From this formulation, manipulate to obtain :
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yt =

p∑
i=1

Aiyt−i + Cxt + εt

⇒ yt − yt−1 =

p∑
i=1

Aiyt−i − yt−1 + Cxt + εt

⇒ yt − yt−1 =

p∑
i=1

(
Aiyt−i +

p∑
j=i+1

Ajyt−j −
p∑

j=i+1

Ajyt−j

)
− yt−1 + Cxt + εt

⇒ yt − yt−1 = −

(
I −

p∑
i=1

Ai

)
yt−1 −

p−1∑
i=1

(
p∑

j=i+1

Aj

)
(yt−i − yt−i−1) + Cxt + εt

⇒ ∆yt = −

(
I −

p∑
i=1

Ai

)
yt−1 −

p−1∑
i=1

(
p∑

j=i+1

Aj

)
∆yt−i + Cxt + εt

⇒ ∆yt = −

(
I −

p∑
i=1

Ai

)
yt−1 +

p−1∑
i=1

Bi∆yt−i + Cxt + εt

⇒ ∆yt = −(I −A1−A2...−Ap)yt−1 +B1∆yt−1 +B2∆yt−2 + ...+Bp−1∆yt−(p−1) +Cxt + εt (A.7.9)

with:

Bi = −
p∑

j=i+1

Aj

This is the error correction form 3.7.28.

A.8 Derivation of the marginal likelihood

Deriving the marginal likelihood for the Minnesota prior Because 3.9.10 may suffer from

numerical instability, reformulate it to obtain a more stable equation. Start from 3.9.10 and manip-

ulate:
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m(y) = (2π)−nT/2
∣∣Σ̄∣∣−1/2|Ω0|−1/2

∣∣Ω̄∣∣1/2 exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,Σ̄−1y
)]

= (2π)−nT/2|Σ⊗ IT |−1/2|Ω0|−1/2
∣∣∣[Ω−1

0 + Σ−1 ⊗X ,X
]−1
∣∣∣1/2

× exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,(Σ⊗ IT )−1y
)]

= (2π)−nT/2|Σ|−T/2|IT |−n/2|Ω0|−1/2
∣∣Ω−1

0 + Σ−1 ⊗X ,X
∣∣−1/2

× exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,
(
Σ−1 ⊗ IT

)
y
)]

= (2π)−nT/2|Σ|−T/2
(
|Ω0|

∣∣Ω−1
0 + Σ−1 ⊗X ,X

∣∣)−1/2

× exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,
(
Σ−1 ⊗ IT

)
y
)]

= (2π)−nT/2|Σ|−T/2
∣∣Ω0

(
Ω−1

0 + Σ−1 ⊗X ,X
)∣∣−1/2

× exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,
(
Σ−1 ⊗ IT

)
y
)]

= (2π)−nT/2|Σ|−T/2
∣∣Ink + Ω0

(
Σ−1 ⊗X ,X

)∣∣−1/2

× exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,
(
Σ−1 ⊗ IT

)
y
)]

= (2π)−nT/2|Σ|−T/2
∣∣Ink + FΩF

,
Ω

(
Σ−1 ⊗X ,X

)∣∣−1/2

× exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,
(
Σ−1 ⊗ IT

)
y
)]

where FΩ denotes the square root matrix of Ω0, such that FΩF
,
Ω = Ω0

= (2π)−nT/2|Σ|−T/2
∣∣Ink + F ,

Ω

(
Σ−1 ⊗X ,X

)
FΩ

∣∣−1/2

× exp

[
−1

2

(
β,0Ω−1

0 β0 − β̄,Ω̄−1β̄ + y,
(
Σ−1 ⊗ IT

)
y
)]

A.1.16

From A.1.18, the determinant |Ink + F ,
Ω (Σ−1 ⊗X ,X)FΩ| can be obtained from the product of 1

plus the eigenvalues of F ,
Ω (Σ−1 ⊗X ,X)FΩ.

Deriving the marginal likelihood for the normal-Wishart prior

First show how to obtain 3.9.25 from 3.9.24:
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m(y) = (2π)−nT/2|Φ0|
−n/2|S0|α0/2

∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 2ᾱn/2Γn
(
ᾱ
2

)
2α0n/2Γn

(
α0

2

)
= 2−nT/2π−nT/2|Φ0|

−n/2|S0|α0/2
∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 2(T+α0)n/2Γn

(
ᾱ
2

)
2α0n/2Γn

(
α0

2

)
= 2−nT/22nT/2π−nT/2|Φ0|

−n/2|S0|α0/2
∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 2α0n/2Γn

(
ᾱ
2

)
2α0n/2Γn

(
α0

2

)
= π−nT/2|Φ0|

−n/2|S0|α0/2
∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 Γn

(
ᾱ
2

)
Γn
(
α0

2

)

which is 3.9.25.

Now show how to obtain 3.9.26, for improved numerical accuracy. Start from 3.9.25:

m(y) = π−nT/2|Φ0|
−n/2|S0|α0/2

∣∣Φ̄∣∣n/2∣∣S̄∣∣−ᾱ/2 Γn
(
ᾱ
2

)
Γn
(
α0

2

)
= π−nT/2|Φ0|

−n/2|S0|α0/2
∣∣Φ−1

0 +X ,X
∣∣−n/2∣∣S̄∣∣−ᾱ/2 Γn

(
ᾱ
2

)
Γn
(
α0

2

)

Consider only the part |Φ0|
−n/2∣∣Φ−1

0 +X ,X
∣∣−n/2 :

|Φ0|
−n/2∣∣Φ−1

0 +X ,X
∣∣−n/2 = |Φ0|

−n/2(∣∣Φ−1
0

∣∣ . |IT +XΦ0X
,|
)−n/2

A.1.13

= |Φ0|
−n/2|Φ0|

n/2|IT +XΦ0X
,|−n/2 A.1.15

= |IT +XΦ0X
,|−n/2

= |IT +XFΦF
,
ΦX

,|−n/2

= |Ik + F ,
ΦX

,XFΦ|
−n/2 A.1.16

where FΦ denotes the square root matrix of Φ0, that is, FΦF
,
Φ = Φ0. Then, substituting, one

eventually obtains:

m(y) = π−nT/2|S0|α0/2|Ik + F ,
ΦX

,XFΦ|
−n/2∣∣S̄∣∣−ᾱ/2 Γn( ᾱ2 )

Γn(α0
2 )

Now consider the part |S0|α0/2
∣∣S̄∣∣−ᾱ/2:
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|S0|
α0/2
∣∣S̄∣∣−ᾱ/2 = |S0|

α0/2
∣∣S0 + Y ,Y +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

∣∣−ᾱ/2
= |S0|

α0/2
{
|S0|

∣∣In + S−1
0

[
Y ,Y +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

]∣∣}−ᾱ/2 A.1.13

= |S0|
α0/2|S0|

−ᾱ/2∣∣In + S−1
0

[
S̄ − S0

]∣∣−ᾱ/2
= |S0|

α0/2|S0|
−(T+α0)/2

∣∣In + S−1
0

[
S̄ − S0

]∣∣−ᾱ/2
= |S0|

−T ∣∣In + FSF
,
S

[
S̄ − S0

]∣∣−ᾱ/2

FS denotes the inverse square root matrix of S0 so that FSF
,
S = S−1

0

= |S0|
−T ∣∣In + F ,

S

[
S̄ − S0

]
FS
∣∣−ᾱ/2A.1.16

Substituting back:

m(y) = π−nT/2
Γn( ᾱ2 )
Γn(α0

2 )
|Ik + F ,

ΦX
,XFΦ|

−n/2|S0|−T/2
∣∣In + F ,

S

[(
S̄ − S0

)]
FS
∣∣−ᾱ/2

which is 3.9.26.

Deriving the marginal likelihood for the independent normal-Wishart prior

First, show how to obtain 3.9.37. Start from 3.9.36, and substitute the likelihood function A.2.3.9

with the priors 3.3.13 and 3.9.19, all evaluated at β̃ and Σ̃:

m(y) = (2π)−nT/2
∣∣∣Σ̃∣∣∣−T/2 exp

(
−1

2
tr
[
Σ̃−1(Y −XB̃)

,
(Y −XB̃)

])

×
(2π)−q/2|Ω0|

−1/2 exp
(
−1

2
(β̃ − β0)

,
Ω−1

0

(
β̃ − β0

))
(2π)−q/2

∣∣Ω̄∣∣−1/2
exp

(
−1

2
(β̃ − β̄)

,
Ω̄−1(β̃ − β̄)

)
× 1

2α0n/2Γn
(
α0

2

) |S0|α0/2
∣∣∣Σ̃∣∣∣−(α+n+1)/2

exp

(
−1

2
tr
{

Σ̃−1S0

})
× 1

π(Σ̃ |y )

= (2π)−nT/2
∣∣∣Σ̃∣∣∣−T/2 exp

(
−1

2
tr
[
Σ̃−1(Y −XB̃)

,
(Y −XB̃)

])

×
|Ω0|

−1/2 exp
(
−1

2
(β̃ − β0)

,
Ω−1

0

(
β̃ − β0

))
∣∣Ω̄∣∣−1/2

× 1

2α0n/2Γn
(
α0

2

) |S0|α0/2
∣∣∣Σ̃∣∣∣−(α0+n+1)/2

exp

(
−1

2
tr
{

Σ̃−1S0

})
× 1

π(Σ̃ |y )
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(using the fact that β̃ = β̄)

=
(2π)−nT/2

2α0n/2Γn
(
α0

2

) |S0|α0/2
∣∣∣Σ̃∣∣∣−(T+α0+n+1)/2

exp

(
−1

2
tr
[
Σ̃−1

{
(Y −XB̃)

,
(Y −XB̃) + S0

}])

×

(
|Ω0|∣∣Ω̄∣∣

)−1/2

exp

(
−1

2
(β̃ − β0)

,
Ω−1

0

(
β̃ − β0

))
× 1

π(Σ̃ |y )

Then, use 3.9.35 to obtain the final approximation:

m(y) =
(2π)−nT/2

2α0n/2Γn
(
α0

2

) |S0|α0/2
∣∣∣Σ̃∣∣∣−(T+α0+n+1)/2

(
|Ω0|∣∣Ω̄∣∣

)−1/2

× exp

(
−1

2
tr
[
Σ̃−1

{
(Y −XB̃)

,
(Y −XB̃) + S0

}])
× exp

(
−1

2
(β̃ − β0)

,
Ω−1

0

(
β̃ − β0

))
× 1

(It−Bu)−1
It−Bu∑
n=1

π(Σ̃ |β(n), y )

which is 3.9.37.

Now develop to obtain 3.9.38. First, consider the term

(
|Ω0|
|Ω̄|

)−1/2

:
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(
|Ω0|∣∣Ω̄∣∣

)−1/2

= |Ω0|
−1/2

∣∣Ω̄∣∣1/2
= |Ω0|

−1/2

∣∣∣∣[Ω−1
0 + Σ̃−1 ⊗X ,X

]−1
∣∣∣∣1/2

= |Ω0|
−1/2

∣∣∣Ω−1
0 + Σ̃−1 ⊗X ,X

∣∣∣−1/2

= |Ω0|
−1/2

∣∣∣Ω−1
0 + (In ⊗X ,)

(
Σ̃−1 ⊗X

)∣∣∣−1/2

A.1.16

= |Ω0|
−1/2

(∣∣Ω−1
0

∣∣ ∣∣∣Iq +
(

Σ̃−1 ⊗X
)

Ω0 (In ⊗X ,)
∣∣∣)−1/2

A.1.13

= |Ω0|
−1/2|Ω0|

1/2
(∣∣∣Iq +

(
Σ̃−1 ⊗X

)
Ω0 (In ⊗X ,)

∣∣∣)−1/2

A.1.15

=
∣∣∣Iq +

(
Σ̃−1 ⊗X

)
Ω0 (In ⊗X ,)

∣∣∣−1/2

=
∣∣∣Iq +

(
Σ̃−1 ⊗X

)
FΩF

,
Ω (In ⊗X ,)

∣∣∣−1/2

where FΩ denotes the square root matrix of Ω0, that is, FΩF
,
Ω = Ω0

=
∣∣∣Iq + F ,

Ω (In ⊗X ,)
(

Σ̃−1 ⊗X
)
FΩ

∣∣∣−1/2

A.1.16

Substituting back:

m(y) =
(2π)−nT/2

2α0n/2Γn
(
α0

2

) |S0|α0/2
∣∣∣Σ̃∣∣∣−(T+α0+n+1)/2∣∣∣Iq + F ,

Ω (In ⊗X ,)
(

Σ̃−1 ⊗X
)
FΩ

∣∣∣−1/2

× exp

(
−1

2
tr
[
Σ̃−1

{
(Y −XB̃)

,
(Y −XB̃) + S0

}])
× exp

(
−1

2
(β̃ − β0)

,
Ω−1

0

(
β̃ − β0

))
× 1

(It−Bu)−1
It−Bu∑
n=1

π(Σ̃ |β(n), y )

Which is 3.9.38.
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A.9 Derivation of the steady-state

It may be of interest to determine the long-run, or steady-state value of a model. Indeed, a good

model should not produce long-run values grossly at odd with economic theory, or with the researcher

belief. In this sense, calculating the steady-state of a model constitutes a way to verify the model

relevance and adequacy. This is all the more important in a Bayesian context where the researcher

can input personal information into the model in order to affect this long run value. And, of course,

it is even more important in the case of a mean-adjusted model, which is especially designed to

produce estimates based on the researcher belief about these long-run values.

Note first that the steady-state of a model will be meaningful only if the model is guaranteed to

ultimately return to its long-run value. Otherwise, the model may just wander away of this value

and never approach it again. This is related to the notion of weak or covariance stationarity, which

implies that the expectation of the variables in the model should be independent of the period t.

That is:

E(yt) = µ ∀t (A.9.1)

with µ a vector of constants. Therefore, before one turns to the computation of the steady-

state, it is necessary to check that the model is covariance stationary. The usual issue of parameter

uncertainty arises with Bayesian VAR models: talking about ’the’ estimated model is not meaningful

as the estimation process produces a posterior distribution for each coefficient, and not a single value.

The difficulty is overcome by assuming that ’the’ model to check for stationarity is that defined by

the point estimates (typically the median) for each coefficient. This guarantees in no way, however,

that every draw from the posterior distribution would produce a stationary model. It only checks

whether a typical model satisfy stationarity. Assume hence that the point estimate β̃ is retained

for β in 3.1.12, permitting to recover Ã1, Ã2, ..., Ãp in 3.1.2. Hamilton (1994) shows (see proposition

10.1, p 259) that the VAR model will be covariance stationary if all the eigenvalues of the matrix F

are smaller than 1 in modulus, with F the companion matrix of the VAR defined as:

F =



Ã1 Ã2 · · · Ãp−1 Ãp

In 0 · · · 0 0

0 In 0 0
...

. . .
...

...

0 0 · · · In 0


(A.9.2)

Once covariance stationarity has been checked, it is possible to evaluate the steady-state of the

model. The analysis starts with the classical VAR model 3.1.2:
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yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt (A.9.3)

The steady-state, or long-term value µ of the model at period t is simply the expectation E(yt)

for model A.9.3 at this period. Hence, to derive the steady-state value of the model, take expectation

on both sides of A.9.3:

E(yt) =E(A1yt−1 + A2yt−2 + ...+ Apyt−p + Cxt + εt)

=A1E(yt−1) + A2E(yt−2) + ...+ ApE(yt−p) + CE(xt) + E(εt) (A.9.4)

Under the assumption of covariance stationarity, E(yt) = µ. Note also that as xt is an exogenous

process with known values, E(xt) = xt. Finally, assumption 3.1.3 implies that E(εt) = 0. Then,

A.9.4 rewrites as:

µ = A1µ+ A2µ+ ...+ Apµ+ Cxt (A.9.5)

Rearranging:

(I − A1 − A2 − ...− Ap)µ = Cxt

This finally yields:

µ = (I − A1 − A2 − ...− Ap)−1Cxt (A.9.6)

In the case of a mean-adjusted VAR, the procedure is a bit different. Start from the mean-adjusted

model 5.6.3:

A(L) (yt − Fxt) = εt (A.9.7)

With this formulation, the simplest approach consists in adopting a Wold representation strategy.

Under the assumption of covariance stationarity, the model A.9.7 can be inverted and reformulated

as:

A(L) (yt − Fxt) = εt

⇔ (yt − Fxt) = A(L)−1εt

⇔ yt − Fxt =
∞∑
i=0

Ψiεt−i (A.9.8)
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Take expectation on both sides, and use the facts that E(xt) = xt and E(εt) = 0,∀t to obtain:

E(yt)− FE(xt) =
∞∑
i=0

ΨiE(εt−i)

⇔ E(yt)− Fxt = 0

⇔ µ = Fxt (A.9.9)

A.10 Forecast evaluation

Forecast evaluation is a matter of central interest for model selection. To be useful, a model should

be able to produce good forecasts. This means that the forecasts produce by the model should be as

close as possible to the actual realised values taken by the data. Two sets of evaluation measures are

developed in this section. The first set is fairly standard and is not proper to Bayesian techniques:

it is the usual set of in-sample and out of sample fit measures. The second set is constituted by the

family of statistics known as log predictive scores, and is more specific to Bayesian approaches.

Start thus with first set, and consider first the in-sample evaluation measures. A rough and

preliminary measure of the goodness of fit of the model is given by the sum of squared residuals.

Intuitively, the smaller this sum, the smaller the amplitude of the residuals, and thus the better the

fit of the model to the data. For a VAR model with n variables, the sum of squared residuals for

variable i, with i = 1, 2, ..., n, is defined as:

RSSi = ε,iεi (A.10.1)

where ε,i = (εi1 εi2 . . . εiT ) denotes the residual series for variable i over the whole sample.

Using B̃ as a point estimate for B in 3.1.7, recovering the sum of squared residuals is straightforward.

First obtain the predicted values Ỹ from the model, using 3.1.7:

Ỹ = E(Y |X ) = XB̃ (A.10.2)

Then, still from 3.1.7, the matrix of residuals obtains as:

Ẽ = Y −XB̃ = Y − Ỹ (A.10.3)
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And it is possible to compute the full RSS matrix as:

RSS = Ẽ ,Ẽ (A.10.4)

Finally, obtain RSSi from the ith diagonal element of RSS.

A second common measure of fit, related to the sum of squared residuals, is the coefficient of

determination, or R2. This value measures the share of total variation in y that can be attributed

to the model. The larger R2, the more efficient the model to explain data variation. For equation i

of the VAR model, R2 is defined as:

R2
i = 1− RSSi

TSSi
(A.10.5)

where TSSi is the total sum of squares for equation i, defined as:

TSSi =
T∑
j=1

(yi,j − ȳi)2 (A.10.6)

with ȳi the mean of yi. A convenient way to compute TSSi is to use a demeaning matrix

M̄ = IT − (1/T )1T×T , where 1T×T denotes a T × T matrix for which all entries are 1. M̄ is

idempotent and has the property that M̄x = x− x̄, for any vector x. Therefore, it is straightforward

to define the full TSS matrix as:

TSS = Y ,M̄Y (A.10.7)

One can then obtain a full matrix of R2 as:

R2 = In −
RSS

TSS
(A.10.8)

Where the division of RSS with TSS has to be element-wise. R2
i can then be read from the

ithdiagonal element of the R2 matrix.

A limit of the coefficient of determination is that it increases mechanically as the number of

variables integrated to the model increases. Hence, adding new variables into the model will result in

higher R2 values, which may fallaciously suggest an improvement in the model, even if it is actually

poorer due to the additional loss of degrees of freedom during the estimation. Hence, a degrees of

freedom corrected R2, known as the adjusted R2 is often estimated along with the traditional R2. It

is defined as:
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R̄2
i = 1− T − 1

T − k
(1−R2

i ) (A.10.9)

It is possible to recycle the R2 matrix in A.10.9 to obtain a full matrix of adjusted R2:

R̄2 = In −
T − 1

T − k
(In −R2) (A.10.10)

R̄2
i can then be read from the ithdiagonal element of the R̄2 matrix.

Two evaluation criteria commonly used to discriminate among OLS models are the Akaike In-

formation Criterion (AIC), and the Bayesian Information Criterion (BIC). These two criteria are

respectively defined as:

AIC = −2(L/T ) + 2(q/T ) (A.10.11)

and

BIC = −2(L/T ) + q log(T )/T (A.10.12)

L denotes the full system log-likelihood. Assuming as usual normal disturbances, it is defined as:

L =
−Tn

2
(1 + log(2π))− T

2
log

∣∣∣∣∣ Ẽ ,ẼT
∣∣∣∣∣ (A.10.13)

Though the in-sample measures are informative, the most important measures evaluate the quality

of out-of-sample predictions. Four standard out-of-sample measures are presented here: the root

mean squared error, the mean absolute error, the mean absolute percentage error, and the Theil

inequality coefficient. All these measures provide a way to assess the size of the difference between

the predicted value and the value that actually occurred in the data set. Note that because these

measures compare the forecast provided by the model with realised data values, computing them

requires that at least one actual data point is available over the forecast period.

The first forecast evaluation measure is the root mean squared error or RMSE. Assume that

forecasts are produced over h periods, and that in addition of the forecasts, the actual data values

are known for these periods. Then the root mean squared error of this forecast for variable i in the

VAR is defined as:

RMSEi =

√√√√(1/h)
h∑
i=1

(yT+i − ỹT+i)
2 (A.10.14)

where ỹT+i denotes as usual the predicted value of yT+i. An alternative measure of forecast
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efficiency is given by the mean absolute error:

MAEi = (1/h)
h∑
i=1

|yT+i − ŷT+i| (A.10.15)

For these two measures, a lower value indicates a better fit. The squared terms indicate however

that the RMSE place a greater penalty on large errors than does the MAE. A third measure is the

mean absolute percentage error, defined for variable i as:

MAPEi = (100/h)
h∑
i=1

∣∣∣∣yT+i − ŷT+i

yT+i

∣∣∣∣ (A.10.16)

Unlike the RMSE and the MAE which measure the absolute size of the forecast error, the MAPE

I a scaled measure, providing the size of the error relative to value of the variable. A final measure

of forecast accuracy is provided by the Theil inequality coefficient or Theil U statistics:

Ui =

√
(1/h)

h∑
i=1

(yT+i − ŷT+i)
2

√
(1/h)

h∑
i=1

(yT+i)
2 +

√
(1/h)

h∑
i=1

(ŷT+i)
2

(A.10.17)

This coefficient is always comprised between 0 and 1, a lower value indicating a better forecast.

A value of 0 indicates a perfect fit, while a value of 1 says that the forecast is no better than a naive

guess.

The second set of forecast measures, specific to Bayesian analysis, is the family of log predictive

scores for forecasts. While the measures previously described compare the point estimates of the

forecast with the actual values, in a pure frequentist style, the log scores compare the realised values

with the whole posterior predictive density, in a more Bayesian fashion. The idea behind log scores

is that a good model should produce a forecast distribution that makes it likely that the forecast

occurs close to the realised values. In other words, the predictive distribution should be such that it

takes a high density at the actual data value.

The procedure for computing log predictive scores that is now presented is due to Warne et al.

(2013), as detailed by Mao (2010). Assume that some data set is used to estimate BVAR model M1.

The estimation sample runs until period T of the data set, with T < T f , the final period of the data

set. In other words, there remains some observed data values after the final sample period. Also, one

wants to consider predictions for this model up to h periods after the sample end, with T + h ≤ T f .

That is, predictions are formed over periods for which actual data is observed. Consider then any set
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of predicted values for periods T + 1, T + 2, ..., T + h for the BVAR model M1. Recycling notations

from Section 4.1, the vector of h-step ahead forecasts can be denoted as:

ỹT+1:T+h =


ỹT+1

ỹT+2

...

ỹT+h

 (A.10.18)

Following, it is possible to denote the conditional predictive density of these predicted values by

f(ỹT+1:T+h |yoT , β,Σ,M1), where yoT denotes data observed until period T , β and Σ denote respectively

the VAR coefficient and residual covariance matrix drawn from the posterior distribution of modelM1,

and M1 denotes the candidate model. Under the assumption of normal disturbances, the conditional

distribution of ỹT+1:T+h is multivariate normal:

ỹT+1:T+h |yoT , β,Σ,M1 ∼ N( µ
nh×1

, Υ
nh×nh

) (A.10.19)

with

µ =


µ1

µ2

...

µh

 and Υ =


Υ1,1 Υ1,2 · · · Υ1,h

Υ2,1 Υ2,2 · · · Υ2,h

...
...

. . .
...

Υh,1 Υh,2 · · · Υh,h

 (A.10.20)

µ is the mean vector for the h-step ahead predictions, in which each µi element represents the n×1

mean for prediction at period T + i (i = 1, 2, ..., h). On the other hand, Υ is the variance-covariance

matrix for these predictions, and each Υi,j is the n × n covariance matrix between predictions at

period T + i and T + j. The issue resides in computing µ and Υ.

For µ, the ith-step ahead expectation µi is given by:

µi =

{
E(yT+i |yoT , β,Σ,M1 ) if i > 0

yT+i if i < 0
(A.10.21)

µi is straightforward to obtain from the usual chain rule of forecasting. For instance given a VAR

model in the form of 3.1.2, one has:
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µ1 = E(yT+1 |yoT , β,Σ,M1 )

= A1E(yT |yoT , β,Σ,M1 ) + A2E(yT−1 |yoT , β,Σ,M1 ) + ...+ ApE(yT+1−p |yoT , β,Σ,M1 )

+ CE(xT+1 |yoT , β,Σ,M1 ) + E(εT+1 |yoT , β,Σ,M1 )

= A1µ0 + A2µ−1 + ...+ Apµ1−p + CE(xT+1)

Following:

µ2 = E(yT+2 |yoT , β,Σ,M1 )

= A1E(yT+1 |yoT , β,Σ,M1 ) + A2E(yT |yoT , β,Σ,M1 ) + ...+ ApE(yT+2−p |yoT , β,Σ,M1 )

+ CE(xT+2 |yoT , β,Σ,M1 ) + E(εT+2 |yoT , β,Σ,M1 )

= A1µ1 + A2µ0 + ...+ Apµ2−p + CE(xT+2)

In general, one can use recursive substitution and obtain:

µi =

p∑
k=1

Akµi−k + CE(xT+i) (A.10.22)

Now, for the covariance matrix Υ, define:

Υi,j = cov(yT+i, yT+j |yoT , β,Σ,M1 )

= E [(yT+i − µy,i)(yT+j − µy,j), |yoT , β,Σ,M1 ] (A.10.23)

Notice that from 3.1.2 and A.10.21, one can deduce:

yT+i − µi =

p∑
k=1

AkyT+i−k + CxT+i + εT+i −
p∑

k=1

Akµi−k − CE(xT+i)

=

min(i−1,p)∑
k=1

Ak(yT+i−k − µi−k)+C [xT+i − E(xT+i)] + εT+i (A.10.24)

The min(i−1, p)justifies by the fact that for k ≥ i, the period becomes t < T , implying from A.10.21

that (yT+i−k − µi−k) = (µi−k − µi−k) = 0.

Substituting back in A.10.23, one obtains:

ECB Working Paper 1934, July 2016 251



Υi,j =E

min(i−1,p)∑
k=1

Ak(yT+i−k − µi−k)+C [xT+i − E(xT+i)] + εT+i

 (yT+j − µj), |yoT , β,Σ,M1


=

min(i−1,p)∑
k=1

AkE [(yT+i−k − µi−k)(yT+j − µj), |yoT , β,Σ,M1 ]

+ C [E(xT+i |yT )− E(E(xT+i) |yoT , β,Σ, A)] (yT+j − µj), + E [εT+i(yT+j − µj), |yoT , β,Σ,M1 ]

=

min(i−1,p)∑
k=1

AkE [(yT+i−k − µi−k)(yT+j − µj), |yoT , β,Σ,M1 ]

+ C [E(xT+i)− E(xT+i)] (yT+j − µj), + E [εT+i(yT+j − µj), |yoT , β,Σ,M1 ]

=

min(i−1,p)∑
k=1

AkE [(yT+i−k − µi−k)(yT+j − µj), |yoT , β,Σ,M1 ] + E [εT+i(yT+j − µj), |yoT , β,Σ,M1 ]

(A.10.25)

Without loss of generality, assume i > j (the symmetry of Υ implies that Υi,j = Υ,
j,i, so that the

case i < j can simply be treated as the transpose of the case i > j). Then from A.10.25:

Υi,j =

min(i−1,p)∑
k=1

AkE [(yT+i−k − µi−k)(yT+j − µj), |yoT , β,Σ,M1 ] + E [εT+i(yT+j − µj), |yoT , β,Σ,M1 ]

=

min(i−1,p)∑
k=1

AkΥi−k,j (A.10.26)

where use has been made of the fact that E [εT+i(yT+j − µj), |yoT , β,Σ,M1 ] = 0 since i > j. In

the case i = j, using again A.10.24 to substitute for yT+j − µj in A.10.26, one obtains:

Υi,i =

min(i−1,p)∑
k=1

AkE [(yT+i−k − µi−k)(yT+i − µi), |yoT , β,Σ,M1 ]

+ E

εT+i

min(i−1,p)∑
k=1

Ak(yT+i−k − µi−k)+C [xT+i − E(xT+i)] + εT+i

,

|yoT , β,Σ,M1


=

min(i−1,p)∑
k=1

AkΥi−k,i + Σ (A.10.27)

where Σ denotes as usual the residual covariance matrix, and where use has been made of the
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fact that E [εT+iAk(yT+i−k − µi−k), |yoT , β,Σ,M1 ] = 0 since T + i > T + i− k.

A.10.22, A.10.26 and A.10.27 allow to fully identify µ and Υ, and, following, to compute

f(ỹT+1:T+h |yoT , β,Σ,M1) from A.10.19. Furthermore, it is possible to use property A.2.2.6 of the

multivariate normal distribution to obtain:

RỹT+1:T+h |yoT , β,Σ,M1 ∼ N( Rµ , RΥR,) (A.10.28)

where R is any matrix comfortable with ỹT+1:T+h. By selecting carefully R, one can obtain the

properties of a subset only of ỹT+1:T+h. For instance, considering the case n = 2 and h = 3 (two

variables and three forecast periods):

• defining R = Inh selects ỹT+1:T+h as a whole

• defining R =

(
0 0 0 0 1 0

0 0 0 0 0 1

)
selects only ỹT+h

• defining R =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0


selects only the first variable over all the periods.

And so on.

Note however that what has been so far defined in A.10.19 is only a conditional predictive density,

that is, the density obtained for given draws of β and Σ from the posterior distribution of model

A. However, what is required for the log predictive score is the unconditional predictive density.

Fortunately, it is straightforward to derive the latter by relying on almost sure convergence properties.

Precisely, one has:

1

N

N∑
n=1

f(RyoT+1:T+h |yoT , β(n),Σ(n),M1)
a.s→ f(RyoT+1:T+h |yoT ,M1) (A.10.29)

where β(n) and Σ(n) denote draw n from the posterior distribution of model A. Of course, in

practice, one follows the usual strategy consisting in recycling the Gibbs sampler draws to obtain

the sequences of β(n) and Σ(n) values. Also, it is important to note that the predictive density is

evaluated from the observed values yoT+1:T+h in order to evaluate the prediction performance of model

M1.
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With this predictive density, it is possible to estimate the log predictive score of model A. The

general definition of the log predictive score for model A is 10:

S(yoT ,M1) =
T f−h∑
t=T

log f(Ryot+1:t+h |yot ,M1) (A.10.30)

It is convenient to consider only the case T + h = T f , for which A.10.30 becomes:

S(yoT ,M1) = log f(RyoT+1:T+h |yot ,M1) (A.10.31)

Two base forecasting scenarios are considered, each time for variable i of the model, i = 1, 2, ..., n.

In the first scenario, R is sequentially defined as:

R
1×nh

=
(

0i,n 0n 0n · · · 0n

)
,
(

0n 0i,n 0n · · · 0n

)
, ...,

(
0n 0n 0n · · · 0i,n

)
(A.10.32)

where 0i,n denotes a 1 × n matrix of zeros, save for a unique 1, located at the ithentry, and 0n

denotes a 1 × n matrix of zeros. In this case, what is evaluated is the performance of the forecasts

produced by model A for variable i at respective periods T+1, T+2, ..., T+h. In the second scenario,

R is sequentially defined as:

R =
(

0i,n 0n 0n · · · 0n

)
,

(
0i,n 0n 0n · · · 0n

0n 0i,n 0n · · · 0n

)
, ...,


0i,n 0n 0n · · · 0n

0n 0i,n 0n · · · 0n
...

. . .
...

0n · · · 0n 0n 0i,n

 (A.10.33)

Where R is sequentially of dimension 1 × nh, 2 × nh, ..., h × nh. In this case, what is evaluated

is the overall performance of the forecast produced by model A for variable i from period T + 1 up

to periods T + 2, T + 3, ..., T + h.

To summarize, it is possible to propose the following procedure to compute the log predictive

scores:

Algorithm A.10.1 (log predictive score, all priors):

1. Store observed values for post-sample data yoT+1,yoT+2,...,yoT+h.

2. Initiate the Gibbs sampler phase. At iteration n, draw β(n) and Σ(n).

3. At iteration n, obtain µ from A.10.22.

10There are nearly as many different definitions of log predictive scores than papers using them as an evaluation criterion.
The definition adopted here is that of Mao (2010), which has the virtue of being fairly general.
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4. At iteration n, obtain Υ from A.10.26 and A.10.27.

5. At iteration n, obtain f(RyoT+1:T+h |yoT , β(n),Σ(n),M1) from A.10.19, for every value of R in the

sequences A.10.32 and A.10.33.

6. Once It iterations are realised, compute f(RyoT+1:T+h |yoT ,M1) from A.10.29, once again for

each value of R.

7. Compute the log predictive scores from A.10.31, for each value of R.

An alternative to the log predictive score is the continuous ranked probability score, first in-

troduced by Matheson and Winkler (1976), and which has recently regained interest Gneiting and

Raftery (2007). Similarly to the log predictive score, it evaluates the quality of the forecast produced

by the model by assessing the adequacy between the posterior predictive distribution and the actual,

realized value. The idea, once again, is that a good posterior predictive distribution should be at the

same time characterized by an accurate location (close to the realized value), and a sharp density

(predictive values should be tightly concentrated around the realized value).

Consider the cumulative distribution function F corresponding to the marginal predictive density

f for the forecast at period T + h, along with the realized value yoT+h for this period. Then, the

continuous ranked predictive score (CRPS) is then defined as:

CRPS(F, yoT+h) =

∫ ∞
−∞

(
F (x)− 1(x > yoT+h)

)2
dx (A.10.34)

where 1(.) denotes the indicator function, taking a value of 1 if the condition is verified, and zero

otherwise. The CRPS value in A.10.34 can be conceived as a penalty function sanctioning the overall

distance between the distribution points and the realized value. In the case of a perfect predictive

distribution (a mass point of density 1 at x = yoT+h, so that F (x) = 0 for x < yoT+h , and F (x) = 1

for x ≥ yoT+h), the value of CRPS(F, yoT+h) is 0. In any other case, there will be a positive penalty

stemming from the possible deviations of the distribution value from the observed value, with greater

penalty applied on values far away from the realized value. Hence, the larger the value of the CRPS,

the poorer the performance of the predictive distribution f for the forecast at period T + h.

In practical applications, A.10.34 is not applicable because the analytical form of the cumulative

distribution function F is not known. However, Gneiting and Raftery (2007) show that the CRPS

A.10.34 can be evaluated in closed form as:

CRPS(F, yoT+h) = E
∣∣x− yoT+h

∣∣− 1

2
E |x− y| (A.10.35)

where expectation is to be taken with respect to the distribution function F , and x and y are

independent random draws from the density f . As usual, the strategy then consists into approxi-
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mating the expectation terms in A.10.35 by recycling the Gibbs sampler draws from f . This yields

the following equivalent formula:

CRPS(F, yoT+h) =
1

(It−Bu)

(It−Bu)∑
i=1

∣∣∣ỹ(i)
T+h − y

o
T+h

∣∣∣− 1

2(It−Bu)2

(It−Bu)∑
i=1

(It−Bu)∑
j=1

∣∣∣ỹ(i)
T+h − ỹ

(j)
T+h

∣∣∣
(A.10.36)

A.11 Derivation of confidence intervals for a standard OLS VAR model

So far, the analysis developed in this guide focused on Bayesian estimates. In a Bayesian framework,

deriving confidence intervals (or more properly, credibility intervals) is extremely straightforward:

suffice is to consider quantiles of the posterior distribution, be it analytical or empirical as a result

of a Gibbs sampler process. Yet, such confidence intervals can also be provided for a standard OLS

VAR model, though the procedure is typically more complex. This appendix presents the results

used to derive confidence intervals for the VAR coefficients, the forecasts, and the impulse response

functions.

The confidence intervals for the VAR coefficients are derived by using proposition 11.1 (p 298-299)

in Hamilton (1994). This proposition states the following: consider the standard VAR model 3.1.2,

and its vectorised reformulation 3.1.11. The two parameters of interest are the residual variance-

covariance matrix Σ and the vectorised VAR coefficients β, and their OLS counterparts Σ̂ and β̂ are

respectively given by 3.1.10 and 3.1.15. Then, under fairly standard conditions, the following holds:

1. (1/T )(X ,X)
P→Θ, where Θ = E(X ,X)

2. β̂
P→ β

3. Σ̂
P→Σ

4.
√
T
(
β̂ − β

)
L→N (0,Σ⊗Θ−1)

1.) states that (1/T )(X ,X) is a consistent estimate for Θ. That is, for large enough T , (1/T )(X ,X) ≈
Θ, which implies that Θ−1 ≈ T (X ,X)−1. Then, 2.) and 3.) tell us that β̂ and Σ̂ are consistent

estimators for β and Σ. Finally, 4.) implies that β̂ converges in distribution to a normal law:

β̂
L→N (β, T−1 (Σ⊗Θ−1)). Combining 1.) and 4.), it is possible to conclude that β̂ approximately

follows a normal distribution characterised by β̂ ∼ N
(
β,Σ⊗ (XX)−1). Finally, combining with 3.)

to obtain a consistent estimate of Σ, one obtains the approximate distribution:
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β̂ ∼ N
(
β, Σ̂⊗ (XX)−1

)
(A.11.1)

From this, and the property A.2.2.4 of the multivariate normal distribution, one may conclude

that the ith element of the vector β̂ follows a normal distribution:

β̂i ∼ N
(
βi, σ̂

2
i ⊗ (XX)−1) (A.11.2)

where σ̂2
i is the ith diagonal element of Σ̂. From this, it is straightforward to derive the standard

deviation and confidence intervals of each coefficient.

For impulse response functions, the easiest approach is probably to rely on Monte Carlo simulation

methods, as described in Hamilton (1994), p 337. Because from A.10.1, the distribution of β̂ is known,

it is possible to randomly generate vectors β̂(1), β̂(2), ..., β̂(N), where N is some large number. Then,

for each such vector, compute the series of impulse functions, using the methodology developed in

section 4.2. For a confidence level of α , simply trim the α/2 percent smallest and largest values, to

obtain an empirical α% confidence interval.

Finally, to derive the confidence interval of forecasts, one may use the Gaussian properties of yt .

This implies (see Luetkepohl (1993), equation 3.5.15 p 89) that an approximate (1−α) % confidence

interval for an h-periods ahead forecast for variable yi,t obtains as:

ỹi,t+h ± z(α/2)σi,h (A.11.3)

where ỹi,t+h denotes the predicted value for yi at period t + h , z(α) is the αth quantile of the

standard normal distribution, and σi,h is the square root of the ith diagonal element of Σ̃h , the

forecast error covariance matrix. The latter is defined as:

Σ̃h =
h−1∑
i=0

ΨiΣ̂Ψ,
i = Σ̃h−1 + Ψh−1Σ̂Ψ,

h−1 (A.11.4)

and Ψi denotes the impulse response function matrix for period i (see Luetkepohl (1993), equation

2.2.11 p 32).

A.12 Examples on conditional forecasts

1. Case of conditional forecasts when there are more variables in a block than shocks generating

them.

Consider the case of a 3-variable VAR model for which forecasts are produced for T + 1. There
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is one condition on variable 1 so that y1,T+1 = ȳ1, and one condition on variable 2 so that

y2,T+1 = ȳ2. Both conditions are generated by shock 1. There is thus one block made of two

variables, generated only by one shock. The system 5.3.12 is given by:

(
φ̃0,11 φ̃0,12 φ̃0,13

φ̃0,21 φ̃0,22 φ̃0,23

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1

ȳ2 − ỹ2,T+1

)
(A.12.1)

• Draw first the non-constructive shocks η2,T+1 and η3,T+1 from their distribution, and trans-

fer their impacts on the right-hand side:

(
φ̃0,11 0 0

φ̃0,21 0 0

)η1,T+1

η2,T+1

η3,T+1

 =

(
ȳ1 − ỹ1,T+1 − φ̃0,12η2,T+1 − φ̃0,13η3,T+1

ȳ2 − ỹ2,T+1 − φ̃0,22η2,T+1 − φ̃0,23η3,T+1

)
(A.12.2)

For clarity, note that this system can be equivalently rewritten as:

(
φ̃0,11

φ̃0,21

)
(η1,T+1) =

(
ȳ1 − ỹ1,T+1 − φ̃0,12η2,T+1 − φ̃0,13η3,T+1

ȳ2 − ỹ2,T+1 − φ̃0,22η2,T+1 − φ̃0,23η3,T+1

)
(A.12.3)

This is a system of two equations in only one unknown: η1,T+1. The system is overdetermined

and has no solution.

Conclusion: conditions cannot hold for blocks where there are more variables than shocks

generating the conditions. The reason is that this generates over-determined systems with no

solutions.

2. Case of conditional forecasts when shocks are shared among blocks

Consider the case of a 3-variable VAR model for which forecasts are produced for T + 1. There

is one condition on variable 1 so that y1,T+1 = ȳ1, and one condition on variable 2 so that

y2,T+1 = ȳ2. Both conditions are generated by shock 1 and 2. There is thus one block made

of two variables, generated by two shocks. There is also one condition on variable 3 so that

y3,T+1 = ȳ3, and this condition is generated by shock 2. This constitutes block 2.

The system 5.3.12 is given by:
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φ̃0,11 φ̃0,12 φ̃0,13

φ̃0,21 φ̃0,22 φ̃0,23

φ̃0,31 φ̃0,32 φ̃0,33


η1,T+1

η2,T+1

η3,T+1

 =

ȳ1 − ỹ1,T+1

ȳ2 − ỹ2,T+1

ȳ3 − ỹ3,T+1

 (A.12.4)

• Draw first the non-constructive shock η3,T+1 from its distribution, and transfer its impact

on the right-hand side:

φ̃0,11 φ̃0,12 0

φ̃0,21 φ̃0,22 0

φ̃0,31 φ̃0,32 0


η1,T+1

η2,T+1

η3,T+1

 =

ȳ1 − ỹ1,T+1 − φ̃0,13η3,T+1

ȳ2 − ỹ2,T+1 − φ̃0,23η3,T+1

ȳ3 − ỹ3,T+1 − φ̃0,33η3,T+1

 (A.12.5)

• Consider block 1: draw first the constructive shock η1,T+1 and η2,T+1 from the Waggoner-

Zha distribution, and transfer their impacts on the right-hand side:

0 0 0

0 0 0

0 0 0


η1,T+1

η2,T+1

η3,T+1

 =

ȳ1 − ỹ1,T+1 − φ̃0,13η3,T+1 − φ̃0,11η1,T+1 − φ̃0,12η2,T+1

ȳ2 − ỹ2,T+1 − φ̃0,23η3,T+1 − φ̃0,21η1,T+1 − φ̃0,22η2,T+1

ȳ3 − ỹ3,T+1 − φ̃0,33η3,T+1 − φ̃0,31η1,T+1 − φ̃0,32η2,T+1


(A.12.6)

All the shocks are now determined, but the draws have been realised to satisfy the conditions in

block 1 only. There is thus no reason that the condition in block 2 is also satisfied. This is because

shocks are actually not shared: shock η2,T+1 has been used by block 1, and is not available anymore

to determine block 2. Block 2 could be only identified if it was generated by at least one additional

shock. But then, it would be more accurate to say that it is generated only by this other shock.

Conclusion: shocks cannot be shared among blocks. Different blocks must be generated by different

shocks.

A.13 Derivations for the pooled estimator

Start by the likelihood function. Given (6.3.12) and (6.3.13), it is given by:

f(y
∣∣Σ̄) = (2π)−NnT/2

∣∣Σ̄∣∣−1/2
exp

(
−1

2
(y − X̄β)

,
Σ̄−1(y − X̄β)

)
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or:

f(y
∣∣Σ̄) ∝

∣∣Σ̄∣∣−1/2
exp

(
−1

2
(y − X̄β)

,
Σ̄−1(y − X̄β)

)
Using (6.3.11) and (6.3.13), the kernel reformulates as:

f(y |Σc) ∝ |Σc ⊗ INT |−1/2 exp

(
−1

2
(y − (In ⊗X) β),(Σc ⊗ INT )−1 (y − (In ⊗X) β)

)
(A.13.1)

Consider only the part within the curly brackets of (A.13.1) and develop:

(y − (In ⊗X)β),(Σc ⊗ INT )−1 (y − (In ⊗X)β)

= (y, − β,(In ⊗X),) (Σ−1
c ⊗ INT ) (y − (In ⊗X)β) A.1.2

= y, (Σ−1
c ⊗ INT ) y − 2β,(In ⊗X), (Σ−1

c ⊗ INT ) y + β,(In ⊗X), (Σ−1
c ⊗ INT ) (In ⊗X)β

= y, (Σ−1
c ⊗ INT ) y − 2β,(Σ−1

c ⊗X ,)y + β,(Σ−1
c ⊗X ,X)β A.1.1,A.1.3

Completing the squares:

= y,
(
Σ−1
c ⊗ INT

)
y − 2β̂,

(
Σ−1
c ⊗X ,

)
y + 2β̂,

(
Σ−1
c ⊗X ,

)
y

−2β,
(
Σ−1
c ⊗X ,

)
y + β,

(
Σ−1
c ⊗X ,X

)
β

= y,
(
Σ−1
c ⊗ INT

)
y − 2β̂,

(
Σ−1
c ⊗X ,

)
y + 2β̂,

(
Σ−1
c ⊗X ,X

) (
Σ−1
c ⊗X ,X

)−1 (
Σ−1
c ⊗X ,

)
y

−2β,
(
Σ−1
c ⊗X ,X

) (
Σ−1
c ⊗X ,X

)−1 (
Σ−1
c ⊗X ,

)
y + β,

(
Σ−1
c ⊗X ,X

)
β (A.13.2)

Define β̂, the OLS estimate of β, as:

β̂ =
(
Σ−1
c ⊗ (X ,X)

)−1 (
Σ−1
c ⊗X ,

)
y (A.13.3)
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Indeed, one has:

β̂ = vec(B̂)

= vec(B̂In)

= vec
(
(X ,X)−1X ,yIn

)
=
(
In ⊗ (X ,X)−1X ,

)
vec(Y ) A.1.5

=
(
In ⊗ (X ,X)−1X ,

)
y

=
(
Σc ⊗ (X ,X)−1) (Σ−1

c ⊗X ,
)
y A.1.3

=
(
Σ−1
c ⊗ (X ,X)

)−1 (
Σ−1
c ⊗X ,

)
y A.1.2

This is indeed (A.13.3). Then, (A.13.2) rewrites:

= y,
(
Σ−1
c ⊗ INT

)
y − 2β̂,

(
Σ−1
c ⊗X ,

)
y + 2β̂,

(
Σ−1
c ⊗X ,X

)
β̂

−2β,
(
Σ−1
c ⊗X ,X

)
β̂ + β,

(
Σ−1
c ⊗X ,X

)
β

= y,
(
Σ−1
c ⊗ INT

)
y − 2β̂,

(
Σ−1
c ⊗X ,

)
y + β̂,

(
Σ−1
c ⊗X ,X

)
β̂

+β̂,
(
Σ−1
c ⊗X ,X

)
β̂ − 2β,

(
Σ−1
c ⊗X ,X

)
β̂ + β,

(
Σ−1
c ⊗X ,X

)
β

= y,
(
Σ−1
c ⊗ INT

)
y − 2β̂,

(
Σ−1
c ⊗X ,

)
y + β̂,

(
Σ−1
c ⊗X ,X

)
β̂

+(β − β̂)
, (

Σ−1
c ⊗X ,X

)
(β − β̂)

= y,
(
Σ−1
c ⊗ INT

)
y − 2β̂,

(
Σ−1
c ⊗X ,

)
y + β̂,

(
Σ−1
c ⊗X ,X

)
β̂

+(β − β̂)
,(

Σc ⊗ (X ,X)−1)−1
(β − β̂) A.1.2 (A.13.4)

Reshape the first row of (A.13.4):
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y,
(
Σ−1
c ⊗ INT

)
y − 2β̂,

(
Σ−1
c ⊗X ,

)
y + β̂,

(
Σ−1
c ⊗X ,X

)
β̂

= y,
(
Σ−1
c ⊗ INT

)
y − 2β̂,(In ⊗X),

(
Σ−1
c ⊗ INT

)
y

+β̂,
(
Σ−1
c ⊗X ,

)
(In ⊗X) β̂ A.1.1, A.1.3

= y,
(
Σ−1
c ⊗ INT

)
y − 2

(
(In ⊗X) β̂

), (
Σ−1
c ⊗ INT

)
y

+β̂,(In ⊗X),
(
Σ−1
c ⊗ INT

)
(In ⊗X) β̂ A.1.3

= y,(Σc ⊗ INT )−1y − 2
(

(In ⊗X) β̂
),

(Σc ⊗ INT )−1y

+β̂,(In ⊗X),(Σc ⊗ INT )−1 (In ⊗X) β̂ A.1.2

= tr
{

Σ−1
c Y ,INTY

}
− 2tr

{
Σ−1
c (XB̂)

,
INTY

}
+ tr

{
Σ−1
c B̂,X ,INTXB̂

}
A.1.5, A.1.10

= tr
{
Y Σ−1

c Y ,
}
− 2tr

{
Y Σ−1

c B̂,X ,
}

+ tr
{
XB̂Σ−1

c B̂,X ,
}

A.17.15

= tr
{
Y Σ−1

c Y , − 2Y Σ−1
c B̂,X , +XB̂Σ−1

c B̂,X ,
}

A.17.15

= tr
{

(Y −XB̂)Σ−1
c (Y −XB̂)

,
}

= tr
{

Σ−1
c (Y −XB̂)

,
(Y −XB̂)

}
A.17.15 (A.13.5)

Reshape then the second row of (A.13.4):

(β − β̂)
,(

Σc ⊗ (X ,X)−1)−1
(β − β̂)

= tr
{

Σ−1
c

(
B − B̂

),
(X ,X)

(
B − B̂

)}
A.1.10 (A.13.6)

Substitute finally (A.13.5) and (A.13.6) in (A.13.4) to obtain:

(y − (In ⊗X)β),(Σc ⊗ INT )−1 (y − (In ⊗X)β)

= tr
{

Σ−1
c (Y −XB̂)

,
(Y −XB̂)

}
+ tr

{
Σ−1
c

(
B − B̂

),
(X ,X)

(
B − B̂

)}
(A.13.7)

Before turning back to (A.13.1), note also that Kronecker property A.1.4 implies that the deter-
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minant part of (A.13.1) can rewrite as:

|Σc ⊗ INT |−1/2 =
(
|Σc|NT |IT |n

)−1/2

= |Σc|−NT/2 (A.13.8)

Substituting (A.13.7) and (A.13.8) in (A.13.1), one eventually obtains:

f(y |β,Σc) ∝ |Σc|−NT/2

exp
(
−1

2

[
tr
{

Σ−1
c (Y −XB̂)

,
(Y −XB̂)

}
+ tr

{
Σ−1
c

(
B − B̂

),
(X ,X)

(
B − B̂

)}])
Or, rearranging:

f(y |β,Σc) ∝ |Σc|−NT/2 exp

[
−1

2
tr
{

Σ−1
c

(
B − B̂

),
(X ,X)

(
B − B̂

)}]
× exp

[
−1

2
tr
{

Σ−1
c (Y −XB̂)

,
(Y −XB̂)

}]
(A.13.9)

The prior distribution for β is multivariate normal:

β ∼ N (β0,Σc ⊗ Φ0)

Therefore, its density is given by:

π(β) = (2π)−q/2|Σc ⊗ Φ0|
−1/2 exp

(
−1

2
(β − β0),(Σc ⊗ Φ0)−1(β − β0)

)
(A.13.10)

or, using A.1.4 :

π(β) = (2π)−q/2|Σc|−k/2|Φ0|
−n/2 exp

(
−1

2
(β − β0),(Σc ⊗ Φ0)−1(β − β0)

)
The kernel is given by:

π(β) ∝ |Σc|−k/2 exp
[
−1

2
(β − β0),(Σc ⊗ Φ0)−1 (β − β0)

]
Using A.1.10, this rewrites as:
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π(β) ∝ |Σc|−k/2 exp

[
−1

2
tr
{

Σ−1
c (B −B0),Φ−1

0 (B −B0)
}]

(A.13.11)

The prior for Σc is inverse Wishart:

Σc ∼ IW (S0, α0)

The prior density is given by:

π(Σc|S0, α0) = 1

2α0n/2Γn(α0
2 )
|S0|α0/2|Σc|−(α0+n+1)/2 exp

(
−1

2
tr {Σ−1

c S0}
)

The kernel is given by:

π(Σc) ∝ |Σc|−(α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1
c S0

}]
(A.13.12)

Combining the likelihood (A.13.9) with the prior distributions (A.13.11) and (A.13.12), one obtains

the posterior distribution as:

π(β,Σ |y ) ∝ f(y |β,Σ)π(β)π(Σ)

= |Σc|−NT/2 exp

[
−1

2
tr
{

Σ−1
c

(
B − B̂

),
(X ,X)

(
B − B̂

)}]
× exp

[
−1

2
tr
{

Σ−1
c (Y −XB̂)

,
(Y −XB̂)

}]
×|Σc|−k/2 exp

[
−1

2
tr
{

Σ−1
c (B −B0),Φ−1

0 (B −B0)
}]

×|Σ|−(α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1
c S0

}]
(A.13.13)

Rearranging:
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π(β,Σ |y ) ∝ |Σc|−(NT+k+α0+n+1)/2

× exp

[
−1

2
tr
{

Σ−1
c

[(
B − B̂

),
(X ,X)

(
B − B̂

)
+ (B −B0),Φ−1

0 (B −B0)
]}]

× exp

[
−1

2
tr
{

Σ−1
c

[
S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
(A.13.14)

Focusing on the term in the curly brace in the second row:

Σ−1
c

[(
B − B̂

),
(X ,X)

(
B − B̂

)
+ (B −B0),Φ−1

0 (B −B0)
]

= Σ−1
c

[
B,X ,XB + B̂,X ,XB̂ − 2B,X ,XB̂ +B,Φ−1

0 B +B,
0Φ−1

0 B0 − 2B,Φ−1
0 B0

]
= Σ−1

c

[
B,
(
X ,X + Φ−1

0

)
B − 2B,

(
X ,XB̂ + Φ−1

0 B0

)
+ B̂,X ,XB̂ +B,

0Φ−1
0 B0

]

Completing the squares:

= Σ−1
c

[
B,
(
X ,X + Φ−1

0

)
B − 2B,Φ̄−1Φ̄

(
X ,XB̂ + Φ−1

0 B0

)
+ B̄,Φ̄−1B̄ − B̄,Φ̄−1B̄

+B̂,X ,XB̂ +B,
0Φ−1

0 B0

]

Defining:

Φ̄ =
[
Φ−1

0 +X ,X
]−1

(A.13.15)

and

B̄ = Φ̄
[
Φ−1

0 B0 +X ,XB̂
]

(A.13.16)

The previous expression may rewrite:
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= Σ−1
c

[
B,Φ̄−1B − 2B,Φ̄−1B̄ + B̄,Φ̄−1B̄ − B̄,Φ̄−1B̄ + B̂,X ,XB̂ +B,

0Φ−1
0 B0

]
= Σ−1

c

[
(B − B̄)

,
Φ̄−1(B − B̄)− B̄,Φ̄−1B̄ + B̂,X ,XB̂ +B,

0Φ−1
0 B0

]
= Σ−1

c

[
(B − B̄)

,
Φ̄−1(B − B̄)

]
+ Σ−1

c

[
B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

]

Substituting back in the posterior (A.13.14), it becomes:

π(β,Σc |y ) ∝ |Σc|−(NT+k+α0+n+1)/2

× exp

[
− 1

2
tr
{

Σ−1
c

[
(B − B̄)

,
Φ̄−1(B − B̄)

]
+ Σ−1

c

[
B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

]}]
× exp

[
−1

2
tr
{

Σ−1
c

[
S0 + (Y −XB̂)

,
(Y −XB̂)

]}]
= |Σc|−(NT+k+α0+n+1)/2 exp

[
−1

2
tr
{

Σ−1
c

[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
A.1.2

× exp

[
−1

2
tr
{

Σ−1
c

[
S0 + (Y −XB̂)

,
(Y −XB̂) + B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

]}]
= |Σc|−k/2 exp

[
−1

2
tr
{

Σ−1
c

[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
×|Σc|−(NT+α0+n+1)/2

× exp

[
−1

2
tr
{

Σ−1
c

[
S0 + (Y −XB̂)

,
(Y −XB̂) + B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄

]}]

Define:

ᾱ = NT + α0 (A.13.17)

and

S̄ = S0 + (Y −XB̂)
,
(Y −XB̂) + B̂,X ,XB̂ +B,

0Φ−1
0 B0 − B̄,Φ̄−1B̄ (A.13.18)

Then the previous equation rewrites:

π(β,Σc |y ) ∝ |Σc|−k/2 exp

[
−1

2
tr
{

Σ−1
c

[
(B − B̄)

,
Φ̄−1(B − B̄)

]}]
×|Σc|−(ᾱ+n+1)/2 exp

[
−1

2
tr
{

Σ−1
c S̄

}]
(A.13.19)
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This is exactly similar to A.4.16. Therefore, following a reasoning identical to that of A.5, it follows

immediately that the marginal posteriors are given by:

π(Σc |y ) ∼ IW
(
ᾱ, S̄

)
(A.13.20)

and

π(B |y ) ∼ MT (B̄, S̄, Φ̄, α̃) (A.13.21)

with:

α̃ = ᾱ− n+ 1 = NT + α0 − n+ 1 (A.13.22)

Finally, from (a.4.24) and (a.4.25), S̄ and B̄ can simplify to:

S̄ = Y ,Y + S0 +B,
0Φ−1

0 B0 − B̄,Φ̄−1B̄ (A.13.23)

and

B̄ = Φ̄
[
Φ−1

0 B0 +X ,Y
]

(A.13.24)

A.14 Derivations for the Zellner and Hong prior

The likelihood function for the data is given by:

f(y
∣∣β, Σ̄) = (2π)−nT/2

∣∣Σ̄∣∣−1/2
exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
(A.14.1)

Or, getting rid of the proportionality terms:

f(y |β ) ∝ exp

[
−1

2

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)]
(A.14.2)

Given (6.5.5), the prior density for β is given by:

π(β) = (2π)−h/2
∣∣Σ̄b

∣∣−1/2
exp

(
−1

2
(β − b̄),Σ̄−1

b (β − b̄)
)

(A.14.3)
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Getting rid of the proportionality terms:

π(β) ∝ exp

(
−1

2
(β − b̄),Σ̄−1

b (β − b̄)
)

(A.14.4)

Then, using Bayes rule 3.2.3, one combines the likelihood and the prior to obtain:

f(β |y ) ∝ exp

[
−1

2

{(
y − X̄β

),
Σ̄−1

(
y − X̄β

)
+
(
β − b̄

),
Σ̄−1
b

(
β − b̄

)}]
(A.14.5)

Consider the term in the curly bracket of (A.14.5), and use (6.5.8) and (6.5.9) to develop:

(
y − X̄β

),
Σ̄−1

(
y − X̄β

)
+
(
β − b̄

),
Σ̄−1
b

(
β − b̄

)
=
(
y − X̄β

),(
σ2
εINnT

)−1 (
y − X̄β

)
+
(
β − b̄

),(
λ1σ

2
εIq
)−1 (

β − b̄
)

=
(
y − X̄β

),
σ−2
ε

(
y − X̄β

)
+ λ−1

1

(
β − b̄

),
σ−2
ε

(
β − b̄

)
= y,σ−2

ε y + β,X̄ ,σ−2
ε X̄β − 2β,X̄ ,σ−2

ε y + λ−1
1 β,σ−2

ε β + λ−1
1 b̄,σ−2

ε b̄− 2λ−1
1 β,σ−2

ε b̄

= y,σ−2
ε y + β,

(
λ−1

1 σ−2
ε Ih + σ−2

ε X̄ ,X̄
)
β − 2β,

(
X̄ ,σ−2

ε y + λ−1
1 σ−2

ε b̄
)

+ λ−1
1 b̄,σ−2

ε b̄

Completing the squares:

= y,σ−2
ε y + β,

(
λ−1

1 σ−2
ε Ih + σ−2

ε X̄ ,X̄
)
β − 2β,Ω̄−1

b Ω̄b

(
X̄ ,σ−2

ε y + λ−1
1 σ−2

ε b̄
)

+λ−1
1 b̄,σ−2

ε b̄+ β̄,Ω̄−1
b β̄ − β̄,Ω̄−1

b β̄

Define:

Ω̄b =
(
λ−1

1 σ−2
ε Ih + σ−2

ε X̄ ,X̄
)−1

(A.14.6)

and

β̄ = Ω̄b

(
X̄ ,σ−2

ε y + λ−1
1 σ−2

ε b̄
)

(A.14.7)

Then the previous expression becomes:

= y,σ−2
ε y + β,Ω̄−1

b β − 2β,Ω̄−1
b β̄ + λ−1

1 b̄,σ−2
ε b̄+ β̄,Ω̄−1

b β̄ − β̄,Ω̄−1
b β̄

= (β − β̄)
,
Ω̄−1
b (β − β̄) + y,σ−2

ε y + λ−1
1 b̄,σ−2

ε b̄− β̄,Ω̄−1
b β̄ (A.14.8)
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Substitute eventually (A.14.8) in (A.14.5) to obtain:

f(β |y ) ∝ exp

[
−1

2

{
(β − β̄)

,
Ω̄−1
b (β − β̄) + y,σ−2

ε y + λ−1
1 b̄,σ−2

ε b̄− β̄,Ω̄−1
b β̄
}]

∝ exp

[
−1

2
(β − β̄)

,
Ω̄−1
b (β − β̄)

]
exp

[
−1

2

(
y,σ−2

ε y + λ−1
1 b̄,σ−2

ε b̄− β̄,Ω̄−1
b β̄
)]

∝ exp

[
−1

2
(β − β̄)

,
Ω̄−1
b (β − β̄)

]
(A.14.9)

This is the kernel of a multivariate normal distribution with mean β̄ and covariance matrix Ω̄b.

Finally, simplify the expressions. First, it is immediate from (A.14.6) that Ω̄b rewrites:

Ω̄b = σ2
ε

(
λ−1

1 Ih + X̄ ,X̄
)−1

(A.14.10)

Then, combining (A.14.7) and (A.14.10):

β̄ = σ2
ε

(
λ−1

1 Ih + X̄ ,X̄
)−1 (

X̄ ,σ−2
ε y + λ−1

1 σ−2
ε b̄
)

= σ2
ε

(
λ−1

1 Ih + X̄ ,X̄
)−1

σ−2
ε

(
X̄ ,y + λ−1

1 b̄
)

=
(
λ−1

1 Ih + X̄ ,X̄
)−1 (

X̄ ,y + λ−1
1 b̄
)

(A.14.11)

A.15 Derivations for the hierarchical prior

First obtain Bayes rule for this specific hierarchical prior model. Start from the definition of the

posterior distribution and develop:

π (β, b,Σb,Σ |y ) =
π (β, b,Σb,Σ, y)

π (y)
∝ π (β, b,Σb,Σ, y)

=
π (y, β, b,Σb,Σ)

π (β, b,Σb,Σ)
π (β, b,Σb,Σ)

= π (y |β, b,Σb,Σ)π (β, b,Σb,Σ)
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Now assuming as usual independence between β and Σ, this may rewrite:

= π (y |β, b,Σb,Σ) π (β, b,Σb) π (Σ)

= π (y |β, b,Σb,Σ)
π (β, b,Σb)

π (b,Σb)
π (b,Σb) π (Σ)

= π (y |β, b,Σb,Σ) π (β |b,Σb ) π (b,Σb)π (Σ)

And also assuming independence between b and Σb, this yields:

= π (y |β, b,Σb,Σ) π (β |b,Σb ) π (b) π (Σb) π (Σ)

b and Σb are relevant only inasmuch as they allow to determine β. In other words, any expression

conditioning on β, b and Σb can be simplified as an expression conditioning on β only, since once a

value for β is drawn from π (β |b,Σb ), b and Σb can have no further impact. This is the case for the

likelihood function π (y |β, b,Σb,Σ), which can hence rewrite simply as π (y |β,Σ). From this, one

eventually obtains:

π (β, b,Σb,Σ |y ) ∝ π (y |β,Σ)π (β |b,Σb ) π (b) π (Σb) π (Σ) (A.15.1)

Now turn to the derivation of the likelihood function. Given (6.4.12) and (6.4.14), the likelihood

function for unit i writes as:

π (yi |βi,Σi ) = (2π)−nT/2
∣∣Σ̄i

∣∣−1/2
exp

(
−1

2

(
yi − X̄iβi

),
Σ̄−1
i

(
yi − X̄iβi

))
∝
∣∣Σ̄i

∣∣−1/2
exp

(
−1

2

(
yi − X̄iβi

),
Σ̄−1
i

(
yi − X̄iβi

))
(A.15.2)

Then, because static interdependencies does not apply, the residual series εi are independent across

units, which allows to obtain the likelihood for the full data set from (A.15.2) as:

π (y |β,Σ) =
∏N

i=1
π (yi |βi,Σi )

=
∏N

i=1

∣∣Σ̄i

∣∣−1/2
exp

(
−1

2

(
yi − X̄iβi

),
Σ̄−1
i

(
yi − X̄iβi

))
(A.15.3)

Before starting the derivation of the conditional posterior distributions, obtain first the full prior

distributions for β and Σ. Start with the prior distribution for β. From (6.4.16), the prior distribution
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for βi is multivariate normal: βi ∼ N (b,Σb). Therefore, its density is given by:

π (βi |b,Σb ) = (2π)−q/2|Σb|−1/2 exp

(
−1

2
(βi − b),Σ−1

b (βi − b)
)

∝ |Σb|−1/2 exp

(
−1

2
(βi − b),Σ−1

b (βi − b)
)

Then, assuming independence between the βis, one obtains:

π (β |b,Σb ) =
∏N

i=1
π (βi |b,Σb )

∝
∏N

i=1
|Σb|−1/2 exp

(
−1

2
(βi − b),Σ−1

b (βi − b)
)

(A.15.4)

Similarly, assuming independence between the Σis, one obtains from (6.6.14):

π (Σi) ∝
∏N

i=1
π (Σi)

=
∏N

i=1
|Σi|−(n+1)/2 (A.15.5)

Now derive the conditional posteriors. Obtain first the conditional posterior for β. Start from

(6.6.16), and substitute for (6.6.4) and (6.6.6), for unit i only:

π (βi |β−i, y, b,Σb,Σ) ∝
∣∣Σ̄i

∣∣−1/2
exp

(
−1

2

(
yi − X̄iβi

),(
Σ̄i

)−1 (
yi − X̄iβi

))
×|Σb|−1/2 exp

(
−1

2
(βi − b),(Σb)

−1 (βi − b)
)

= exp

(
−1

2

{(
yi − X̄iβi

),(
Σ̄i

)−1 (
yi − X̄iβi

)
+ (βi − b),(Σb)

−1 (βi − b)
})

(A.15.6)

Following the usual strategy, consider the curly bracket term and develop:

(
yi − X̄iβi

),
Σ̄−1
i

(
yi − X̄iβi

)
+ (βi − b),Σ−1

b (βi − b)

= y,iΣ̄
−1
i yi + β,iX̄

,
iΣ̄
−1
i X̄iβi − 2β,iX̄

,
iΣ̄
−1
i yi + β,iΣ

−1
b βi + b,Σ−1

b b− 2β,iΣ
−1
b b

= y,iΣ̄
−1
i yi + β,i

(
X̄ ,
iΣ̄
−1
i X̄i + Σ−1

b

)
βi − 2β,i

(
X̄ ,
iΣ̄
−1
i yi + Σ−1

b b
)

+ b,Σ−1
b b
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Complete the squares:

y,iΣ̄
−1
i yi + β,i

(
X̄ ,
iΣ̄
−1
i X̄i + Σ−1

b

)
βi − 2β,i

(
X̄ ,
iΣ̄
−1
i yi + Σ−1

b b
)

+ b,Σ−1
b b

= y,iΣ̄
−1
i yi + β,i

(
X̄ ,
iΣ̄
−1
i X̄i + Σ−1

b

)
βi − 2β,iΩ̄

−1
i Ω̄i

(
X̄ ,
iΣ̄
−1
i yi + Σ−1

b b
)

+ b,Σ−1
b b+ β̄,iΩ̄

−1
i β̄i − β̄

,
iΩ̄
−1
i β̄i (A.15.7)

Define:

Ω̄i =
(
X̄ ,
iΣ̄
−1
i X̄i + Σ−1

b

)−1
(A.15.8)

and:

β̄i = Ω̄i

(
X̄ ,
iΣ̄
−1
i yi + Σ−1

b b
)

(A.15.9)

Then (A.15.7) rewrites:

= y,iΣ̄
−1
i yi + β,iΩ̄

−1
i βi − 2β,iΩ̄

−1
i β̄ + b,Σ−1

b b+ β̄,iΩ̄
−1
i β̄i − β̄

,
iΩ̄
−1
i β̄i

=
(
β,iΩ̄

−1
i βi − 2β,iΩ̄

−1
i β̄i + β̄,iΩ̄

−1
i β̄i

)
+
(
b,Σ−1

b b− β̄,iΩ̄−1
i β̄i + y,iΣ̄

−1
i yi

)
=
(
βi − β̄i

),
Ω̄−1
i

(
βi − β̄i

)
+
(
b,Σ−1

b b− β̄,iΩ̄−1
i β̄i + y,iΣ̄

−1
i yi

)
(A.15.10)

Substitute back in (A.15.6):

π (βi |β−i, y, b,Σb,Σ) ∝ exp

[
−1

2

{(
βi − β̄

),
Ω̄−1
i

(
βi − β̄

)
+
(
b,Σ−1

b b− β̄,iΩ̄−1
i β̄i + y,iΣ̄

−1
i yi

)}]
= exp

[
−1

2

(
βi − β̄

),
Ω̄−1
i

(
βi − β̄

)]
exp

[
−1

2

(
b,Σ−1

b b− β̄,iΩ̄−1
i β̄i + y,iΣ̄

−1
i yi

)]
∝ exp

[
−1

2

(
βi − β̄

),
Ω̄−1
i

(
βi − β̄

)]

(A.15.11)

One eventually obtains:

π (βi |β−i, y, b,Σb,Σ) ∝ exp

[
−1

2

(
βi − β̄i

),
Ω̄−1
i

(
βi − β̄i

)]
(A.15.12)

Therefore, the posterior for βi is conditionally normal, with mean β̄i and covariance matrix Ω̄i.

Considering (A.15.8) and (A.15.9), and making use of A.3.9 and A.3.11, it is possible to simplify β̄i

and Ω̄i as:

Ω̄i =
[
Σ−1
i ⊗X

,
iXi + Σ−1

b

]−1
(A.15.13)
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and:

β̄i = Ω̄i

[(
Σ−1
i ⊗X

,
i

)
yi + Σ−1

b b
]

(A.15.14)

Obtaining the conditional posterior for b turns out to be a bit trickier. Start from the conditional

posterior obtained from Bayes rule (6.6.20):

π (b |y, β,Σb,Σ) ∝ π (β |b,Σb ) π (b)

Using (6.6.6) and (6.6.7), this yields:

π (b |y, β,Σb,Σ) ∝ π (β |b,Σb ) π (b)

∝
∏N

i=1
exp

(
−1

2
(βi − b),(Σb)

−1 (βi − b)
)
× 1

=
∏N

i=1
exp

(
−1

2
(βi − b),(Σb)

−1 (βi − b)
)

(A.15.15)

This is the product of N independent multivariate normal distributions. Intuitively, this should lead

to a final result in the form of a normal distribution, but this expression cannot be used as such, for

two reasons. First, it is a product of densities, while what is required is a single density. Secondly,

this is a distribution in β, while what is needed is the posterior distribution for b. Therefore, some

additional work is required.

First, using A.2.2.5, it is possible to express the product of multivariate normal distributions (A.15.15)

as a single multivariate normal distribution. Define:

β̃ =


β

β
...

β


︸ ︷︷ ︸
h×1

Σ̃b = IN ⊗ Σb =


Σb 0 · · · 0

0 Σb
. . .

...
...

. . . . . . 0

0 · · · 0 Σb


︸ ︷︷ ︸

h×h

b̃ = 1N ⊗ b =


b

b
...

b


︸ ︷︷ ︸
h×1

(A.15.16)

Then β̃ follows a multivariate normal distribution with mean b̃ and covariance matrix Σ̃b:

β̃ ∼ N
(
b̃, Σ̃b

)
(A.15.17)
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Now, the trick consists in using the affine properties of the multivariate normal distribution. Define:

M = N−1 (1,N ⊗ Iq)

= N−1
(
Iq Iq · · · Iq

)
︸ ︷︷ ︸

q×h

(A.15.18)

Then, from A.2.2.6, Mβ̃ follows a multivariate normal distribution with mean Mb̃ and covariance

matrix MΣ̃bM
,. Note that M acts as an averaging matrix. Indeed, from (A.15.16) and (A.15.18),

one obtains:

Mβ̃ = N−1
(
Iq Iq · · · Iq

)

β1

β2

...

βN

 = N−1
∑N

i=1
βi = βm (A.15.19)

where βm denotes the arithmetic mean of the βis. Also, concerning MΣ̃bM
,:

MΣ̃bM
, = N−1

(
Iq Iq · · · Iq

)


Σb 0 · · · 0

0 Σb
. . .

...
...

. . . . . . 0

0 · · · 0 Σb

N−1


Iq

Iq
...

Iq



= N−2
(

Σb Σb · · · Σb

)

Iq

Iq
...

Iq


= N−2NΣb

= N−1Σb

Finally, it is straightforward to obtain Mb̃ = b. Therefore, one eventually concludes that:

βm ∼ N
(
b,N−1Σb

)
(A.15.20)

From this, it is possible to rewrite (A.15.15) as:

π (b |y, β,Σb,Σ) ∝ exp

(
−1

2
(βm − b),

(
N−1Σb

)−1
(βm − b)

)
(A.15.21)
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Then, notice that the term into brackets can be equivalently rewritten as:

(βm − b),
(
N−1Σb

)−1
(βm − b) = (b− βm),

(
N−1Σb

)−1
(b− βm)

Substituting in (A.15.21), it eventually rewrites:

π (b |y, β,Σb,Σ) ∝ exp

(
−1

2
(b− βm),

(
N−1Σb

)−1
(b− βm)

)
(A.15.22)

This is the kernel of a multivariate normal distribution with mean βm and covariance matrix N−1Σb.

Obtain now the conditional posterior for Σb. Start from (6.6.23), and use (6.6.6) and (6.6.13) to

obtain:

π (Σb |y, β, b,Σ) ∝ π (β |b,Σb ) π (Σb)

∝
∏N

i=1
|Σb|−1/2 exp

(
−1

2
(βi − b),(Σb)

−1 (βi − b)
)

×λ−
s0
2
−1 exp

(
− v0

2λ

)
Use (6.6.11) to substitute and rearrange:

π (Σb |y, β, b,Σ)

∝
∏N

i=1
|Σb|−1/2 exp

(
−1

2
(βi − b),(Σb)

−1 (βi − b)
)
× λ−

s0+2
2

1 exp

(
− v0

2λ1

)
= |(λ1 ⊗ Iq) Ωb|−N/2 exp

(
−1

2

N∑
i=1

{
(βi − b),[(λ1 ⊗ Iq) Ωb]

−1 (βi − b)
})
× λ−

s0
2
−1

1 exp

(
− v0

2λ1

)

= |λ1 ⊗ Iq|−N/2|Ωb|−N/2 exp

(
−1

2

N∑
i=1

{
(βi − b),Ω−1

b (λ1 ⊗ Iq)−1 (βi − b)
})
× λ−

s0
2
−1

1 exp

(
− v0

2λ1

)
(a.1.11)

∝ λ
− qN

2
1 exp

(
−1

2

N∑
i=1

{
(βi − b),Ω−1

b λ−1
1 (βi − b)

})
× λ−

s0
2
−1

1 exp

(
− v0

2λ1

)
A.1.2, A.1.4

= λ
−h

2
1 exp

(
− 1

2λ1

N∑
i=1

{
(βi − b),Ω−1

b (βi − b)
})
× λ−

s0
2
−1

1 exp

(
− v0

2λ1

)

= λ
−h+s0

2
−1

1 exp

−v0 +
N∑
i=1

{
(βi − b),Ω−1

b (βi − b)
}

2λ1


= λ

− s̄
2
−1

1 exp

(
− v̄

2

1

λ1

)
(A.15.23)
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with:

s̄ = h+ s0 (A.15.24)

and:

v̄ = v0 +
N∑
i=1

{
(βi − b),Ω−1

b (βi − b)
}

(A.15.25)

One concludes:

π (Σb |y, β, b,Σ) ∝ λ
− s̄

2
−1

1 exp

(
− v̄

2

1

λ1

)
(A.15.26)

This the kernel of an inverse Gamma distribution with shape s̄
2

and scale v̄
2
.

Obtain finally the conditional posteriors for the Σis. Start from (6.6.28), substitute (6.6.4) and

(6.6.15) for unit i only, and rearrange:

π (Σi |Σ−i, y, β, b,Σb ) ∝ π (y |β,Σi ) π (Σi)

=
∣∣Σ̄i

∣∣−1/2
exp

(
−1

2

(
yi − X̄iβi

),(
Σ̄i

)−1 (
yi − X̄iβi

))
× |Σi|−(n+1)/2

= |Σi|−T/2 exp

(
−1

2
tr
[
Σ−1
i (Yi −XiBi)

, (Yi −XiBi)
])
× |Σi|−(n+1)/2A.1.10

= |Σi|−(T+n+1)/2 exp

(
−1

2
tr
[
Σ−1
i (Yi −XiBi)

, (Yi −XiBi)
])

so:

π (Σi |Σ−i, y, β, b,Σb ) ∝ |Σi|−(T+n+1)/2 exp

(
−1

2
tr
[
Σ−1
i (Yi −XiBi)

, (Yi −XiBi)
])

(A.15.27)

This is the kernel of an inverse Wishart distribution with scale S̃i = (Yi −XiBi)
, (Yi −XiBi) and

degrees of freedom T .

A.16 Derivations for the static factor model

Obtain the data likelihood. While it would be possible to formulate it as a joint density for all

the periods, such a formulation would prevent convenient derivation of the conditional posteriors.

Therefore, it is preferable to express it as the product of individual period densities. From (6.7.7),
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the full density obtains as:

f(y
∣∣∣θ, Σ̃, σ) =

T∏
t=1

{
(2π)−Nn/2|Σ|−1/2 exp

(
−1

2
(yt − X̃tθ)

,
Σ−1(yt − X̃tθ)

)}

∝
T∏
t=1

{
|Σ|−1/2 exp

(
−1

2
(yt − X̃tθ)

,
Σ−1(yt − X̃tθ)

)}

=
T∏
t=1

{∣∣∣σΣ̃
∣∣∣−1/2

exp

(
−1

2
(yt − X̃tθ)

,
(
σΣ̃
)−1

(yt − X̃tθ)

)}

=
T∏
t=1

{
(σ)−Nn/2

∣∣∣Σ̃∣∣∣−1/2

exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
A.1.14

= (σ)−NnT/2
∣∣∣Σ̃∣∣∣−T/2 T∏

t=1

{
exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
(A.16.1)

Derive the full posterior distribution. Combine the likelihood function (6.7.29) with the priors

(6.7.30), (6.7.31) and (6.7.32) to obtain the posterior as:

π(θ, Σ̃, σ |y) ∝ (σ)−NnT/2
∣∣∣Σ̃∣∣∣−T/2 T∏

t=1

{
exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
× exp

(
−1

2
(θ − θ0),Θ−1

0 (θ − θ0)

)
×
∣∣∣Σ̃∣∣∣−(Nn+1)/2

× σ−
α0
2
−1 exp

(
−δ0

2σ

)
=

T∏
t=1

{
exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
× exp

(
−δ0

2σ

)
×(σ)−(NnT+α0)/2−1 ×

∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

× exp

(
−1

2
(θ − θ0),Θ−1

0 (θ − θ0)

)
(A.16.2)

Derive now the conditional distributions. Start with θ. Relegate to the proportionality constant any

term not involving θ in (6.7.33):

π(θ
∣∣∣y, Σ̃, σ ) ∝

T∏
t=1

{
exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
× exp

(
−1

2
(θ − θ0),Θ−1

0 (θ − θ0)

)

= exp

(
−1

2

{
T∑
t=1

σ−1(yt − X̃tθ)
,
Σ̃−1(yt − X̃tθ) + (θ − θ0),Θ−1

0 (θ − θ0)

})

= exp

(
−1

2

{
T∑
t=1

(yt − X̃tθ)
,
Σ−1(yt − X̃tθ) + (θ − θ0),Θ−1

0 (θ − θ0)

})
(A.16.3)
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Consider only the term in the curly brackets, develop and complete the squares:

T∑
t=1

(yt − X̃tθ)
,
Σ−1(yt − X̃tθ) + (θ − θ0),Θ−1

0 (θ − θ0)

=
T∑
t=1

(
y,tΣ

−1yt + θ,X̃ ,
tΣ
−1X̃tθ − 2θ,X̃ ,

tΣ
−1yt

)
+ θ,Θ−1

0 θ + θ,0Θ−1
0 θ0 − 2θ,Θ−1

0 θ0

=
T∑
t=1

(
y,tΣ

−1yt
)

+ θ,

(
T∑
t=1

X̃ ,
tΣ
−1X̃t

)
θ − 2θ,

(
T∑
t=1

X̃ ,
tΣ
−1yt

)
+ θ,Θ−1

0 θ + θ,0Θ−1
0 θ0 − 2θ,Θ−1

0 θ0

=
T∑
t=1

(
y,tΣ

−1yt
)

+ θ,

(
T∑
t=1

X̃ ,
tΣ
−1X̃t + Θ−1

0

)
θ − 2θ,

(
T∑
t=1

X̃ ,
tΣ
−1yt + Θ−1

0 θ0

)
+ θ,0Θ−1

0 θ0

=
T∑
t=1

(
y,tΣ

−1yt
)

+ θ,

(
T∑
t=1

X̃ ,
tΣ
−1X̃t + Θ−1

0

)
θ − 2θ,Θ̄−1Θ̄

(
T∑
t=1

X̃ ,
tΣ
−1yt + Θ−1

0 θ0

)
+θ,0Θ−1

0 θ0 + θ̄,Θ̄−1θ̄ − θ̄,Θ̄−1θ̄

Define:

Θ̄ =

(
T∑
t=1

X̃ ,
tΣ
−1X̃t + Θ−1

0

)−1

(A.16.4)

and:

θ̄ = Θ̄

(
T∑
t=1

X̃ ,
tΣ
−1yt + Θ−1

0 θ0

)
(A.16.5)

Then the expression rewrites:

T∑
t=1

(
y,tΣ

−1yt
)

+ θ,

(
T∑
t=1

X̃ ,
tΣ
−1X̃t + Θ−1

0

)
θ − 2θ,Θ̄−1Θ̄

(
T∑
t=1

X̃ ,
tΣ
−1yt + Θ−1

0 θ0

)
+θ,0Θ−1

0 θ0 + θ̄,Θ̄−1θ̄ − θ̄,Θ̄−1θ̄

=
T∑
t=1

(
y,tΣ

−1yt
)

+ θ,Θ̄−1θ − 2θ,Θ̄−1θ̄ + θ,0Θ−1
0 θ0 + θ̄,Θ̄−1θ̄ − θ̄,Θ̄−1θ̄

=
(
θ,Θ̄−1θ + θ̄,Θ̄−1θ̄ − 2θ,Θ̄−1θ̄

)
+

(
T∑
t=1

(
y,tΣ

−1yt
)

+ θ,0Θ−1
0 θ0 − θ̄,Θ̄−1θ̄

)

= (θ − θ̄),Θ̄−1(θ − θ̄) +

(
T∑
t=1

(
y,tΣ

−1yt
)

+ θ,0Θ−1
0 θ0 − θ̄,Θ̄−1θ̄

)
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Substitute back in (A.16.3):

π(θ
∣∣∣y, Σ̃, σ ) ∝ exp

(
−1

2

{
(θ − θ̄),Θ̄−1(θ − θ̄) +

(
T∑
t=1

(
y,tΣ

−1yt
)

+ θ,0Θ−1
0 θ0 − θ̄,Θ̄−1θ̄

)})

= exp

(
−1

2
(θ − θ̄),Θ̄−1(θ − θ̄)

)
exp

(
−1

2

(
T∑
t=1

(
y,tΣ

−1yt
)

+ θ,0Θ−1
0 θ0 − θ̄,Θ̄−1θ̄

))
∝ exp

(
−1

2
(θ − θ̄),Θ̄−1(θ − θ̄)

)
Hence:

π(θ
∣∣∣y, σ, Σ̃) ∝ exp

(
−1

2
(θ − θ̄),Θ̄−1(θ − θ̄)

)
(A.16.6)

This is the kernel of a multivariate normal distribution π(θ
∣∣∣y, σ, Σ̃) ∼ N (θ̄, Θ̄).

Now obtain the conditional posterior for Σ̃. Start from (6.7.33) and relegate to the proportion-

ality constant any term not involving Σ̃:

π(Σ̃ |y, θ, σ ) ∝
T∏
t=1

{
exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
×
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

(A.16.7)

Rearrange:

π(Σ̃ |y, θ, σ ) ∝
T∏
t=1

{
exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
×
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2

T∑
t=1

σ−1(yt − X̃tθ)
,
Σ̃−1(yt − X̃tθ)

)

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2

T∑
t=1

tr
{
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

})

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2

T∑
t=1

tr
{

Σ̃−1(yt − X̃tθ)σ
−1(yt − X̃tθ)

,
})

(a.1.7)

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2
tr

{
T∑
t=1

Σ̃−1(yt − X̃tθ)σ
−1(yt − X̃tθ)

,

})
(a.1.6)

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2
tr

{
Σ̃−1

T∑
t=1

(yt − X̃tθ)σ
−1(yt − X̃tθ)

,

})
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Define:

S̄ =
T∑
t=1

(yt − X̃tθ)σ
−1(yt − X̃tθ)

,
(A.16.8)

Then one eventually obtains:

π(Σ̃ |y, θ, σ ) ∝
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2
tr
{

Σ̃−1S̄
})

(A.16.9)

This is the kernel of an inverse Wishart distribution π(Σ̃ |y, θ, σ ) ∼ IW (S̄, T ).

Finally, obtain the conditional posterior distribution for σ. Relegate to the proportionality con-

stant any term not involving σ in (6.7.33):

π(σ
∣∣∣y, θ, Σ̃) ∝

T∏
t=1

{
exp

(
−1

2
σ−1(yt − X̃tθ)

,
Σ̃−1(yt − X̃tθ)

)}
× exp

(
−δ0

2σ

)
× σ−(NnT+α0)/2−1

= σ−(NnT+α0)/2−1 exp

(
− 1

2σ

{
T∑
t=1

(yt − X̃tθ)
,
Σ̃−1(yt − X̃tθ) + δ0

})

Define:

ᾱ = NnT + α0 (A.16.10)

and:

δ̄ =

(
T∑
t=1

(yt − X̃tθ)
,
Σ̃−1(yt − X̃tθ) + δ0

)
(A.16.11)

Then the conditional posterior rewrites:

π(σ
∣∣∣y, θ, Σ̃) ∝ (σ)−

ᾱ
2
−1 exp

(
− δ̄

2σ

)
(A.16.12)

This is the kernel of an inverse Gamma distribution: π(σ
∣∣∣y, θ, Σ̃) ∼ IG

(
ᾱ
2
, δ̄

2

)
.

Note that it is possible to reformulate some of the formulas obtained for the conditional poste-

rior distributions. Those reformulated formulas are simpler as they involve direct matrix products

rather than large summations terms, and a a consequence they are also computationally faster, which

matters when a very large number of replications is implemented. Start with Θ̄ and θ̄, respectively
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defined by (A.16.4) and (A.16.5). The formula for Θ̄ can reformulate as:

Θ̄ =

(
T∑
t=1

X̃ ,
tΣ
−1X̃t + Θ−1

0

)−1

=


(
X̃ ,

1Σ−1 X̃ ,
2Σ−1 · · · X̃ ,

TΣ−1
)

X̃1

X̃2
...

X̃T

+ Θ−1
0


−1

=


(
X̃ ,

1 X̃ ,
2 · · · X̃ ,

T

)


Σ−1 0 · · · 0

0 Σ−1 0
...

. . .
...

0 0 · · · Σ−1



X̃1

X̃2
...

X̃T

+ Θ−1
0


−1

=
(
X̃IΣX̃

, + Θ−1
0

)−1

(A.16.13)

with:

X̃ =
(
X̃ ,

1 X̃ ,
2 · · · X̃ ,

T

)
︸ ︷︷ ︸

d×NnT

IΣ = (IT ⊗ Σ−1) =


Σ−1 0 · · · 0

0 Σ−1 0
...

. . .
...

0 0 · · · Σ−1


︸ ︷︷ ︸

NnT×NnT

(A.16.14)

Also:

θ̄ = Θ̄

(
T∑
t=1

X̃ ,
tΣ
−1yt + Θ−1

0 θ0

)

= Θ̄


(
X̃ ,

1Σ−1 X̃ ,
2Σ−1 · · · X̃ ,

TΣ−1
)

y1

y2
...

yT

+ Θ−1
0 θ0



= Θ̄


(
X̃ ,

1 X̃ ,
2 · · · X̃ ,

T

)


Σ−1 0 · · · 0

0 Σ−1 0
...

. . .
...

0 0 · · · Σ−1



y1

y2
...

yT

+ Θ−1
0 θ0


= Θ̄

(
X̃IΣy + Θ−1

0 θ0

)
(A.16.15)
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with:

y =


y1

y2
...

yT


︸ ︷︷ ︸
NnT×1

(A.16.16)

Similarly, reformulate the formula for S̄, defined in (A.16.8):

S̄ =
T∑
t=1

(yt − X̃tθ)σ
−1(yt − X̃tθ)

,

= σ−1

T∑
t=1

(yt − X̃tθ)(yt − X̃tθ)
,

= σ−1
(

(y1 − X̃1θ) (y2 − X̃2θ) · · · (yT − X̃T θ)
)


(y1 − X̃1θ)
,

(y2 − X̃2θ)
,

...

(yT − X̃T θ)
,

 (A.16.17)

Then notice that: (
(y1 − X̃1θ) (y2 − X̃2θ) · · · (yT − X̃T θ)

)
=
(
y1 y2 · · · yT

)
−
(
X̃1θ X̃2θ · · · X̃T θ

)

=
(
y1 y2 · · · yT

)
−
(
X̃1 X̃2 · · · X̃T

)

θ 0 · · · 0

0 θ 0
...

. . .
...

0 0 · · · θ


= Y − ẌIθ (A.16.18)

with:

Y =
(
y1 y2 · · · yT

)
︸ ︷︷ ︸

Nn×T

Ẍ =
(
X̃1 X̃2 · · · X̃T

)
︸ ︷︷ ︸

Nn×Td

Iθ = (IT ⊗ θ) =


θ 0 · · · 0

0 θ 0
...

. . .
...

0 0 · · · θ


︸ ︷︷ ︸

Td×T
(A.16.19)
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Then, (A.16.17) can rewrite as:

S̄ = σ−1
(

(y1 − X̃1θ) (y2 − X̃2θ) · · · (yT − X̃T θ)
)


(y1 − X̃1θ)
,

(y2 − X̃2θ)
,

...

(yT − X̃T θ)
,


= σ−1

(
Y − ẌIθ

)(
Y − ẌIθ

),
(A.16.20)

Similarly, it is possible to reformulate the equation for δ̄ defined in (A.16.11):

δ̄ =
1

2

[
T∑
t=1

(yt − X̃tθ)
,
Σ̃−1(yt − X̃tθ) + δ0

]

=
1

2

[
T∑
t=1

tr
(

(yt − X̃tθ)
,
Σ̃−1(yt − X̃tθ)

)
+ δ0

]

=
1

2

[
T∑
t=1

tr
(

(yt − X̃tθ)(yt − X̃tθ)
,
Σ̃−1

)
+ δ0

]
(A.1.7)

=
1

2

[
tr

(
T∑
t=1

(yt − X̃tθ)(yt − X̃tθ)
,
Σ̃−1

)
+ δ0

]
(A.1.6)

=
1

2

[
tr

([
T∑
t=1

(yt − X̃tθ)(yt − X̃tθ)
,

]
Σ̃−1

)
+ δ0

]

=
1

2

tr

(
y1 − X̃1θ y2 − X̃2θ · · · yT − X̃T θ

)


(y1 − X̃1θ)
,

(y2 − X̃2θ)
,

...

(yT − X̃T θ)
,

 Σ̃−1

+ δ0


=

1

2

[
tr
(

(Y − ẌIθ)(Y − ẌIθ),Σ̃−1
)

+ δ0

]
(A.16.21)

where the last line obtains from (A.16.18).
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A.17 Derivations for the dynamic factor approach

First derive the version of Bayes rule obtained from the hierarchical prior. Using basic rules of

conditional probabilities, one obtains:

π(θ, b, Σ̃, ζ, ϕ |y ) =
π(θ, b, Σ̃, ζ, ϕ, y)

π(y)

∝ π(θ, b, Σ̃, ζ, ϕ, y)

=
π(θ, b, Σ̃, ζ, ϕ, y)

π(θ, b, Σ̃, ζ, ϕ)
π(θ, b, Σ̃, ζ, ϕ)

= π(y
∣∣∣θ, b, Σ̃, ζ, ϕ)π(θ, b, Σ̃, ζ, ϕ)

= π(y
∣∣∣θ, b, Σ̃, ζ, ϕ)π(θ, b)π(Σ̃)π(ζ, ϕ)

= π(y
∣∣∣θ, b, Σ̃, ζ, ϕ)

π(θ, b)

π(b)
π(b)π(Σ̃)

π(ζ, ϕ)

π(ϕ)
π(ϕ)

= π(y
∣∣∣θ, b, Σ̃, ζ, ϕ)π(θ |b)π(b)π(Σ̃)π(ζ |ϕ)π(ϕ)

= π(y
∣∣∣θ, Σ̃, ζ )π(θ |b)π(b)π(Σ̃)π(ζ |ϕ)π(ϕ) (A.17.1)

where the last line obtains by noting that b and ϕ are of no relevance to compute the likelihood

function once θ and ζ are known.
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Then obtain the likelihood function. Given (6.8.9) and (6.8.19), it is given by:

f(y
∣∣∣θ, Σ̃, ζ) =

T∏
t=1

f(yt

∣∣∣θt, Σ̃, ζt)
=

T∏
t=1

{
(2π)−k/2|Σt|−1/2 exp

(
−1

2
(yt − X̃tθt)

,
Σ−1
t (yt − X̃tθt)

)}

∝
T∏
t=1

{
|Σt|−1/2 exp

(
−1

2
(yt − X̃tθt)

,
Σ−1
t (yt − X̃tθt)

)}

=
T∏
t=1

{∣∣∣exp(ζt)Σ̃
∣∣∣−1/2

exp

(
−1

2
(yt − X̃tθt)

,
(

exp(ζt)Σ̃
)−1

(yt − X̃tθt)

)}

=
T∏
t=1

{
exp (ζt)

−Nn/2
∣∣∣Σ̃∣∣∣−1/2

exp

(
−1

2
exp (ζt)

−1(yt − X̃tθt)
,
Σ̃−1(yt − X̃tθt)

)}
A.1.14

=
T∏
t=1

{
exp

(
−Nnζt

2

) ∣∣∣Σ̃∣∣∣−1/2

exp

(
−1

2
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt)

)}

=
∣∣∣Σ̃∣∣∣−T/2 T∏

t=1

{
exp

(
−Nnζt

2

)
exp

(
−1

2
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt)

)}

=
∣∣∣Σ̃∣∣∣−T/2 T∏

t=1

{
exp

(
−Nnζt

2

)} T∏
t=1

{
exp

(
−1

2
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt)

)}

=
∣∣∣Σ̃∣∣∣−T/2 exp

(
−Nn

2

T∑
t=1

ζt

)
exp

(
−1

2

T∑
t=1

exp(−ζt)(yt − X̃tθt)
,
Σ̃−1(yt − X̃tθt)

)

=
∣∣∣Σ̃∣∣∣−T/2 exp

(
−1

2

T∑
t=1

{
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt) +Nnζt

})
(A.17.2)

Obtain first the conditional posterior for θ = {θt}Tt=1. Use Bayes rule (6.8.44), and combine the prior

(6.8.31) with the reformulated likelihood (6.8.48) to obtain:

π(θ
∣∣∣y, b, Σ̃, ζ, ϕ) ∝ f(y

∣∣∣θ, Σ̃, ζ )π(θ |b)

= |Σ|−1/2 exp

(
−1

2
(y − X̃Θ)

,
Σ̃−1(y − X̃Θ)

)
× |B0| exp

(
−1

2
(Θ−Θ0),B−1

0 (Θ−Θ0)

)
∝ exp

(
−1

2
(y − X̃Θ)

,
Σ−1(y − X̃Θ)

)
exp

(
−1

2
(Θ−Θ0),B−1

0 (Θ−Θ0)

)
= exp

(
−1

2

{
(y − X̃Θ)

,
Σ−1(y − X̃Θ) + (Θ−Θ0),B−1

0 (Θ−Θ0)
})

(A.17.3)

ECB Working Paper 1934, July 2016 285



Consider only the term in the curly brackets, develop and complete the squares:

(y − X̃Θ)
,
Σ−1(y − X̃Θ) + (Θ−Θ0),B−1

0 (Θ−Θ0)

= y,Σ−1y + Θ,X̃ ,Σ−1X̃Θ− 2Θ,X̃ ,Σ−1y + Θ,B−1
0 Θ + Θ,

0B
−1
0 Θ0 − 2ΘB−1

0 Θ0

= y,Σ−1y + Θ,
(
X̃ ,Σ−1X̃ +B−1

0

)
Θ− 2Θ,

(
X̃ ,Σ−1y +B−1

0 Θ0

)
+ Θ,

0B
−1
0 Θ0

= y,Σ−1y + Θ,
(
X̃ ,Σ−1X̃ +B−1

0

)
Θ− 2Θ,B̄−1B̄

(
X̃ ,Σ−1y +B−1

0 Θ0

)
+Θ,

0B
−1
0 Θ0 + Θ̄,B̄−1Θ̄− Θ̄,B̄−1Θ̄

Define:

B̄ =
(
X̃ ,Σ−1X̃ +B−1

0

)−1

(A.17.4)

and:

Θ̄ = B̄
(
X̃ ,Σ−1y +B−1

0 Θ0

)
(A.17.5)

Then the expression rewrites:

= y,Σ−1y + Θ,B̄−1Θ− 2Θ,B̄−1Θ̄ + Θ,
0B
−1
0 Θ0 + Θ̄,B̄−1Θ̄− Θ̄,B̄−1Θ̄

= Θ,B̄−1Θ + Θ̄,B̄−1Θ̄− 2Θ,B̄−1Θ̄ + Θ,
0B
−1
0 Θ0 − Θ̄,B̄−1Θ̄ + y,Σ−1y

= (Θ− Θ̄)
,
B̄−1(Θ− Θ̄) + Θ,

0B
−1
0 Θ0 − Θ̄,B̄−1Θ̄ + y,Σ−1y

Substitute back in (A.17.3):

π(θ |y, b,Σ, σ̃, a) ∝ exp

(
−1

2

{
(Θ− Θ̄)

,
B̄−1(Θ− Θ̄) + Θ,

0B
−1
0 Θ0 − Θ̄,B̄−1Θ̄ + y,Σ−1y

})
= exp

(
−1

2
(Θ− Θ̄)

,
B̄−1(Θ− Θ̄)

)
exp

(
−1

2

{
Θ,

0B
−1
0 Θ0 − Θ̄,B̄−1Θ̄ + y,Σ−1y

})
∝ exp

(
−1

2
(Θ− Θ̄)

,
B̄−1(Θ− Θ̄)

)
(A.17.6)

This is the kernel of a multivariate normal distribution: Θ ∼ N (Θ̄, B̄).

Obtain the conditional posterior for b = {bi}ri=1. First, noting that from (6.8.16) and (6.8.24),

the priors for the θis and the bis are independent across the r factors, one may rewrite:

π(θ |b) =
r∏
i=1

π(θi |bi ) and π(b) =
r∏
i=1

π(bi)
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Therefore, Bayes rule (6.8.41) can be rewritten as:

π(θ, b, Σ̃, ζ, ϕ |y ) ∝ f(y
∣∣∣θ, Σ̃, σ )

(
r∏
i=1

π(θi |bi )

)(
r∏
i=1

π(bi)

)
π(Σ̃)π(ζ |ϕ)π(ϕ) (A.17.7)

Then consider the conditional posterior for bi. Consider the rewritten Bayes rule (A.17.7) and relegate

to the proportionality constant any term not involving bi:

π(bi |y, θ, b−i, Σ̃, σ, a) ∝ π(θi |bi )π(bi) (A.17.8)

To obtain π(θi |bi ), note that (6.8.23) implies:

θi,t = θi,t−1 + ηi,t with ηi,t ∼ N (0, biIdi) (A.17.9)

Hence:

θi,t |θ ∼ N (θi,t−1, biIdi)

So that:

π(θi |bi ) ∝

{
T∏
t=1

|biIdi|
−1/2 exp

(
−1

2
(θi,t − θi,t−1),(biIdi)

−1(θi,t − θi,t−1)

)}
(A.17.10)

Use (A.17.8) to combine (A.17.10) with (6.8.32) and obtain:

π(bi |y, θ, b−i, Σ̃, ζ, ϕ) ∝ π(θi |bi )π(bi)

=

{
T∏
t=1

|biIdi|
−1/2 exp

(
−1

2
(θi,t − θi,t−1),(biIdi)

−1(θi,t − θi,t−1)

)}
×b−(a0/2)−1

i exp

(
−b0

2bi

)
=

{
T∏
t=1

b
−di/2
i exp

(
− 1

2bi
(θi,t − θi,t−1),(θi,t − θi,t−1)

)}
A.1.14

×b−(a0/2)−1
i exp

(
−b0

2bi

)
= b

−Tdi/2
i

{
T∏
t=1

exp

(
− 1

2bi
(θi,t − θi,t−1),(θi,t − θi,t−1)

)}
×b−(a0/2)−1

i exp

(
−b0

2bi

)
= b

−(Tdi+a0)/2−1
i exp

(
− 1

2bi

{
T∑
t=1

(θi,t − θi,t−1),(θi,t − θi,t−1) + b0

})
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Define:

āi = Tdi + a0 (A.17.11)

and:

b̄i =
T∑
t=1

(θi,t − θi,t−1),(θi,t − θi,t−1) + b0 (A.17.12)

Then the expression rewrites:

π(bi |y, θ, b−i,Σ, σ, a) ∝ b
− āi

2
−1

i exp

(
− b̄i

2bi

)
(A.17.13)

This is the kernel of an inverse Gamma distribution with shape āi
2

and scale b̄i
2

.

Obtain the conditional posterior for Σ̃. Consider Bayes rule (6.8.41) and relegate to the propor-

tionality constant any term not involving Σ̃ to obtain:

π(Σ̃ |y, θ, b, ζ, ϕ) ∝ f(y
∣∣∣θ, Σ̃, ζ )π(Σ̃) (A.17.14)

Given (6.8.42) and (6.8.33), this gives:

π(Σ̃ |y, θ, b, ζ, ϕ) ∝ f(y
∣∣∣θ, Σ̃, ζ )π(Σ̃)

=
∣∣∣Σ̃∣∣∣−T/2 exp

(
−1

2

T∑
t=1

{
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt) +Nnζt

}) ∣∣∣Σ̃∣∣∣−(Nn+1)/2

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2

T∑
t=1

{
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt) +Nnζt

})

∝
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2

T∑
t=1

{
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt)

})

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2

T∑
t=1

tr
{

exp(−ζt)(yt − X̃tθt)
,
Σ̃−1(yt − X̃tθt)

})

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2

T∑
t=1

tr
{

Σ̃−1(yt − X̃tθt) exp(−ζt)(yt − X̃tθt)
,
})

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2
tr

{
T∑
t=1

Σ̃−1(yt − X̃tθt) exp(−ζt)(yt − X̃tθt)
,

})

=
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2
tr

{
Σ̃−1

T∑
t=1

(yt − X̃tθt) exp(−ζt)(yt − X̃tθt)
,

})
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Define:

S̄ =
T∑
t=1

(yt − X̃tθt) exp(−ζt)(yt − X̃tθt)
,

(A.17.15)

Then this rewrites:

π(Σ̃ |y, θ, b, ζ, ϕ) ∝
∣∣∣Σ̃∣∣∣−(T+Nn+1)/2

exp

(
−1

2
tr
{

Σ̃−1S̄
})

(A.17.16)

This is the kernel of an inverse Wishart distribution: π(Σ̃ |y, θ, b, ζ, ϕ) ∼ IW (S̄, T ).

Obtain the conditional posterior for ϕ. Start from Bayes rule (6.8.41) and relegate to the pro-

portionality constant any term not involving ϕ:

π(θ, b, Σ̃, ζ, ϕ |y ) ∝ π(ζ |ϕ)π(ϕ) (A.17.17)

Following, use (6.8.39) and (6.8.40) to obtain:

π(θ, b, Σ̃, ζ, ϕ |y ) ∝ π(ζ |ϕ)π(ϕ)

= |Φ0|−1/2 exp

(
−1

2
Z ,Φ−1

0 Z

)
× ϕ−α0/2−1 exp

(
−δ0

2ϕ

)
=
∣∣ϕ(G,G)−1

∣∣−1/2
exp

(
−1

2
Z ,
(
ϕ(G,G)−1)−1

Z

)
× ϕ−α0/2−1 exp

(
−δ0

2ϕ

)
= ϕ−T/2

∣∣(G,G)−1
∣∣−1/2

exp

(
− 1

2ϕ
Z ,G,GZ

)
× ϕ−α0/2−1 exp

(
−δ0

2ϕ

)
A.1.14

∝ ϕ−(T+α0)/2−1 exp

(
− 1

ϕ

{
Z ,G,GZ + δ0

2

})
Define:

ᾱ = T + α0 (A.17.18)

and:

δ̄ = Z ,G,GZ + δ0 (A.17.19)

Then this rewrites:

π(θ, b, Σ̃, ζ, ϕ |y ) ∝ ϕ−
ᾱ
2
−1 exp

(
− δ̄

2ϕ

)
(A.17.20)

This is the kernel of an inverse Gamma distribution with shape ᾱ
2

and scale δ̄
2
.

Finally, obtain the conditional posterior for ζ = {ζt}Tt=1. Consider Bayes rule (6.8.41) and rele-
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gate to the proportionality constant any term not involving ζ:

π(ζ
∣∣∣y, θ, b, Σ̃, ϕ) ∝ f(y

∣∣∣θ, Σ̃, ζ )π(ζ |ϕ) (A.17.21)

Following, combine the likelihood (6.8.42) with the prior (6.8.39) to obtain:

π(ζ
∣∣∣y, θ, b, Σ̃, ϕ) ∝ f(y

∣∣∣θ, Σ̃, ζ )π(ζ |ϕ)

=
∣∣∣Σ̃∣∣∣−T/2 exp

(
−1

2

T∑
t=1

{
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt) +Nnζt

})
×|Φ0|−1/2 exp

(
−1

2
Z ,Φ−1

0 Z

)
∝ exp

(
−1

2

[
T∑
t=1

{
exp(−ζt)(yt − X̃tθt)

,
Σ̃−1(yt − X̃tθt) +Nnζt

}
+ Z ,Φ−1

0 Z

])

This is not a standard formula, so that a Metropolis-Hastings step is required to sample from the

conditional posterior.

Obtain the value of the acceptance probability for the Metropolis-Hastings algorithm for the random

walk kernel:

α(Z(n−1), Z(n))

=
π(Z(n))

π(Z(n−1))

=

exp

(
−1

2

[
T∑
t=1

{
exp(−ζ(n)

t )(yt − X̃tθt)
,
Σ̃−1(yt − X̃tθt) +Nnζ

(n)
t

}
+ (Z(n))

,
Φ−1

0 Z(n)

])
exp

(
−1

2

[
T∑
t=1

{
exp(−ζ(n−1)

t )(yt − X̃tθt)
,
Σ̃−1(yt − X̃tθt) +Nnζ

(n−1)
t

}
+ (Z(n−1))

,
Φ−1

0 Z(n−1)

])
= exp

(
−1

2

T∑
t=1

(yt − X̃tθt)
,
Σ̃−1(yt − X̃tθt)

{
exp(−ζ(n)

t )− exp(−ζ(n−1)
t )

})

× exp

(
−Nn

2

T∑
t=1

{
ζ

(n)
t − ζ

(n−1)
t

})
× exp

(
−1

2

{
(Z(n))

,
Φ−1

0 Z(n) − (Z(n−1))
,
Φ−1

0 Z(n−1)
})
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