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Abstract
This paper proposes methods for estimation and inference in multi-

variate, multi-quantile models. The theory can simultaneously accom-
modate models with multiple random variables, multiple con dence
levels, and multiple lags of the associated quantiles. The proposed
framework can be conveniently thought of as a vector autoregressive
(VAR) extension to quantile models. We estimate a simple version of
the model using market equity returns data to analyse spillovers in
the values at risk (VaR) between a market index and nancial institu-
tions. We construct impulse-response functions for the quantiles of a
sample of 230 nancial institutions around the world and study how
nancial institution-speci c and system-wide shocks are absorbed by
the system. We show how the long-run risk of the largest and most
leveraged nancial institutions is very sensitive to market wide shocks
in situations of nancial distress, suggesting that our methodology can
prove a valuable addition to the traditional toolkit of policy makers
and supervisors.

Keywords: Quantile impulse-responses, spillover, codependence,
CAViaR

JEL classi cation: C13, C14, C32.
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Non-technical summary
The nancial crisis which started in 2007 has had a deep impact on the con-
ceptual thinking of systemic risk among both academics and policy makers.
There has been a recognition of the shortcomings of the measures that are
tailored to dealing with institution-level risks. In particular, institution level
Value at Risk (VaR) measures miss important externalities associated with
the need to bail out systemically important banks: government and supervi-
sory authorities may nd themselves compelled to save ex post systemically
important nancial institutions, while these ignore ex ante any negative ex-
ternalities associated with their behaviour. As a consequence, in the current
policy debate, great emphasis has been put on how to measure the additional
capital needed by nancial institutions in a situation of generalized market
distress.

One necessary input for the implementation of these measures is an esti-
mate of the sensitivity of risk of nancial institutions to shocks to the whole
nancial system. Since risks are intimately linked to the tails of the dis-
tribution of a random variable, this requires an econometric analysis of the
interdependence between the tails of the distributions of di erent random
variables. One popular econometric technique which can be used to study
the behaviour of the tails is regression quantiles. While univariate quantile
regression models have been increasingly used in many di erent academic
disciplines (such as nance, labor economics, and macroeconomics), it is
not obvious how to extend them to analyse tail interdependence. This pa-
per develops a multivariate regression quantile model to directly study the
degree of tail interdependence among di erent random variables, therefore
contributing to the extension regression quantiles into the time series area in
nance. Our theoretical framework allows the quantiles of several random
variables to depend on (lagged) quantiles, as well as past innovations and
other covariates of interest. The proposed framework can be conveniently
thought of as a vector autoregressive (VAR) extension to quantile models.
We estimate a simple version of the model using market equity returns data
to analyse spillovers in the VaR between a market index and nancial in-
stitutions. This modelling strategy has at least three advantages over the
more traditional approaches that rely on the parameterization of the entire
multivariate distribution. First, regression quantile estimates are known to
be robust to outliers, a desirable feature in general and for applications to
nancial data in particular. Second, regression quantile is a semi-parametric
technique and as such imposes minimal distributional assumptions on the
underlying data generating process (DGP). Third, our multivariate frame-
work allows researchers to directly measure the tail dependence among the
random variables of interest, rather than recovering it indirectly via models
of time-varying rst and second moments.

In the empirical section of this paper, the model is estimated on a sample
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of 230 nancial institutions from around the world. For each of these equity
return series, we estimate a bivariate VAR for VaR where one variable is
the return on a portfolio of nancial institutions and the other variable is
the return on the single nancial institution. We nd evidence of signi cant
tail codependence for a large fraction of the nancial institutions in our
sample. When aggregating the impulse response functions at the sectorial
and geographic level no striking di erences are revealed. We, however, nd
signi cant cross-sectional di erences. By aggregating the 30 stocks with
the largest and smallest market value (thus, forming two portfolios), we
nd that, in tranquil times, the two portfolios have comparable risk. In
times of severe nancial distress, however, the risk of the rst portfolio
increases disproportionately relative to the second. Similar conclusions are
obtained when aggregation is done according to the most and least leveraged
institutions. These results hold for both in-sample and out-of-sample.
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1 Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression
models have been increasingly used in many di erent academic disciplines
such as nance, labor economics, and macroeconomics due to their exi-
bility to allow researchers to investigate the relationship between economic
variables not only at the center but also over the entire conditional distrib-
ution of the dependent variable. In the early stage, the main development
in both theory and application has taken place mainly in the context of
cross-section data. However, the application of quantile regression has sub-
sequently moved into the areas of time-series as well as panel data.1 The
whole literature is too vast to be easily summarized, but an excellent and
extensive review on many important topics on quantile regression can be
found in Koenker (2005).

This paper suggests a multivariate regression quantile model to directly
study the degree of tail interdependence among di erent random variables,
therefore contributing to the quantile extension into the time series area in
nance. Our theoretical framework allows the quantiles of several random
variables to depend on (lagged) quantiles, as well as past innovations and
other covariates of interest. This modeling strategy has at least three advan-
tages over the more traditional approaches that rely on the parameterization
of the entire multivariate distribution. First, regression quantile estimates
are known to be robust to outliers, a desirable feature in general and for
applications to nancial data in particular. Second, regression quantile is a
semi-parametric technique and as such imposes minimal distributional as-
sumptions on the underlying data generating process (DGP). Third, our
multivariate framework allows researchers to directly measure the tail de-
pendence among the random variables of interest, rather than recovering it
indirectly via models of time-varying rst and second moments.

To illustrate our approach and its usefulness, consider a simple set-up
with two random variables, 1 and 2 . All information available at time is
represented by the information set F 1. For a given level of con dence
(0 1), the quantile at time for random variables = 1 2 conditional
on F 1 is

Pr[ |F 1] = = 1 2 (1)

A simple version of our proposed structure relates the conditional quantiles
of the two random variables according to a vector autoregressive (VAR)
structure:

1 = 0
1 + 11 1 1 + 12 2 1

2 = 0
2 + 21 1 1 + 22 2 1

1Some relevant and important papers are Koenker and Xiao (2004, 2006), Xiao (2009)
in the time-series domain and Abrevaya and Dahl (2008), Lamarche (2010), Galvao (2011)
in the panel data setting.
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where represents predictors belonging to F 1 and typically includes
lagged values of . If 12 = 21 = 0, the above model reduces to the
univariate CAViaR model of Engle and Manganelli (2004), and the two
speci cations can be estimated independently from each other. If, however,
12 and/or 21 are di erent from zero, the model requires the joint estimation
of all of the parameters in the system. The o -diagonal coe cients 12 and
21 represent the measure of tail codependence between the two random
variables, thus the hypothesis of no tail codependence can be assessed by
testing 0 : 12 = 21 = 0.

The rst part of this paper develops the consistency and asymptotic
theory for the multivariate regression quantile model. Our fully general
model is much richer than the above example, as we can accommodate: (i)
more than two random variables; (ii) multiple lags of ; and (iii) multiple
con dence levels, say ( 1 ).

In the second part of this paper, as an empirical illustration of the model,
we estimate a series of bivariate VAR models for the conditional quantiles of
the return distributions of individual nancial institutions from around the
world. Since quantiles represent one of the key inputs for the computation
of the Value at Risk (VaR)2 for nancial assets, we call this model VAR
for VaR, that is, a vector autoregressive (VAR) model where the dependent
variables are the VaR of the nancial institutions, which are dependent on
(lagged) VaR and past shocks.

Our modeling framework appears particularly suitable to develop sound
measures of nancial spillover, the importance of which has been brought
to the forefront by the recent nancial crisis. In the current policy debate,
great emphasis has been put on how to measure the additional capital needed
by nancial institutions in a situation of generalized market distress. The
logic is that if the negative externality associated with the spillover of risks
within the system is not properly internalized, banks may nd themselves
in need of additional capital at exactly the worst time, such as when it is
most di cult and expensive to raise fresh new capital. If the stability of the
whole system is threatened, taxpayer money has to be used to backstop the
nancial system, to avoid systemic bank failures that may bring the whole
economic system to a collapse.3

Adrian and Brunnermeier (2009) and Acharya et al. (2009) have re-
cently proposed to classify nancial institutions according to the sensitivity
of their VaR to shocks to the whole nancial system. The empirical sec-

2An extensive discussion on how to properly use quantile regression to estimate VaR
can be found in Chernozhukov and Umantsev (2001) in which they also emphasize the
importance of using extremal or near-extremal quantile regression.

3 It should be emphasized that the proposed method measures the degree of tail depen-
dence between variables in a predictive manner, as in a GARCH framework. Since the tail
risk metric of a given variable is a ected only by lagged or past tail-risk metrics of other
variables, the contemporaneous tail dependence cannot be measured in our framework.

ECB Working Paper 1814, June 2015 5



tion of this paper illustrates how the multivariate regression quantile model
provides an ideal framework to estimate directly the sensitivity of VaR of
a given nancial institution to system-wide shocks. A useful by-product of
our modeling strategy is the ability to compute quantile impulse-response
functions. Using the quantile impulse-response functions, we can assess the
resilience of nancial institutions to shocks to the overall index, as well as
their persistence.

The model is estimated on a sample of 230 nancial institutions from
around the world. For each of these equity return series, we estimate a
bivariate VAR for VaR where one variable is the return on a portfolio of
nancial institutions and the other variable is the return on the single nan-
cial institution. We nd strong evidence of signi cant tail codependence for
a large fraction of the nancial institutions in our sample. When aggregat-
ing the impulse response functions at the sectorial and geographic level no
striking di erences are revealed. We, however, nd signi cant cross-sectional
di erences. By aggregating the 30 stocks with the largest and smallest mar-
ket value (thus, forming two portfolios), we nd that, in tranquil times, the
two portfolios have comparable risk. In times of severe nancial distress,
however, the risk of the rst portfolio increases disproportionately relative
to the second. Similar conclusions are obtained when aggregation is done
according to the most and least leveraged institutions. These results hold
for both in-sample and out-of-sample.

The plan of this paper is as follows. In Section 2, we set forth the mul-
tivariate and multi-quantile CAViaR framework, a generalization of Engle
and Manganelli’s original CAViaR (2004) model. Section 3 provides condi-
tions ensuring the consistency and asymptotic normality of the estimator, as
well as the results which provide a consistent asymptotic covariance matrix
estimator. Section 4 contains an example of a data generating process which
is consistent with the proposed multivariate quantile model, while Section
5 introduces the long run quantile impulse-response functions and derives
the associated standard errors. Section 6 contains the empirical application.
Section 7 provides a summary and some concluding remarks. The appendix
contains all of the technical proofs of the theorems in the text.

2 TheMultivariate andMulti-Quantile Process and
Its Model

We consider a sequence of random variables denoted by {( 0 0) : =
1 2 } where is a nitely dimensioned × 1 vector and is also a
countably dimensioned vector whose rst element is one. To x ideas, can
be considered as the dependent variables and as the explanatory variables
in a typical regression framework. In this sense, the proposed model which
will be developed below is su ciently general enough to handle multiple
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dependent variables. We specify the data generating process as follows.

Assumption 1 The sequence {( 0 0)} is a stationary and ergodic sto-
chastic process on the complete probability space ( F 0), where is
the sample space, F is a suitably chosen - eld, and 0 is the probability
measure providing a complete description of the stochastic behavior of the
sequence of {( 0 0)}.

We de ne F 1 to be the -algebra generated by 1 := { ( 1 1)
( 2 2) } i.e. F 1 := ( 1). For = 1 we also de ne
( ) := 0[ | F 1] which is the cumulative distribution function

(CDF) of conditional on F 1. In the quantile regression literature, it is
typical to focus on a speci c quantile index; for example, (0 1). In this
paper, we will develop a more general quantile model where multiple quan-
tile indexes can be accounted for jointly. To be more speci c, we consider
quantile indexes denoted by 1 2 for the element (denoted by
) of . The quantile indexes do not need to be the same for all of the

elements of which explains the double indexing of . Moreover, we note
that we specify the same number ( ) of quantile indexes for each = 1 .
However, this is just for notational simplicity. Our theory easily applies to
the case in which the number of quantile indexes di ers with ; i.e., can
be replaced with .

To formalize our argument, we assume that the quantile indexes are
ordered such that 0 1 1. For = 1 the th-quantile
of conditional on F 1 denoted , is

:= inf{ : ( ) } (2)

and if is strictly increasing,

= 1( )

Alternatively, can be represented asZ
( ) = [1[ ] | F 1] = (3)

where (·) is the Lebesgue-Stieltjes probability density function (PDF)
of conditional on F 1, corresponding to

Our objective is to jointly estimate the conditional quantile functions
for = 1 and = 1 2 . For this, we write := ( 0

1
0
2

0 )0

with := ( 1 2 )0 and impose an additional appropriate struc-
ture. First, we ensure that the conditional distributions of are everywhere
continuous, with positive densities at each of the conditional quantiles of in-
terest, . We let denote the conditional probability density function
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(PDF) which corresponds to . In stating our next condition (and where
helpful elsewhere), we make explicit the dependence of the conditional CDF

on by writing ( ) in place of ( ) Similarly, we may write
( ) in place of ( ) The realized values of the conditional quantiles

are correspondingly denoted ( )
Our next assumption ensures the desired continuity and imposes speci c

structure on the quantiles of interest.

Assumption 2 (i) is continuously distributed such that for each
( ·) and ( ·) are continuous on R = 1 2 ; (ii) For the

given 0 1 1 and { } as de ned above, we suppose
the following: (a) for each and ( ( )) 0; and (b) for
the given nite integers and there exist a stationary ergodic sequence
of random × 1 vectors { } with measurable-F 1 and real vectors

:= ( 1 )0 and := ( 0
1

0 )0 where each
is a × 1 vector, such that for = 1 = 1 and all

= 0 +
X
=1

0 (4)

The structure of equation in (4) is a multivariate version of the MQ-
CAViaR process of White, Kim, and Manganelli (2008), itself a multi-
quantile version of the CAViaR process introduced by Engle and Manganelli
(2004). Under suitable restrictions on , we obtain as special cases; (1)
separate MQ-CAViaR processes for each element of ; (2) standard (sin-
gle quantile) CAViaR processes for each element of ; or (3) multivariate
CAViaR processes, in which a single quantile of each element of is re-
lated dynamically to the single quantiles of the (lags of) other elements
of Thus, we call any process that satis es our structure “Multivariate
MQ-CAViaR” (MVMQ-CAViaR) processes or naively “VAR for VaR.”

For MVMQ-CAViaR, the number of relevant lags can di er across the
elements of and the conditional quantiles; this is re ected in the possibility
that for the given , elements of may be zero for values of greater
than some given integer. For notational simplicity, we do not represent
as being dependent on or Nevertheless, by convention, for no
does equal the zero vector for all and . The nitely dimensioned
random vectors may contain lagged values of , as well as measurable
functions of and lagged In particular, may contain Stinchcombe
and White’s (1998) GCR transformations, as discussed in White (2006).

For a particular quantile, say , the coe cients to be estimated are
and := ( 0

1
0 )0 Let 0 := ( 0 0), and write =

( 0
11

0
1

0
1

0 )0 an × 1 vector, where := ( + ) We
call the “MVMQ-CAViaR coe cient vector.” We estimate using a
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correctly speci ed model for the MVMQ-CAViaR process. First, we specify
our model in the following assumption.

Assumption 3 (i) Let A be a compact subset of R For = 1 and
= 1 we suppose the following: (a) the sequence of functions { :
×A R } is such that for each and each A (· ) is measurable-

F 1; (b) for each and each ( ·) is continuous on A; and (c)
for each and (· ) is speci ed as follows:

(· ) = 0 +
X
=1

(· )0 (5)

Next, we impose the correct speci cation assumption together with an
identi cation condition. Assumption 4(i.a) below delivers the correct speci-
cation by ensuring that the MVMQ-CAViaR coe cient vector belongs
to the parameter space, A. This ensures that optimizes the estimation
objective function asymptotically. Assumption 4(i.b) delivers the identi ca-
tion by ensuring that is the only optimizer. In stating the identi cation
condition, we de ne ( ) := (· ) (· ) and use the norm
|| || := max =1 | | where for convenience we also write = ( 1 )0

Assumption 4 (i)(a) There exists A such that for all

(· ) = ; (6)

(b) There is a non-empty index set I {(1 1) (1 ) ( 1) ( )}
such that for each 0 there exists 0 such that for all A with
|| || ,

[ ( ) I{| ( )| }] 0

Among other things, this identi cation condition ensures that there is suf-
cient variation in the shape of the conditional distribution to support the
estimation of a su cient number (#I) of the variation-free conditional quan-
tiles. As in the case of MQ-CAViaR, distributions that depend on a given
nite number of variation-free parameters, say , will generally be able to
support variation-free quantiles. For example, the quantiles of the ( 1)
distribution all depend on alone, so there is only one “degree of freedom”
for the quantile variation. Similarly, the quantiles of the scaled and shifted
-distributions depend on three parameters (location, scale, and kurtosis),
so there are only three “degrees of freedom” for the quantile variation.
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3 Asymptotic Theory

We estimate by the quasi-maximum likelihood method. Speci cally, we
construct a quasi-maximum likelihood estimator (QMLE) ˆ as the solution
to the optimization problem

min
A
¯ ( ) := 1

X
=1

{
X
=1

X
=1

( (· ))} (7)

where ( ) = ( ) is the standard “check function,” de ned using the
usual quantile step function, ( ) = 1[ 0]

We thus view

( ) := {
X
=1

X
=1

( (· ))}

as the quasi log-likelihood for the observation In particular, ( ) is the
log-likelihood of a vector of independent asymmetric double exponential
random variables (see White, 1994, ch. 5.3; Kim and White, 2003; Ko-
munjer, 2005). Because (· ) does not need to actually have this
distribution, the method can be regarded as a quasi maximum likelihood.

Once the QML estimator ˆ is obtained, one can compute the esti-
mated conditional quantile functions ˆ = (ˆ ). Considering the
natural monotonicity property of quantile functions, it is expected that
ˆ 1 ˆ 2 ˆ because 1 2 However, when
multiple quantiles are jointly estimated, such a desirable ordering can be
sometimes violated; that is, some estimated quantile functions can cross
each other, which is known as the ‘quantile crossing’ problem. If the quan-
tile model in (5) is correctly speci ed as imposed in Assumption 4(i), then
the population quantile functions are monotonic and the estimated quantile
functions will converge to the corresponding population quantile functions.
Hence, the quantile crossing problem is simply a nite sample problem in
such a case, and should be negligible when the sample size is su ciently
large. If either the quantile model is misspeci ed or the sample size is not
large enough, then the quantile crossing problem can still be of concern. In
that case, one can use some recently developed techniques to correct the
problem such as the monotonization method by Chernozhukov et al. (2010)
or the isotonization method suggested by Mammen (1991).4 In passing, we
note that in the subsequent empirical study later, we exclusively focus on

4Since the former is known to outperform the latter in quantile regression models, we
brie y explain the monotonization method only. Given the estimated quantile function

(ˆ ), we can de ne a random variable F = = (ˆ ) where is the standard
uniform random variable over the unit interval [0 1]. The -quantile of F denoted
by (ˆ ) is monotone with respect to by construction. Hence, it is taken as a
monotonized version of the original estimated quantile function (ˆ ).
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estimating the MVMQ-CAViaR model at the 1% level only (i.e. = 1 and
= 0 01) so that there is no quantile crossing problem in our example.
We establish consistency and asymptotic normality for ˆ through meth-

ods analogous to those of White, Kim, and Manganelli (2008). For concise-
ness, we place the remaining regularity conditions (i.e., Assumptions 5,6 and
7) and technical discussions in the appendix.

Theorem 1 Suppose that Assumptions 1, 2(i,ii), 3(i), 4(i) and 5(i,ii) hold.
Then, we have

ˆ

Next we will show that ˆ is asymptotically normal. For this, we de ne
the “error” := (· ) and let (·) be the density of
conditional on F 1 We also de ne (· ) as the ×1 gradient vector of

(· ) di erentiated with respect to . With and as given below,
the asymptotic normality result is provided in the following theorem.

Theorem 2 Suppose that Assumptions 1-6 hold. Then, the asymptotic
distribution of the QML estimator ˆ obtain from (7) is given by:

1 2(ˆ ) (0 1 1)

where

:=
X
=1

X
=1

[ (0) (· ) 0 (· )]

:= ( 0)

:=
X
=1

X
=1

(· ) ( )

:= (· )

We note that the transformed error term of ( ) = 1[ 0]

appearing in Theorem 2 can be viewed as a generalized residual. Theo-
rem 2 shows that the asymptotic behavior of the QML estimator ˆ is well
described by the usual normal law. We emphasize that one particular condi-
tion that has implicitly played an important role for obtaining such a usual
normal law is that all of quantile indexes 1 2 are xed as .
There have been important developments (see Chernozhukov, 2005, and
Chernozhukov and Fernandez-Val, 2011) based on the extreme value (EV)
theory in statistics about the asymptotic behavior of regression quantiles
under the condition that the quantile index converges to zero as ,
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which is referred to as ‘extremal quantile regression.’ This approach intends
to provide a better approximation (called the EV asymptotic law) to the
nite sample distribution of the quantile estimator than the usual nor-
mal law when the quantile index is fairly small relative to the sample size.
It might be interesting to apply the extremal quantile regression method to
our setting, but it is beyond the scope of the current paper. Hence, we will
assume that all of quantile indexes 1 2 are xed as for the
rest of the paper.

To test restrictions on or to obtain con dence intervals, we require a
consistent estimator of the asymptotic covariance matrix := 1 1.
First, we provide a consistent estimator ˆ for ; then we propose a con-
sistent estimator ˆ for Once ˆ and ˆ are proved to be consistent for

and respectively, then it follows by the continuous mapping theorem
that ˆ := ˆ 1 ˆ ˆ 1 is a consistent estimator for

A straightforward plug-in estimator of is constructed as follows:

ˆ := 1
X
=1

ˆ ˆ0

ˆ :=
X
=1

X
=1

(· ˆ ) (ˆ )

ˆ := (· ˆ )

The next result establishes the consistency of ˆ for

Theorem 3 Suppose that Assumptions 1-6 hold. Then, we have the fol-
lowing result:

ˆ

Next, we provide a consistent estimator of . We follow Powell’s (1984)
suggestion of estimating (0) with 1[ ˆ ˆ ˆ ] 2ˆ for a suitably cho-
sen sequence {ˆ } This is also the approach taken in Kim and White (2003),
Engle and Manganelli (2004), and White, Kim, and Manganelli (2008). Ac-
cordingly, our proposed estimator is

ˆ = (2ˆ ) 1
X
=1

X
=1

X
=1

1[ ˆ ˆ ˆ ] (· ˆ ) 0 (· ˆ )

Theorem 4 Suppose that Assumptions 1-7 hold. Then, we obtain the
consistency result for ˆ as follows:

ˆ
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There is no guarantee that ˆ is asymptotically e cient. There is now
considerable literature that investigates the e cient estimation in quantile
models; see, for example, Newey and Powell (1990), Otsu (2003), Komunjer
and Vuong (2006, 2007a, 2007b). Thus far, this literature has only consid-
ered single quantile models. It is not obvious how the results for the single
quantile models extend to multivariate and multi-quantile models. Never-
theless, Komunjer and Vuong (2007a) show that the class of QML estimators
is not large enough to include an e cient estimator, and that the class of
M -estimators, which strictly includes the QMLE class, yields an estimator
that attains the e ciency bound. Speci cally, when = = 1 they show
that replacing the usual quantile check function (·) in equation (7) with

( (· )) = ( 1[ (· ) 0])( ( ) ( (· )))

will deliver an asymptotically e cient quantile estimator. We conjecture
that replacing with in equation in (7) will improve the estima-
tor e ciency for and/or greater than 1. Another promising e ciency
improvement is the application of the semiparametric SUR-type quantile es-
timator proposed by Jun and Pinkse (2009) for multiple quantile equations.
Our method implicitly assumes that the generalized errors ( ) =

1[ 0] appearing in Theorem 2 are uncorrelated between di erent
equations and di erent quantiles. This assumption is rather strict, and the
estimation procedure in Jun and Pinkse (2009) is designed to improve e -
ciency when these errors are correlated in linear quantile models. As such,
additional work may be required to make the procedure applicable in the
context of non-linear quantile models as in our framework. This is an inter-
esting topic for future work.

4 An Example of a Data Generating Process

In this section, we provide an example of a data generating process that can
generate the MVMQ-CAViaR model analyzed in the previous sections. To
x ideas, we consider a situation where we observe two random variables
( 1 and 2 ). For instance, the rst one 1 could represent the per-period
return on a large portfolio or a nancial index consisting of su ciently many
nancial institutions, while the second 2 is the per-period return on a
speci c nancial institution within the portfolio or the index. A possible
data generating process for = ( 1 2 )

0 can be speci ed as follows:

1

2

¸
=

0
¸

1

2

¸
(8)

where and are -measurable, and each element of = ( 1 2 )
0

has the standard normal distribution and is mutually independent and iden-
tically distributed (IID). The triangular structure in (8) re ects the plausible
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restriction that shocks to the large portfolio are allowed to have a direct im-
pact on the return of the speci c asset, but shocks to the speci c asset do
not have a direct impact on the whole portfolio.

We note that the standard deviations of 1 and 2 are given by 1 =

and 2 =
q

2 + 2 respectively. Further, let and be speci ed to
satisfy the following usual GARCH-type restrictions:

1 = 1̃ + ˜11| 1 1|+ ˜12| 2 1| (9)

+˜11 1 1 +˜12 2 1

2 = 2̃ + ˜21| 1 1|+ ˜22| 2 1|
+˜21 1 1 +˜22 2 1

We note that = 1( ), = {1 2} where ( ) is the cumulative
distribution function of (0 1) Hence, by substituting the result =
( ) in (9), it can be formally shown that the respective -quantile
processes associated with this DGP are given by the following form denoted
as ‘MVMQ-CAViaR(1,1)’:

1 = 1( ) + 11( )| 1 1|+ 12( )| 2 1| (10)

+ 11( ) 1 1 + 12( ) 2 1

2 = 2( ) + 21( )| 1 1|+ 22( )| 2 1|
+ 21( ) 1 1 + 22( ) 2 1

where ( ) = ˜ 1( ) ( ) = ˜ 1( ) ( ) = ˜ . The bivariate quan-
tile model in (10) can be written more compactly in matrix form as follows:

= + | 1|+ 1 (11)

where , 1, and are 2-dimensional vectors, and , are (2,2)-matrices
whose elements are obviously shown in (10).

5 The Pseudo Quantile Impulse Response Func-
tion

In this section, we discuss how an impulse response function can be de-
veloped in the proposed MVMQ-CAViaR framework. For this, we assume
that the conditional quantiles of follow the simple MVMQ-CAViaR(1,1)
model in (11). Since the DGP is not fully speci ed in quantile regression
models, it is not obvious how to derive impulse response functions from
structural shocks. Unlike the standard impulse response analysis where a
one-o intervention is given to the error term , we will assume that the
one-o intervention is given to the observable 1 only at time so that
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1̃ := 1 + . In all other times there is no change in 1 . In other words,
the time path of 1 without the intervention would be

{ 1 2 1 1 1 1 +1 1 +2 }

while the time path with the intervention would be

{ 1 2 1 1 1̃ 1 +1 1 +2 }

We acknowledge that the set-up is extremely restrictive because it com-
pletely ignores the dynamic evolution in the second moment of 1 speci ed
by by (9) when the intervention is given, which forces no change in 1 +

for 1. However, this seems to be the only plausible way to obtain an
impulse response function under the conditional quantile model that we con-
sider, and such a strong limitation should be borne in mind when we discuss
the empirical results in Section 6. To distinguish our approach from the
standard one, the derived function tracing the e ect of the one-o impulse
given to 1 will be called the pseudo impulse response function.5

Our objective is to measure the impact of the one-o intervention at
time on the quantile dynamics. The pseudo -quantile impulse-response
function (QIRF) for the variable ( ) denoted as ( 1̃ ) is de ned as

( 1̃ ) = ˜ + + = 1 2 3

where ˜ + is the -conditional quantile of the a ected series (˜ + ) and
+ is the -conditional quantile of the una ected series ( + ).
First, we consider the case for = 1, i.e. 1 ( 1̃ ) When = 1, the

pseudo QIRF is given by

1 1( 1̃ ) = 11(| 1̃ | | 1 |) + 12(| 2̃ | | 2 |)

For 1, the pseudo QIRF is given by

1 ( 1̃ ) = 11 1 1( 1̃ ) + 12 2 1( 1̃ )

The case for = 2 is similarly obtained as follows. For = 1,

2 1( 1̃ ) = 21(| 1̃ | | 1 |) + 22(| 2̃ | | 2 |)
5We note that we do not consider any dynamics in the rst moments of . In the

subsequent empirical study, is the vector of asset returns so that imposing no dynamics
in the rst moment can be appropriate. To the best of our knowledge, there has been no
formal and complete analysis into the issue of generalizing the proper impulse-response
analysis in fully dynamic quantile models. Using a quantile autoregression framework,
Koenker and Xiao (2006) allude that quantile impulse-response functions may be stochas-
tic. In the presence of full dynamics, it can be more complicated to derive proper quantile
impulse-response functions. A very rudimentary analysis is currently under way in Kim
et al. (2013).
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while for 1

2 ( 1̃ ) = 21 1 1( 1̃ ) + 22 2 1( 1̃ )

Now, let us de ne

( 1̃ ) :=
1 ( 1̃ )

2 ( 1̃ )

¸
and

:= |˜ | | | (12)

Then, we can show that the pseudo QIRF is compactly expressed as follows:

( 1̃ ) = for = 1 (13)

( 1̃ ) = ( 1) for 1

The pseudo QIRF when there is a shock (or intervention) to 2 only at time
can be analogously obtained.
It is important to be aware of two caveats in our analysis. First, if re-

turns follow the structure in (8), shocks to will generally result in changes
of which are correlated, contemporaneously and over time. In our empir-
ical application, we take into account the contemporaneous correlation by
identifying the structural shocks 1 and 2 in (8) using a standard Cholesky
decomposition. However, since the DGP (8) is not fully speci ed, it is not
possible to take into account the impact that these structural shocks have
on future returns + , 1, unless one is willing to impose additional
structure on the distribution of the error terms. We leave this important
issue for future research.

Second, it is not straightforward to de ne impulse response functions for
non-linear models; this issue has been discussed by Gallant et al. (1993),
Potter (2000) and Lütkepohl (2008). The problem is that the impulse re-
sponse for non-linear, non a ne functions generally depends on the type
of non-linearity, the history of past observations and on the impulse itself.
This issue a ects also our derivation, as shown in equations (12) and (13) in
which the pseudo QIRF depends on the initial value ( ), and is a ected by
the sign and magnitude of the intervention through the absolute function.
In our implementation, we set the variable , which is originally shocked,
equal to 0. Under this particular choice, the intervention always results in
a larger value of |˜ | relative to the original observation | |, which in turn
makes in (12) always positive. Since the pseudo QIRFs considered in this
paper are linear in , the resulting impulse responses retain the standard
interpretation with respect to . In more general cases, however, addi-
tional care in the de nition of shocks and the interpretation of the quantile
impulse response functions needs to be exercised.
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5.1 Standard Errors for the Pseudo Quantile Impulse Re-
sponse Functions

Standard errors for the quantile impulse response function can be computed
by exploiting the asymptotic properties of continuous transformations of
random vectors (see for instance proposition 7.4 of Hamilton 1994). Speci -
cally, recognizing that the above pseudo QIRF is a function of the vector of
parameters ˆ , we obtain:

1 2[ ( 1̃ ; ˆ ) ( 1̃ ; )] (0 ( 1 1) 0 )

where := ( 1̃ ; )
0.

The matrix can be computed analytically for 1 as follows:

= ( ( 1) ) 0

= ( 1) ( )
0 + (( )0 2)

( ( 1))
0

where ( )
0 = ( 0

2)
( )
0 and ( ( 1))

0 = [
2P

=0
( 0) 2 ] ( )

0 .

6 Empirics: Assessing Tail Reactions of Financial
Institutions to System Wide Shocks

The nancial crisis which started in 2007 has had a deep impact on the con-
ceptual thinking of systemic risk among both academics and policy makers.
There has been a recognition of the shortcomings of the measures that are
tailored to dealing with institution-level risks. In particular, institution-
level Value at Risk measures miss important externalities associated with
the need to bail out systemically important banks in order to contain po-
tentially devastating spillovers to the rest of the economy. Therefore, gov-
ernment and supervisory authorities may nd themselves compelled to save
ex post systemically important nancial institutions, while these ignore ex
ante any negative externalities associated with their behavior. There exists
many contributions, both theoretical and empirical, as summarized, for in-
stance, in Brunnermeier and Oehmke (2012) or Bisias et al. (2012). For
the purpose of the application we have in mind, it is useful to structure the
material around two contributions, the CoVaR of Adrian and Brunnermeier
(2009) and the systemic expected shortfall (SES) of Acharya et al. (2010).

Both measures aim to capture the risk of a nancial institution condi-
tional on a signi cant negative shock hitting another nancial institution or
the whole nancial system. Neglecting the time subscript for notational
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convenience, the | is formally the VaR of nancial institution con-
ditional on the return of nancial institution falling below its -quantile
(denoted by ):6

Pr(
| | ) =

The systemic expected shortfall is shown to be proportional to the marginal
expected shortfall, which is analogously de ned as:

|
= ( | )

The main di erence with respect to CoVaR is that the expectation of
conditional on being hit by a tail event, rather than just the quantile,
is considered. In practice, loss distributions conditional on tail events are
extremely hard to estimate. One strategy is to standardize the returns by
estimated volatility or quantiles, and then apply non-parametric techniques,
as done in Manganelli and Engle (2002) or Brownlees and Engle (2010).
An alternative is to use the extreme value theory to impose a parametric
structure on the tail behavior as done in Hartmann et al. (2004).

As we will show in the rest of this section, the theoretical framework
developed in this paper lends itself to a coherent modeling of the dynam-
ics of the tail interdependence implicit in both the CoVaR and systemic
expected shortfall measures. One notable advantage of our multivariate re-
gression quantiles framework - besides providing a robust, semi-parametric
technique which does not rely on strong distributional assumptions - is that
it is tailored to directly model the object of interest.

In this section, we apply our model to study the spillovers that occur in
the equity return quantiles of a sample of 230 nancial institution around
the world by estimating a bivariate 1%-VaR model. This is a special case
of the fully general MVMQ-CAViaR model in that we x the quantile index
at = 1% and focus only on the multivariate aspect of the model.7

6 It is straightforward to derive an estimate of the CoVaR from the model in (10).
For instance, if the conditioning event is de ned as 2 1 = 2 1 (that is, nancial
institution 2 is hit by a shock equal to its quantile) the associated CoVaR for nancial insti-
tution 1 is given by 1 = 1( )+ 11( )| 1 1|+ 12( )| 2 1|+ 11( ) 1 1+ 12( ) 2 1.
Incidentally, this identi cation scheme illustrates the potential pitfalls of choosing appro-
priate conditioning events for the CoVaR measures. De ning the conditioning event
as 2 1 = 2 1, as done before, neglects the fact that shock to the nancial institu-
tion 2 may be correlated with that of other nancial institutions, therefore producing a
potentially misleading classi cation of the systemic importance of nancial institutions.

7Although it may be computationally demanding, it is possible to focus not only on the
multivariate aspect, but also the multi-quantile aspect of the full model. One possibility
of allowing for such a multi-quantile aspect is to consider a robust skewness measure, such
as the conditional Bowley coe cient in White et al. (2008). Another possibility is to use
this framework to compute the Delta CoVaR of Adrian and Brunnermeier (2009), which
is the di erence between the 1% quantile and the median.
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Theoretically, we can jointly analyze all of 230 nancial institutions in
our sample, but the excessive computational burden prevents the imple-
mentation of such a joint estimation. Instead, we examine bivariate mod-
els, whereby for each of these institutions, we estimate a bivariate CAViaR
model where the rst variable 1 is the return on a portfolio of nancial
institutions, and the second variable 2 is the return on the chosen nan-
cial institution. Hence, in the end, we will estimate 230 bivariate models in
total. Since 1 is the return on a portfolio and 2 is the return on a speci c
asset, we assume that shocks to 1 are allowed to have a direct impact on
2 , but shocks to 2 do not have a direct impact on 1 . In principle, since
the nancial institution is part of the index, one must exclude this nan-
cial institution from the index to ensure perfect orthogonality. In practice,
since our index is equally weighted and contains a large number of stocks
(96 for Europe, 70 for North America and 64 for Asia; see Table 2), the
inclusion of the nancial institution has a negligible impact. Assuming that
the -quantile processes for 1 and 2 follow the MVMQ-CAViaR(1,1)
model, we employ the proposed method to estimate the bivariate model.8

Any empirical evidence for non-zero o -diagonal terms in either or will
indicate the presence of tail-dependence between the two variables.

6.1 Data and Optimization Strategy

The data used in this section have been downloaded from Datastream. We
considered three main global sub-indices: banks, nancial services, and in-
surances. The sample includes daily closing prices from 1 January 2000 to
6 August 2010. Prices were transformed into continuously compounded log
returns, giving an estimation sample size of 2765 observations. We use 453
additional observations up to 2 May 2012, for the out-of-sample exercises.
We eliminated all the stocks whose times series started later than 1 January
2000, or which stopped after this date. At the end of this process, we were
left with 230 stocks.

Table 1 reports the names of the nancial institutions in our sample,
together with the country of origin and the sector they are associated with, as
from Datastream classi cation. It also reports for each nancial institution
the average (over the period January 2000-August 2010) market value and
leverage. Leverage is provided by Datastream and is de ned as the ratio of
short and long debt over common equity. Table 2 shows the breakdown of the
stocks by sector and by geographic area. There are twice as many nancial
institutions classi ed as banks in our sample relative to those classi ed as
nancial services or insurances. The distribution across geographic areas is
more balanced, with a greater number of EU nancial institutions and a

8We note that imposing the location-scale shift speci cation in (9) can result in the bi-
variate CAViaR model in (10), but the converse is not true. Hence, assuming the bivariate
CAViaR model in (10) does not necessarily imply the location-scale shift speci cation.
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slightly lower Asian representation. The proxy for the market index used
in each bivariate quantile estimation is the equally weighted average of all
the nancial institutions in the same geographic area, in order to avoid
asynchronicity issues.

We estimated 230 bivariate 1% quantile models between the market in-
dex and each of the 230 nancial institutions in our sample. It is worth
mentioning that an important data assumption required to estimate the
bivariate CAViaR model is the stationarity condition in Assumption 1. Fi-
nancial return data such as ours are well-known to be stationary whereas
their levels are integrated so that the data assumption is satis ed in our ap-
plication. Each model is estimated using, as starting values in the optimiza-
tion routine, the univariate CAViaR estimates and initializing the remaining
parameters at zero. Next, we minimized the regression quantile objective
function (7) using the fminsearch optimization function in Matlab, which is
based on the Nelder-Mead simplex algorithm. In calculating the standard
errors, we have set the bandwidth as suggested by Koenker (2005, pp.81)
and Machado and Silva (2013). In particular, we de ne the bandwidth ˆ
as:

ˆ = ˆ
£

1( + ) 1( )
¤

where is de ned as

= 1 3
¡

1 (1 0 05 2)
¢2 3Ã1 5 ¡ ¡

1( )
¢¢2

2 ( 1 ( ))2 + 1

!1 3
where ( ) and ( ) are, respectively, the cumulative distribution and prob-
ability density functions of (0 1). Following Machado and Silva (2013),
we de ne ˆ as the median absolute deviation of the -quantile regression
residuals.9

6.2 Results

Table 3 reports, as an example, the estimation results for four well-known
nancial institutions from di erent geographic areas: Barclays, Deutsche
Bank, Goldman Sachs and HSBC. The diagonal autoregressive coe cients
for the matrix are around 0.90 and all of them are statistically signi -
cant,10 which indicates the VaR processes are signi cantly autocorrelated.
These ndings are consistent with what is typically found in the literature

9The gures and tables in the paper can be replicated using the data and Matlab codes
available at www.simonemanganelli.org.
10 It is noted that the standard errors in Tables 3 & 4 have been computed using the

asymptotic distribution result in Theorem 2. As explained in Section 3, if readers are
concerned about the extreme value theory, then those standard errors should be adjusted
following the procedure in Chernozhukov and Fernandez-Val (2011). The feasible infer-
ence methodology for extremal quantile model proposed in Chernozhukov and Fernandez-
Val (2011) is based on a linear quantile model while our proposed model is nonlinear.
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using CAViaR models. Notice, however, that some of the non-diagonal coef-
cients for the or matrices are signi cantly di erent from zero. This is
the case for Barclays, Goldman Sachs, and HSBC and the examples illustrate
how the multivariate quantile model can uncover dynamics that cannot be
detected by estimating univariate quantile models. In general, we reject the
joint null hypothesis that all o -diagonal coe cients of the matrices and
are equal to zero at the 5% level for around 100 nancial institutions out

of the 230 in our sample. The resulting estimated 1% quantiles for Barclays,
Deutsche Bank, Goldman Sachs and HSBC are reported in Figure 1. The
quantile plots clearly reveal the generalized sharp increase in risk following
the Lehman bankruptcy. Careful inspection of the plots also reveals a no-
ticeable cross-sectional di erence, with the risk for Goldman Sachs being
contained to about two thirds of the risk of Barclays at the height of the
crisis.

Table 4 reports summary statistics for the full cross-section of coe -
cients. Average values are in line with the values reported in Table 3. For
instance, the autoregressive coe cient for 11 and 22 are 0.84 and 0.86 re-
spectively. At the same time, the cross-sectional standard deviation and the
min-max range reveal quite substantial heterogeneity in the estimates.

Table 5 provides an assessment of the overall performance of the 230
estimated bivariate models. The performance is based on the number of
VaR exceedances both in-sample and out-of-sample. Speci cally, for each of
the 230 bivariate VAR for VaR models, the time series of returns is trans-
formed into a time series of indicator functions which take value one if the
return exceeds the VaR and zero otherwise. When estimating a 1% VaR,
on average one should expect stock market returns to exceed the VaR 1%
of the times. The rst line of the table reveals that the in-sample estimates
are relatively precise, as shown by the accurate average and median number
of exceedances, their very low standard deviations and the relatively narrow
cross-sectional min-max range. The out-of-sample performance is less accu-
rate, as to be expected, with substantially higher standard deviations and
very large min-max range. The out-of-sample performance has also been
assessed by applying the out-of-sample DQ test of Engle and Manganelli
(2004), which tests not only whether the number of exceedances is close
to the VaR con dence level, but also whether these exceedances are not
correlated over time. The test reveals that the performance of the out-of-
sample VaR is not rejected at a 5% con dence level for more than half of
the stocks. Note that for the out-of-sample exercise the coe cients are held
xed at their estimated in-sample values.
The methodology introduced in this paper, however, allows us to go be-

Nonetheless, we conjecture that the procedure may be still applicable with some slight
modi cations, but some non-trivial complications might arise. A formal investigation is
left for further research.
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yond the analysis of the univariate quantiles, and directly looks at the tail
codependence between nancial institutions and the market index. Figure
2 displays the impulse response of the risks (and associated 95% con dence
intervals) of the four nancial institutions to a 2 standard deviation shock to
the market index (see the discussion in Section 5 for a detailed explanation of
how the pseudo impulse-response functions are computed). The horizontal
axis measures the time (expressed in days), while the vertical axis mea-
sures the change in the 1% quantiles of the individual nancial institutions
(expressed in percentage returns) as a reaction to the market shock. The
pseudo impulse response functions track how this shock propagates through
the system and how long it takes to absorb it. The shock is completely
reabsorbed after the pseudo impulse response function has converged again
to zero.

A closer look at the pseudo impulse response functions of the four se-
lected nancial institutions reveals a few di erences in how their long run
risks react to shocks. For instance, Deutsche Bank and HSBC have a sim-
ilar pseudo impulse response function, although HSBC’s is not statistically
di erent from zero. Goldman Sachs quantiles, instead, exhibit very little
tail codependence with the market, and not statistically signi cant, as illus-
trated by the error bands straddling the zero line.

It should be borne in mind that each of the 230 bivariate models is esti-
mated using a di erent information set (as the time series of the index and
of a di erent nancial institution is used for each estimation). Therefore,
each pair produces a di erent estimate of the VaR of the index, simply be-
cause we condition on a di erent information set. Moreover, the coe cients
and any quantities derived from them, such as pseudo impulse responses,
are information set-speci c. This means that naive comparisons across bi-
variate pairs can be misleading and are generally unwarranted. The proper
context for comparing sensitivities and pseudo impulse responses is in a mul-
tivariate setting using a common information set. Because of the non trivial
computational challenges involved, we leave this for future study.

These important caveats notwithstanding, averaging across the bivari-
ate results can still provide useful summary information and suggest gen-
eral features of the results. Accordingly, Figure 3 plots the average pseudo
impulse-response functions 1 (˜2 ) and 2 (˜1 ) measuring the impact of
a two standard deviation individual nancial institution shock on the in-
dex and the impact of a two standard deviation shock to the index on the
individual nancial institution’s risk. In the left column, the average is
taken with respect to the geographical distribution. That is, the average
pseudo impulse-response for the four largest euro area countries, for exam-
ple, is obtained by averaging all the pseudo impulse-response functions for
the German, French, Italian and Spanish nancial institutions. We notice
two things. First, the impact of a shock to the index (charts in the top
row) is much stronger than the impact of a shock to the individual nancial
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institution (charts in the bottom row). This result is partly driven by our
identi cation assumption that shocks to the index have a contemporaneous
impact on the return of the single nancial institutions, while the institu-
tion’s speci c shocks have only a lagged impact on the global nancial index.
Second, we notice that the risk of Japanese nancial institutions appears to
be on average somewhat less sensitive to global shocks than their European
and North American counterparts.

The charts on the right column of Figure 3 plot the average pseudo
impulse-response functions for the nancial institutions grouped by line of
business, i.e. banks, nancial services, and insurances. We see that a shock
to the index has a stronger initial impact on the group of insurance compa-
nies.

Two interesting dimensions along which pseudo impulse response func-
tions can be aggregated are size and leverage, as reported in Table 1. Figure
4 plots the average pseudo impulse-responses to a market shock for the 30
largest and smallest nancial institutions, together with those of the largest
and smallest leverage. It is clear that the shocks to the index have a much
greater impact on the largest and most leveraged nancial institutions. A
two standard deviation shock to the index produces an average initial in-
crease in the daily VaR of the largest nancial institutions of about 1.7%
and for the most leveraged of about 1.4%. This compares to an average
increase in VaR of around 0.9% for the 30 smallest and least leveraged -
nancial institutions. Interestingly, there is little overlap between the two
groups of stocks.

To gauge to what extent the model correctly identi es the nancial in-
stitutions whose risks are most exposed to market shocks, Figure 5 plots the
average quantiles of the two sets of nancial institutions identi ed in Figure
4. Speci cally, the charts in the top panels of the gure, track the estimated
in-sample quantiles developments of the 30 largest/smallest and most/least
leveraged nancial institutions. The charts in the bottom panels replicate
the same exercise with the out-of-sample data.

The gure presents two striking facts. First, during normal times, i.e.
between 2004 and mid-2007, the quantiles of the largest/smallest nancial
institutions are roughly equal. Actually, there are some periods in 2003 in
which the quantiles of the smallest nancial institutions exceeded the quan-
tiles of the largest ones. The second striking fact is that the situation changes
abruptly in periods of market turbulence. For instance, at the beginning of
the sample, in 2001-2003, the quantiles of the largest nancial institutions
increased signi cantly more than that of the smallest ones. The change
in behavior during crisis periods is even more striking from 2008 onwards,
showing a greater exposure to common shocks. The bottom panels reveal
that similar results hold for the out-of-sample period. Of particular notice
is the sharp drop in the out-of-sample quantile for the group of the largest
nancial institutions which occurred on 12 August, 2011, the beginning of
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the second phase of the euro area sovereign debt crisis.
This application illustrates how the proposed methodology can usefully

inform policy makers by helping identify the set of nancial institutions
which may be most exposed to common shocks, especially in times of crisis.
Of course, this should only be considered as a partial model-based screening
device for the identi cation of the most systemic banks. Further analysis,
market intelligence and sound judgment are other necessary elements to
produce a reliable risk assessment method for the larger and more complex
nancial groups.
Again, we emphasize that the results presented in these gures merely

summarize the pattern of the results found in the bivariate analysis of our
230 nancial institutions. Cross-comparisons could be improved by estimat-
ing for instance a 3- or 4- or -variate system using a common information
set, or adopting an appropriate factor structure which would minimize the
number of parameters to be estimated. Alternatively, one could impose
that the matrix in (11) is diagonal, which would be equivalent to as-
suming that the parameters of the system are variation free, as in Engle et
al. (1983). This assumption would have the added advantage of allowing
a separate estimation of each quantile. That is, for an -variate system,
the optimization problem in (7) can be broken down into independent
optimization problems, which in turn would considerably increase the com-
putational tractability.

7 Conclusion

We have developed a theory ensuring the consistency and asymptotic nor-
mality of multivariate and multi-quantile models. Our theory is general
enough to comprehensively cover models with multiple random variables,
multiple con dence levels and multiple lags of the quantiles.

We conducted an empirical analysis in which we estimate a vector au-
toregressive model for the Value at Risk — VAR for VaR — using returns of
individual nancial institutions from around the world. By examining the
pseudo impulse-response functions, we can study the nancial institutions’
long run risk reactions to shocks to the overall index. Judging from our bi-
variate models, we found that the risk of Asian nancial institutions tend to
be less sensitive to system wide shocks, whereas insurance companies exhibit
a greater sensitivity to global shocks. We also found wide di erences on how
nancial institutions react to di erent shocks. Both in-sample and out-of-
sample analyses reveal that largest and most leveraged nancial institutions
are those whose risk increases the most in periods of market turbulence.

The methods developed in this paper can be applied to many other
contexts. For instance, many stress-test models are built from vector au-
toregressive models on credit risk indicators and macroeconomic variables.
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Starting from the estimated mean and adding assumptions on the multivari-
ate distribution of the error terms, one can deduce the impact of a macro
shock on the quantile of the credit risk variables. Our methodology pro-
vides a convenient alternative for stress testing, by allowing researchers to
estimate vector autoregressive processes directly on the quantiles of interest,
rather than on the mean.
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Appendix

We establish the consistency of ˆ by applying the results of White (1994).
For this, we impose the following moment and domination conditions. In
stating this next condition and where convenient elsewhere, we exploit sta-
tionarity to omit explicit reference to all values of

Assumption 5 (i) For = 1 | | ; (ii) Let us de ne

0 := max
=1

max
=1

sup
A
| (· )|

Then ( 0 )

Proof of Theorem 1 We verify the conditions of corollary 5.11 of White
(1994), which delivers ˆ , where

ˆ := argmax
A

1
X
=1

( (· ))

and ( (· )) := {P =1

P
=1 ( (· ))}. Assumption 1

ensures White’s Assumption 2.1. Assumption 3(i) ensures White’s Assump-
tion 5.1. Our choice of satis es White’s Assumption 5.4. To verify
White’s Assumption 3.1, it su ces that ( (· )) is dominated on A
by an integrable function (ensuring White’s Assumption 3.1(a,b)), and that
for each in A, { ( (· ))} is stationary and ergodic (ensuring White’s
Assumption 3.1(c), the strong uniform law of large numbers (ULLN)). Sta-
tionarity and ergodicity is ensured by Assumptions 1 and 3(i). To show
domination, we write

| ( (· ))|
X
=1

X
=1

| ( (· ))|

=
X
=1

X
=1

|( (· ))( 1[ (· ) 0])|

2
X
=1

X
=1

(| |+ | (· )|)

2
X
=1

| |+ 2 | 0 |

so that

sup
A
| ( (· ))| 2

X
=1

| |+ 2 | 0 |
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Thus, 2
P

=1 | | + 2 | 0 | dominates | ( (· ))|; this has nite
expectation by Assumption 5(i,ii).

White’s Assumption 3.2 remains to be veri ed; here, this is the condition
that is the unique maximizer of ( ( (· )) Given Assumptions
2(ii.b) and 4(i), it follows through the argument that directly parallels to
that of the proof by White (1994, corollary 5.11) that for all A

( ( (· )) ( ( (· ))

Thus, it su ces to show that the above inequality is strict for 6= Con-
sider 6= such that || || and let ( ) :=

P
=1

P
=1 ( ( ))

with ( ) := ( (· )) ( (· )) It will su ce
to show that ( ) 0 First, we de ne the “error” := (· )
and let (·) be the density of conditional on F 1 Noting that

( ) := (· ) (· ) we next can show through some algebra
and Assumption 2(ii.a) that

( ( )) = [

Z ( )

0
( ( ) ) ( ) ]

[
1

2
21[| ( )| ] +

1

2
( )21[| ( )| ])]

1

2
2 [1[| ( )| ]]

The rst inequality above comes from the fact that Assumption 2(ii.a) im-
plies that for any 0 su ciently small, we have ( ) for | | .
Thus,

( ) : =
X
=1

X
=1

( ( ))
1

2
2
X
=1

X
=1

[1[| ( )| ]]

=
1

2
2
X
=1

X
=1

[| ( )| ]
1

2
2
X
( ) I

[| ( )| ]

1

2
2 [ ( ) I{| ( )| }] 0

where the nal inequality follows from Assumption 4(i.b). As is arbitrary,
the result follows. ¥

Next, we establish the asymptotic normality of 1 2(ˆ ). We use
a method originally proposed by Huber (1967) and later extended by Weiss
(1991). We rst sketch the method before providing formal conditions and
the proof.

Huber’s method applies to our estimator ˆ provided that ˆ satis es
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the asymptotic rst order conditions

1
X
=1

{
X
=1

X
=1

(· ˆ ) ( (· ˆ ))} = ( 1 2) (14)

where (· ) is the ×1 gradient vector with elements ( ) (· ) =
1 and ( (· ˆ )) is a generalized residual. Our rst task is
thus to ensure that equation (14) holds.

Next, we de ne

( ) :=
X
=1

X
=1

[ (· ) ( (· ))]

With ( ) continuously di erentiable at interior to A, we can apply the
mean value theorem to obtain

( ) = ( ) + 0( ) (15)

where 0 is an × matrix with (1× ) rows 0 = 0 (¯( )), where ¯( )
is a mean value (di erent for each ) lying on the segment connecting and

= 1 . It is straightforward to show that the correct speci cation
ensures that ( ) is zero. We will also show that

0 = + (|| ||) (16)

where :=
P

=1

P
=1 [ (0) (· ) 0 (· )] with (0)

representing the value at zero of the density of := (· )
conditional on F 1 Combining equations (15) and (16) and putting ( ) =
0, we obtain

( ) = ( ) + (|| ||2) (17)

The next step is to show that

1 2 (ˆ ) + = (1) (18)

where := 1 2
P

=1 with :=
P

=1

P
=1 (· ) ( ).

Equations (17) and (18) then yield the following asymptotic representation
of our estimator ˆ :

1 2(ˆ ) = 1 1 2
X
=1

+ (1) (19)

As we impose conditions su cient to ensure that { F } is a martingale
di erence sequence (MDS), a suitable central limit theorem (e.g., theorem
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5.24 in White, 2001) is applied to equation (19) to yield the desired asymp-
totic normality of ˆ :

1 2(ˆ ) (0 1 1) (20)

where := ( 0).
We now strengthen the conditions given in the text to ensure that each

step of the above argument is valid.

Assumption 2 (iii) (a) There exists a nite positive constant 0 such that
for each and each and each R, ( ) 0 ; (b) There
exists a nite positive constant 0 such that for each and each
and each 1 2 R, | ( 1) ( 2)| 0| 1 2|.

Next we impose su cient di erentiability of with respect to .

Assumption 3 (ii) For each and each ( ·) is continuously di er-
entiable on A; (iii) For each and each ( ·) is twice continuously
di erentiable on A.

To exploit the mean value theorem, we require that belongs to (A),
the interior of A.

Assumption 4 (ii) (A)

Next, we place domination conditions on the derivatives of

Assumption 5 (iii) We de ne

1 := max
=1

max
=1

max
=1

sup
A
|( ) (· )|

Then (a) ( 1 ) ; (b) ( 2
1 ) ;

(iv) Let us de ne

2 := max
=1

max
=1

max
=1

max
=1

sup
A
|( 2 ) (· )|

Then (a) ( 2 ) ; (b) ( 2
2 )

Assumption 6 (i) :=
P

=1

P
=1 [ (0) (· ) 0 (· )] is

positive de nite; (ii) := ( 0) is positive de nite.

Assumptions 3(ii) and 5(iii.a) are additional assumptions that help to en-
sure that equation (14) holds. Further imposing Assumptions 2(iii), 3(iii.a),
4(ii), and 5(iv.a) su ces to ensure that equation (17) holds. The additional
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regularity provided by Assumptions 5(iii.b), 5(iv.b), and 6(i) ensures that
equation (18) holds. Assumptions 5(iii.b) and 6(ii) help ensure the avail-
ability of the MDS central limit theorem. We now have conditions that are
su cient to prove the asymptotic normality of our MVMQ-CAViaR estima-
tor.

Proof of Theorem 2 As outlined above, we rst prove

1 2
X
=1

{
X
=1

X
=1

(· ˆ ) ( (· ˆ ))} = (1) (21)

The existence of is ensured by Assumption 3(ii). Let be the × 1
unit vector with the element equal to one and the rest zero, and let

( ) := 1 2
X
=1

X
=1

X
=1

( (· ˆ + ))

for any real number . Then, by the de nition of ˆ , ( ) is minimized at
= 0. Let ( ) be the derivative of ( ) with respect to from the right.
Then

( ) = 1 2
X
=1

X
=1

X
=1

(· ˆ + ) ( (· ˆ + ))

where (· ˆ + ) is the element of (· ˆ + ). Using the
facts that (i) ( ) is non-decreasing in and (ii) for any 0, ( ) 0
and ( ) 0, we have

| (0)| ( ) ( )

1 2
X
=1

X
=1

X
=1

| (· ˆ )|1[ (· ˆ )=0]

1 2 max
1

1

X
=1

X
=1

X
=1

1[ (· ˆ )=0]

where the last inequality follows from the domination condition imposed
in Assumption 5(iii.a). Because 1 is stationary, 1 2max1 1 =
(1). The second term is bounded in probability given Assumption 2(i,ii.a)

(see Koenker and Bassett, 1978, for details): that is,

X
=1

X
=1

X
=1

1[ (· ˆ )=0] = (1)
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Since (0) is the element of 1 2
P

=1

P
=1

P
=1 (· ˆ ) (

(· ˆ )), the claim in (21) is proven.
Next, for each A, Assumptions 3(ii) and 5(iii.a) ensure the existence

and niteness of the × 1 vector

( ) : =
X
=1

X
=1

[ (· ) ( (· ))]

=
X
=1

X
=1

[ (· )

Z 0

( )
( ) ]

where ( ) := (· ) (· ) and ( ) = ( ) ( +
(· )) represents the conditional density of := (· )

with respect to Lebesgue measure The di erentiability and domination con-
ditions provided by Assumptions 3(iii) and 5(iv.a) ensure (e.g., by Bartle,
1966, corollary 5.9) the continuous di erentiability of ( ) on A, with

( ) =
X
=1

X
=1

[ { 0 (· )

Z 0

( )
( ) }]

Since is interior to A by Assumption 4(ii), the mean value theorem applies
to each element of ( ) to yield

( ) = ( ) + 0( ) (22)

for in a convex compact neighborhood of where 0 is an × matrix
with (1× ) rows (¯( )) =

0 (¯( )), where ¯( ) is a mean value (di erent
for each ) lying on the segment connecting and with = 1 . The
chain rule and an application of the Leibniz rule to

R 0
( ) ( ) then

give
( ) = ( ) ( )

where

( ) :=
X
=1

X
=1

[ 0 (· )

Z 0

( )
( ) ]

( ) :=
X
=1

X
=1

[ ( ( )) (· ) 0 (· )]

Assumption 2(iii) and the other domination conditions (those of Assumption
5) then ensure that

(¯( )) = (|| ||)
(¯( )) = + (|| ||)
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where :=
P

=1

P
=1 [ (0) (· ) 0 (· )] Letting :=P

=1

P
=1 [ (0) (· ) 0 (· )], we obtain

0 = + (|| ||) (23)

Next, we have that ( ) = 0 To show this, we write

( ) =
X
=1

X
=1

[ (· ) ( (· ))]

=
X
=1

X
=1

( [ (· ) ( (· )) | F 1])

=
X
=1

X
=1

( (· ) [ ( (· )) | F 1])

=
X
=1

X
=1

( (· ) [ ( ) | F 1])

= 0

as [ ( ) | F 1] = [1[ ] | F 1] = 0 by de nition of
for = 1 and = 1 (see equation (3)). Combining ( ) = 0 with
equations (22) and (23), we obtain

( ) = ( ) + (|| ||2) (24)

The next step is to show that

1 2 (ˆ ) + = (1) (25)

where := 1 2
P

=1 with := ( ) and ( ) :=
P

=1

P
=1 (· )

( (· )). Let ( ) := sup{ :|| || } || ( ) ( )||. By the
results of Huber (1967) and Weiss (1991), to prove (25) it su ces to show the
following: (i) there exist 0 and 0 0 such that || ( )|| || ||
for || || 0; (ii) there exist 0 0 0 and 0 such that
[ ( )] for || || + 0; and (iii) there exist 0 0 0

and 0 such that [ ( )2] for || ||+ 0.
The condition that is positive-de nite in Assumption 6(i) is su cient
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for (i). For (ii), we have that for the given (small) 0

( )

sup
{ :|| || }

X
=1

X
=1

|| (· ) ( (· )) (· ) ( (· ))||

X
=1

X
=1

sup
{ :|| || }

|| ( (· ))|| × sup
{ :|| || }

|| (· ) (· )||

+
X
=1

X
=1

sup
{ :|| || }

|| ( (· )) ( (· ))||

× sup
{ :|| || }

|| (· )||

2 + 1

X
=1

X
=1

1[| (· )| 1 ]

using the following: (i) || ( (· ))|| 1; (ii) || ( (· ))
( (· ))|| 1[| (· )| | (· ) (· )|]; and (iii) the mean

value theorem applied to (· ) and (· ). Hence, we have

[ ( )] 0 + 2 1 0

for some constants 0 and 1 given Assumptions 2(iii.a), 5(iii.a), and
5(iv.a). Hence, (ii) holds for = 0 + 2 1 0 and 0 = 2 The last
condition (iii) can be similarly veri ed by applying the -inequality to the
last equation above with 1 (so that 2 ) and using Assumptions
2(iii.a), 5(iii.b), and 5(iv.b). As a result, equation (25) is veri ed.

Combining equations (24) and (25) yields

1 2(ˆ ) = 1 2
X
=1

+ (1)

However, { F } is a stationary ergodic martingale di erence sequence
(MDS). In particular, is measurable-F , and we can show that

( |F 1) = (
X
=1

X
=1

(· ) ( ) | F 1)

=
X
=1

X
=1

(· ) ( ( ) | F 1)

= 0

because [ ( ) | F 1] = 0 for all = 1 and = 1 Assump-
tion 5(iii.b) ensures that := ( 0) is nite. The MDS central limit the-
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orem (e.g., theorem 5.24 of White, 2001) applies, provided is positive def-
inite (as ensured by Assumption 6(ii)) and that 1

P
=1

0 = + (1),
which is ensured by the ergodic theorem. The standard argument now gives

1 2 1 2(ˆ ) (0 )

which completes the proof. ¥

To establish the consistency of ˆ we strengthen the domination con-
dition on and impose conditions on {ˆ }.

Assumption 5 (iii)(c) ( 3
1 )

Assumption 7 {ˆ } is a stochastic sequence and { } is a non-stochastic
sequence such that (i) ˆ 1; (ii) = (1); and (iii) 1 = ( 1 2).

Proof of Theorems 3 & 4: Theorems 3 & 4 can be proved by extending
similar results in White, Kim, and Manganelli (2008). We do not report the
proof to save space, but the complete proof of Theorems 3 & 4 can be found
at the following website: http://web.yonsei.ac.kr/thkim/downloadable.html.
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Table 3 – Estimates and standard errors for selected financial institutions 

Barclays
1c 11a 12a 11b 12b
0.15 *** 0.48 *** 0.05 *** 0.82 *** 0.01 **
0.05 0.12 0.01 0.05 0.01

2c 21a 22a 21b 22b
0.10 ** 0.30 *** 0.15 *** 0.12 ** 0.96 ***
0.05 0.10 0.05 0.05 0.01

Deutsche Bank 
1c 11a 12a 11b 12b
0.12 * 0.36 ** 0.07 0.88 *** 0.03
0.07 0.15 0.07 0.06 0.02

2c 21a 22a 21b 22b
0.16 ** 0.06 0.34 0.00 0.86 ***
0.07 0.26 0.25 0.10 0.08

Goldman Sachs 
1c 11a 12a 11b 12b
0.04 * 0.19 ** 0.08 *** 0.93 *** 0.03 **
0.02 0.09 0.02 0.03 0.01

2c 21a 22a 21b 22b
0.03 0.00 0.16 ** 0.01 0.94 ***
0.02 0.11 0.07 0.04 0.03

HSBC
1c 11a 12a 11b 12b
0.09 0.29 ** 0.06 0.89 *** 0.02
0.09 0.12 0.13 0.07 0.04

2c 21a 22a 21b 22b
0.14 0.49 0.40 0.16 * 0.87 ***
0.15 0.45 0.36 0.09 0.09

Note: Estimated coefficients are in the first row. Standard errors are reported in italic in the second row. The 
coefficients correspond to the VAR for VaR model reported in equation (8) of the paper. Coefficients 
significant at the 10%, 5% and 1% confidence level are denoted by *, **, ***, respectively.
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Table 4 – Summary statistics of the full cross section of coefficients 

1c 11a 12a 11b 12b
average 0.07 0.32 0.02 0.84 0.02
std. dev. 0.17 0.13 0.07 0.20 0.12
min 0.98 0.70 0.32 0.79 0.34
max 1.56 0.03 0.14 1.28 0.88

2c 21a 22a 21b 22b
average 0.16 0.18 0.24 0.02 0.86
std. dev. 0.31 0.23 0.22 0.21 0.16
min 3.49 1.12 1.91 1.11 0.03
max 0.82 0.62 0.09 1.39 1.49

Note: The table reports the summary statistics of the coefficient estimates of the 230 bivariate VAR for VaR 
models. The table reveals quite substantial heterogeneity in the estimates. 

Table 5 – Performance evaluation 

average median std. dev. min max # stocks passing DQ test
In sample 1.00% 1.01% 0.07% 0.25% 1.45%

Out of sample 1.33% 0.88% 5.81% 0.00% 87.64% 123

Note: The table reports the summary statistics of VaR performance evaluation, based on the number of VaR 
exceedances both in-sample and out-of-sample. For each of the 230 bivariate VAR for VaR models, the time 
series of returns is transformed into a time series of indicator functions which take value one if the return 
exceeds the VaR and zero otherwise. When estimating a 1% VaR, on average one should expect stock 
market returns to exceed the VaR 1% of the times. The first line reveals that the in-sample estimates are 
relatively precise, as shown by the accurate average and median, the very low standard deviations and the 
relatively narrow min-max range. The out-of-sample performance is less accurate, as to be expected, with 
substantially higher standard deviation and very large min-max range. The out-of-sample performance has 
been assessed also applying the out-of-sample DQ test of Engle and Manganelli (2004), which tests not only 
whether the number of exceedances is close to the VaR confidence level, but also that these exceedances are 
not correlated over time. The test reveals that the performance of the out-of-sample VaR is not rejected at a 
5% confidence level for more than half of the stocks. Note that for the out-of-sample exercise the 
coefficients are held fixed at their estimated in-sample values.
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