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Abstract

A researcher is interested in a set of variables that he wants to model with a vector

autoregression and he has a dataset with more variables. Which variables from the

dataset to include in the VAR, in addition to the variables of interest? This ques-

tion arises in many applications of VARs, in prediction and impulse response analysis.

We develop a Bayesian methodology to answer this question. We rely on the idea

of Granger-causal-priority, related to the well-known concept of Granger-noncausality.

The methodology is simple to use, because we provide closed-form expressions for the

relevant posterior probabilities. Applying the methodology to the case when the vari-

ables of interest are output, the price level, and the short-term interest rate, we find

remarkably similar results for the United States and the euro area.

Keywords: Vector autoregression, structural vector autoregression, Granger-causal-

priority, Granger-noncausality, Bayesian model choice. (JEL: C32, C52, E32.)



Non-technical summary 

The theory of econometrics usually takes a model as given. But an important element in the practice of 

econometrics is model specification, or model choice. In econometrics applied to macroeconomic data 

the dominant model since Sims (1980) has been the vector autoregression (VAR). VARs have been 

widely used, including at central banks and other policy institutions, for forecasting as well as for 

studying the effects of economically interpretable shocks such as changes in monetary policy. The 

crucial aspect of model specification in the context of VARs is the choice of variables. If a modeller 

wants to forecast or to compute the impulse response of a variable y with a VAR, which other variables 

should the modeller include in the VAR? For example, if the variable y is the consumer price level, 

think of what a large number of variables might matter in forecasting and computing the impulse 

responses of y! Then think of checking all combinations of this large number of variables! Although 

assessing how much a given variable matters taking into account all combinations of variables seems 

like a gargantuan task, this paper develops a methodology to do precisely that. The methodology is both 

formal – in the sense that we will explain – and very simple. We write “very simple” because the output 

of the methodology for any variable in the modeller’s dataset is a single number between zero and one 

– think of this number as a probability – that summarises how much this particular variable matters in 

modelling the variable of interest y.  

The methodology is formal in the sense that it adheres to the following principle of Bayesian statistics: 

To compare or evaluate models, one needs to examine the out-of-sample predictive performance of the 

models. Model A is better than model B if and only if model A forecasts better out-of-sample than 

model B. We implement this principle of Bayesian statistics in the following way. First, we specify a 

restriction on the data generating process that connects to variable choice. This restriction is called 

Granger-causal-priority and appears in unpublished work by Sims (2010) and Todd and Doan (2010). 

Granger-causal-priority is related to the well-known idea of Granger-noncausality, but it accounts better 

for the presence of multiple variables in a VAR. Second, we develop tools for inference concerning 

Granger-causal-priority. The key ingredient is that we derive an analytical expression for a Bayes 

factor, which is a function of out-of-sample predictive performance, and that lets one evaluate the 

posterior probability of Granger-noncausality and the posterior probability of Granger-causal-priority.  

To see how the methodology that we propose works, we investigate which variables belong in a 

quarterly VAR with real GDP, the price level, and the short-term interest rate. We perform the exercise 

twice, for the United States and for the euro area. In each exercise we consider thirty-eight 

macroeconomic and financial variables. The findings turn out to be remarkably similar between the 

United States and the euro area. Both in the United States and in the euro area we find that the 

following variables are most likely to belong in the VAR with real GDP, the price level, and the short-

term interest rate: (i) survey-based indicators of economic sentiment and activity, (ii) a component of 

real GDP, the change in inventories, (iii) interest rates on government debt and private debt, and (iv) the 

price of oil. 



1 Introduction

The theory of econometrics usually takes a model as given. But an important element in

the practice of econometrics is model specification, as stressed by Leamer (1978). A key

question in the specification of a vector autoregression (VAR) – the dominant model in

econometrics applied to macroeconomic data – is which variables to include in the VAR.

We highlight two features of the vast literature on VARs in macroeconomics started by Sims

(1980). First, almost all applications in the literature involve small or medium-sized VARs.

In other words, many variables that economists have data on are left out.1 Second, the

choice of which variables to include in a VAR occurs informally, based on the researcher’s

prior or an informal specification search. This paper is concerned with formal choice of

variables in VARs. We discuss a concept – a restriction on a data generating process – that

is tightly linked with variable choice in VARs. Furthermore, we show how to use data to

evaluate the plausibility of this restriction in a simple way.

Consider a researcher with an a priori interest in a set of variables yi. The researcher

wants to predict yi with a VAR (“a reduced-form VAR”) or to compute impulse responses of

yi to structural shocks (“a structural VAR”). The researcher has data on a set of variables

y that includes the variables of interest, i.e., yi ⊂ y, but also includes other variables yJ ,

yJ ≡ y \ yi. Let yj ⊆ yJ be a subset of the other variables. The questions that we study in

this paper are: (i) Does yj belong in the VAR to be used to predict yi? (ii) Does yj belong

in the VAR to be used to compute impulse responses of yi to structural shocks? We develop

a methodology to answer both questions. The methodology relies on two ingredients: a

restriction on a data generating process and tools for inference.

We observe that it is natural to think of variable choice as a restriction on the data

generating process followed by all variables in the dataset. Suppose that the set of all

variables we have data on, y, follows a VAR process. Then the decisive restriction on the

data generating process for a researcher asking “Does yj belong in the VAR with yi?” is

1Let us give some examples. The original version of the classic VAR model for forecasting the U.S.
economy developed by Robert Litterman used six variables: the Treasury-bill rate, M1, the GNP deflator,
real GNP, real investment, and the unemployment rate. See Sims (1993), who studies a nine-variable
extension of Litterman’s model. Sims and Zha (2006), p.60, write that they employ six variables “commonly-
used” in the VAR literature on the effects of monetary policy: a commodity price index, M2, the federal
funds rate, real GDP, the personal consumption expenditure price index, and the unemployment rate. The
classic VAR analysis of the effects of technology shocks in Gaĺı (1999) uses two variables, labor productivity
and hours worked. One can give many other examples. As we discuss below, recently VARs have been
applied to large datasets following Bańbura et al. (2010).
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Granger-causal-priority. While Granger-causal-priority is not a new concept, we believe

that it is unfamiliar to most economists.2 Granger-causal-priority is related to the well-

known idea of Granger-noncausality, but it accounts better for the presence of variables

other than yi and yj in the VAR. In the paper we define Granger-causal-priority formally

and we describe how it differs from Granger-noncausality. Importantly, we explain why it

is Granger-causal-priority that is tightly linked with variable choice in VARs.

The key point is that Granger-causal priority is central to sufficiency results for variable

choice in VARs. If yi is Granger-causally-prior to yj , the forecasts of yi obtained from a

VAR with all variables y are equal to the forecasts of yi obtained from a smaller VAR that

omits yj . In this sense yj does not belong in the VAR to be used to predict yi. Furthermore,

we show that if yi is Granger-causally-prior to yj and an additional assumption holds, the

impulse response of yi to a structural shock of interest obtained from a VAR with all

variables y is equal to the impulse response of yi to that shock obtained from a smaller

VAR that omits yj . In this sense yj does not belong in the VAR to be used to compute

impulse responses of yi to structural shocks.

In practice, based on a finite sample, we cannot know if yi is Granger-causally-prior to yj .

We need tools for inference. We adopt the Bayesian approach to inference, in part because

Bayesian VARs are popular in empirical work. As Bayesians, we can infer the probability

that yi is Granger-causally-prior to yj given data. Furthermore, we can make an optimal

decision, i.e., choose variables optimally, given data. We begin by working out a closed-form

expression for the posterior probability of a Granger-noncausality restriction assuming that

the VAR is Gaussian and the prior is conjugate.3 We then derive a closed-form expression

for the posterior probability that yi is Granger-causally-prior to yj . This result is important,

because it implies that a researcher can evaluate the posterior probability of Granger-causal-

priority quickly and accurately. Finally, we illustrate how after specifying a loss function,

a researcher can make an optimal variable choice, i.e., the variable choice minimizing the

posterior expected loss.

“Evaluating the posterior probability that yi is Granger-causally-prior to yj” is the same

thing as “comparing the marginal likelihoods of VAR models of y with and without the re-

2The concept of Granger-causal-priority appears in unpublished work by Sims (2010) and Doan and Todd
(2010).

3We also assume that the prior in the VAR with a Granger-noncausality restriction is consistent with the
prior in the unrestricted VAR, in a sense that we make precise.
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striction that yi is Granger-causally-prior to yj .” As an alternative approach to variable

choice in VARs, one can imagine eschewing marginal likelihood and computing the pre-

dictive density score of yi implied by different VARs. In the paper we compare the two

approaches conceptually.

To see how the methodology that we propose works, we investigate which variables

belong in a quarterly VAR with real GDP, the price level, and the short-term interest rate.

We perform the exercise twice, for the United States and for the euro area. In each exercise

we consider thirty-eight macroeconomic and financial variables. The findings turn out to

be remarkably similar between the United States and the euro area. Both in the United

States and in the euro area we find that the following variables are most likely to belong in

the VAR with real GDP, the price level, and the short-term interest rate: (i) survey-based

indicators of economic sentiment and activity, (ii) a component of real GDP, the change in

inventories, (iii) interest rates on government debt and private debt, and (iv) the price of

oil.

We do not intend to argue that variable choice must occur formally in each application

of VARs. We do want to suggest that: (i) variable choice can occur formally in a straight-

forward way, and (ii) even when choice of variables is informal, it is useful to know what

assumptions are implicit and to what extent these assumptions are supported by the data.

Moreover, we think that the question which variables to include in a macroeconomic time

series model became more important after the financial crisis of 2008-2009.4

Our work makes contact with several strands of literature.

An important line of research is concerned with fitting linear time series models (VARs,

factor models, and factor-augmented VARs) to large datasets.5 We do not deprecate this

line of research and we see our work as complementary. We believe that in some situations it

is attractive to fit a VAR to a subset of the variables in one’s dataset. The reason, we think,

is that most economists prefer using the minimal means to get their points across, and most

audiences and readers want to understand in simplest possible terms “where results come

from.” This reason explains why most applications of VARs involve variable choice.

In Bayesian statistics there is a controversy over whether or not to engage in model

choice, and variable choice is an instance of model choice. There is also a related disagree-

4This point is made by Sims (2013) who argues that “we don’t have a standard list of variables” now.
5See, e.g., Bańbura et al. (2010) in the case of VARs, Forni et al. (2000) and Stock and Watson (2002)

in the case of factor models, and Bernanke et al. (2005) in the case of factor-augmented VARs.
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ment about whether point-null hypothesis testing is worthwhile. We agree with Robert

(2001) who argues in favor of model choice and variable choice as well as in favor of point-

null hypothesis testing, though we are aware that others, cited by him, are skeptical.6

The methodology that we propose can guide the development of dynamic stochastic

general equilibrium (DSGE) models.7 For example, a vast literature extends the simple

New Keynesian model by adding one variable or multiple variables. By “the simple New

Keynesian model” we mean the well-known three-equation DSGE model that makes pre-

dictions about output, the price level (or inflation), and the short-term interest rate. We

choose the same three variables as the variables of interest (i.e., as the elements of yi) when

we apply our methodology to data. Our findings suggest that if a researcher is interested

in explaining the dynamics of output, the price level, and the short-term interest rate, then

adding to the simple New Keynesian model survey data on expectations, inventories, in-

terest rates on government debt and on private debt, or the price of oil is most likely to

improve that model. The same findings can also be helpful to a researcher who wants to

fit a statistical model that is computationally demanding – and therefore must be fit to at

most a medium-sized dataset – and asks which variables will be most useful in that model.

The literature on fundamentalness, initiated by Hansen and Sargent (1991) and Lippi

and Reichlin (1993), studies if structural shocks are fundamental, i.e., if one can obtain

structural shocks from current and past values of data. In this literature it is known

that failure to include in a VAR a variable that Granger-causes the included variables

is a sufficient condition for nonfundamentalness. See Giannone and Reichlin (2006) and

Forni and Gambetti (2012). The methodology that we develop identifies the minimal set of

variables sufficient to eliminate this kind of nonfundamentalness.

The analytical expression for the posterior probability of a Granger-noncausality re-

striction that we derive is of independent interest. Since Granger (1969) and Sims (1972)

there has been a significant interest in testing Granger-noncausality and, since Sims (1980),

often in VARs. Tests of Granger-noncausality have been performed using the frequentist

likelihood ratio test, even in Bayesian VARs, or using the Schwarz criterion which gives

6One alternative to model choice is model averaging. While we do not engage in model averaging in
this paper, a researcher interested in model averaging will find useful the closed-form expressions for the
posterior probability of Granger-noncausality and the posterior probability of Granger-causal-priority that
we derive.

7An important application of VARs in macroeconomics has been to guide the development of DSGE
models. See, e.g., Christiano et al. (2005) and Altig et al. (2011).
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only an asymptotic approximation to a Bayesian test.8 The properties of the likelihood

ratio test of a zero restriction in a Bayesian VAR with an informative prior are unclear.

Formal Bayesian tests have been possible in principle, though essentially unused in prac-

tice because they require cumbersome Monte Carlo.9 Our analytical result allows to test

Granger-noncausality in a standard Bayesian VAR without resorting to Monte Carlo.10

A growing literature initiated by George et al. (2008) studies Bayesian VARs with zero

restrictions that are a priori independent across coefficients. By contrast, we are concerned

with zero restrictions that apply to appropriate sets of coefficients. Furthermore, this litera-

ture aims at inference using a set of VARs with many different patterns of zero restrictions,

via model averaging, whereas we are interested in variable choice.

Section 2 defines Granger-causal-priority and explains the relationship between Granger-

causal-priority and the two questions that we study in this paper. Section 3 derives a

closed-form expression for the posterior probability of Granger-noncausality in a Gaussian

VAR with a conjugate prior. Section 4 shows how to evaluate the posterior probability

of Granger-causal-priority. In Section 5 we apply the methodology to data. Section 6

discusses the concept of marginal likelihood, central to our methodology, comparing it with

the predictive density score and with two other objects. Section 7 concludes.

2 Relation between Granger-causal-priority and choice of vari-

ables

This section defines Granger-causal-priority and explains the relationship between Granger-

causal-priority and the two questions that we study in this paper.

Throughout the paper we assume that the set of variables y follows a VAR:

y(t) = γ +B(L) y(t− 1) + u(t), (1)

where y(t) denotes y in period t = 1, ..., T , γ is a constant term, B(L) is a matrix polynomial

8For instance, Cushman and Zha (1997) use the likelihood ratio test and Maćkowiak (2007) uses the
Schwarz criterion. Both papers use Bayesian VARs.

9For example, one can use the Gibbs sampler developed by Waggoner and Zha (2003) to sample from
the posterior density of the parameters of a VAR with a Granger-noncausality restriction and then use the
method of Chib (1995) to compute from the Gibbs output the marginal likelihood implied by that VAR.

10Zha (1999) studies Bayesian inference in a structural VAR with recursive restrictions, but he does not
consider testing such restrictions.
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in the lag operator of order P − 1, P ≥ 1, and u(t) is a Gaussian vector with mean zero

and variance-covariance matrix Σ conditional on y(t− s) for all s ≥ 1. We denote with N

the number of variables in y.

In this section we assume that the parameters of this data generating process are known,

i.e., the values of γ, B(p) for all p = 1, ..., P , and Σ are known. In the subsequent sections

we consider inference. We then assume that a dataset with T + P observations of y is

available.

2.1 Granger-noncausality and Granger-causal-priority

Before defining Granger-causal-priority, it is helpful to recall the related, familiar concept

of Granger-noncausality. Granger (1969) proposed that a variable z causes a variable x if

the variable z helps predict the variable x. He formalized this idea in terms of the variance

of the prediction error one period ahead. We state Granger’s definition in the way in which

it has been used in the VAR literature. Consider yi and yj , non-overlapping subvectors of

y.

Definition 1 Granger-noncausality: In the VAR given in equation (1), yj does not

Granger-cause yi if the coefficients on all lags of yj in the equations with yi on the left-hand

side are equal to zero, Bij(L) = 0.

The likelihood ratio test, which relies on an asymptotic χ2 statistic, is a well-known

frequentist test of the restriction Bij(L) = 0.11 In Section 3 we show how a Bayesian

econometrician can evaluate the posterior probability of this restriction in a simple way.

Let us turn to Granger-causal-priority. The next definition, which we think is unfamiliar

to most economists, appears in unpublished work by Sims (2010) and Doan and Todd (2010).

Definition 2 Granger-causal-priority: In the VAR given in equation (1), yi is Granger-

causally-prior to yj if it is possible to partition all the variables in y into two subsets, y1

and y2, such that yi ⊆ y1, yj ⊆ y2, and y2 does not Granger-cause y1.

11See, e.g., Hamilton (1994), Chapter 11.
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This definition states that yi is Granger-causally-prior to yj in VAR (1) if the VAR has

the following recursive form:

yi →

yj →

y1(t)

y2(t)

 =

γ1

γ2

+

B11(L) B12(L)

B21(L) B22(L)

y1(t− 1)

y2(t− 1)

+

u1(t)

u2(t)


with B12(L) = 0.

(2)

Granger-causal-priority requires a stronger restriction than Granger-noncausality. If

there are other variables in y in addition to yi and yj , the set of coefficients in Bij(L)

is a strict subset of the set of coefficients in B12(L). In the special case when y consists

only of yi and yj , the two restrictions are equivalent. Consider an example. Suppose that

y = {x,w, z}, x, w, and z are scalars, yi = x, yj = z, and y follows the VAR


x(t)

w(t)

z(t)

 =


Bxx Bxw Bxz

Bwx Bww Bwz

Bzx Bzw Bzz



x(t− 1)

w(t− 1)

z(t− 1)

+ u(t).

If Bxz = 0, x(t + 1) = Bxxx(t) + Bxww(t) + u1(t + 1) and thus z does not Granger-cause

x. However, x(t + 2) = . . . + BxwBwzz(t) + . . ., i.e., the two-period-ahead forecast of

x depends on the current value of z so long as BxwBwz 6= 0. If BxwBwz 6= 0, z helps

predict x two periods ahead indirectly, through the effect of z on the third variable in the

system, w.12 To account for indirect effects, Dufour and Renault (1998) refine Granger’s

definition by defining Granger-noncausality at a horizon h ≥ 1. In their terminology, z does

not Granger-cause x at horizon h = 2 if Bxz = 0 and BxwBwz = 0. Dufour and Renault

show that Granger-causal-priority, which they call “the separation condition,” is a sufficient

condition for Granger-noncausality at all horizons. In our example, x is Granger-causally-

prior to z if either Bxz = Bxw = 0 or Bxz = Bwz = 0. In either case, our example VAR

becomes recursive as in equation (2) with x ⊆ y1 and z ⊆ y2. Dufour and Renault also find

a necessary-and-sufficient condition for Granger-noncausality at all horizons in a VAR of

any dimension. This condition is very complex and thus difficult to test in practice.

Next, we explain how Granger-causal-priority informs the two questions that we study

in this paper.

12This point is made by Lütkepohl (1993).
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2.2 Granger-causal-priority and forecasting yi with a VAR that omits yj

Consider a researcher who wants to predict yi. The following result is available.13 Suppose

that yi is Granger-causally-prior to yj , i.e., there exists an appropriate partition of y into

y1 and y2 with B12(L) = 0. Then the forecasts of yi obtained with VAR (1) are equal at all

horizons to the forecasts of yi obtained with the VAR

y1(t) = γ1 +B11(L) y1(t− 1) + u1(t), (3)

where the variance-covariance matrix of u1(t) is Σ11, the appropriate submatrix of Σ. By

“the forecasts are equal” we mean that, for given parameters γ, B(p) for all p = 1, ..., P ,

and Σ and for given data y(t − P + 1), ..., y(t), the predictive density of yi(t + h) for any

horizon h ≥ 1 implied by model (2) is equal to the predictive density of yi(t + h) implied

by model (3). Consequently, any point forecasts are also equal.14

This result has the following implication for variable choice. If yi is Granger-causally-

prior to yj , the researcher can omit yj (as well as all other variables in y2) from the VAR to

be used to forecast yi and the forecasts of yi do not change. Thus if yi is Granger-causally-

prior to yj , yj does not belong in the VAR to be used to forecast yi.

Let us emphasize that to justify omitting yj we need Granger-causal-priority; Granger-

noncausality does not suffice. Granger-noncausality, i.e., Bij(L) = 0 in model (1), does

not imply that the forecasts of yi obtained with model (1) are equal to the forecasts of yi

obtained with a smaller VAR that omits yj except in the following two special cases: (i) if

y consists only of yi and yj ,
15 or (ii) if we want to forecast yi only one period ahead.

Suppose that yi is not Granger-causally-prior to yj . Recall that Granger-causal-priority

of yi to yj is a sufficient condition for yj not to affect the forecasts of yi at any horizon; it

is not a necessary condition. Therefore, the absence of Granger-causal-priority of yi to yj

does not imply that yj must affect the forecasts of yi. Since testing the necessary condition

is difficult, we think that a simple and prudent rule is to include yj in the VAR to be used

to forecast yi.

13The proof is straightforward.
14In this section we assume that the parameters of the data generating process are known. Below we

discuss intuitive priors implying that the posterior predictive density of yi(t+h) (i.e., the predictive density
that incorporates the uncertainty about the parameters) is the same in model (3) as in model (2). See
Section 3.2 and Appendix B.

15Recall that in this special case Granger-noncausality is equivalent to Granger-causal-priority.
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2.3 Granger-causal-priority and impulse responses of yi from a VAR that

omits yj

Consider a researcher who wants to compute impulse responses of yi to structural shocks.

Let ε denote the structural shocks that generate the variation in y. We assume that the

researcher is interested in the impulse response of yi to a subset of the structural shocks

εk ⊂ ε. Under what conditions is the impulse response of yi to εk obtained from model (1)

equal to the impulse response of yi to εk obtained from model (3)? In a nutshell, the answer

is that in addition to Granger-causal-priority we require a particular zero restriction on the

contemporaneous impulse response of y to ε. Let us give the details.

Recursive substitution in model (1) implies that y(t) = δ + D(L)u(t), where δ is a

constant term and D(L) is a matrix polynomial in the lag operator of order infinity. We

assume that there exists a matrix C(0) such that u(t) = C(0) ε(t) and C(0)C(0)′ = Σ, where

ε(t) is a Gaussian vector with mean zero and variance-covariance matrix identity conditional

on y(t− s) for all s ≥ 1. In words, we assume that one can obtain the structural shocks ε

from current and past values of the data y. In the language of the literature initiated by

Hansen and Sargent (1991) and Lippi and Reichlin (1993), we assume that ε is fundamental

for y. We return to the issue of fundamentalness below. Given the assumption that ε is

fundamental for y, we can write the impulse response of y to ε as C(L), where C(L) is a

matrix polynomial in the lag operator of order infinity such that C(L) = D(L)C(0). The

impulse response of yi to εk is given by Cik(L), i.e., the intersection of rows i and columns

k of C(L). Corollary 1 to Proposition 1 shows under what conditions the impulse response

Cik(L) is a function only of B11(L) and Σ11 (i.e., Cik(L) is not a function of the other

elements of B(L) and Σ).

Proposition 1 Consider the VAR given in equation (1) and the impulse response of y to

ε given by C(L). Suppose that: (i) one can partition y into two subsets, y1 and y2, such

that y2 does not Granger-cause y1, and (ii) there exists a set of Nq variables yq ⊆ y1 that

respond contemporaneously only to Nq structural shocks εq ⊂ ε. Then the impulse response

of y1 to εq, C1q(L), is a function only of B11(L) and Σ11.

Proof. See Appendix A.

Proposition 1 has the following implication for variable choice.
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Corollary 1 If yi is Granger-causally-prior to yj and assumption (ii) holds with εk ⊆ εq,

the researcher can omit yj (as well as all other variables in y2) from the VAR to be used to

compute the impulse response of yi to εk and the impulse response does not change. Thus

if yi is Granger-causally-prior to yj and assumption (ii) holds with εk ⊆ εq, yj does not

belong in the VAR to be used to compute the impulse response of yi to εk.

Corollary 1 is obtained simply by setting yi ⊆ y1, yj ⊆ y2, and εk ⊆ εq in Proposition

1. Setting yi ⊆ y1 and yj ⊆ y2 in Proposition 1 means that yi is Granger-causally-prior to

yj . Setting εk ⊆ εq in Proposition 1 means that a subset of the variables in y1 of size Nq

respond contemporaneously only to Nq structural shocks including the structural shocks of

interest. The impulse response of yi to εk, Cik(L), is then a function only of B11(L) and

Σ11.

We make the following remarks about Proposition 1 and Corollary 1.

The case of Nq = N1. Let N1 denote the number of variables in y1. If Nq = N1,

Proposition 1 simplifies. In particular, if Nq = N1, by Proposition 1 we can write y(t) asy1(t)

y2(t)

 = δ +

C11(L) 0

C21(L) C22(L)

ε1(t)

ε2(t)

 , (4)

where ε1 = εq. The impulse response of y to ε, C(L), has a block of zeros corresponding

to the impulse response of y1 to ε2. In words, if y2 does not Granger-cause y1 (assumption

(i)) and y1 responds contemporaneously only to N1 structural shocks, ε1 (a special case

of assumption (ii)), y1 responds only to the N1 structural shocks ε1 at any horizon. By

Corollary 1, if yi is Granger-causally-prior to yj and the number of structural shocks that

affect y1 contemporaneously is equal to the number of variables in y1, yj does not belong

in the VAR to be used to compute the impulse response of yi to εk.

We find the assumption that Nq = N1 natural, because this assumption is related to a

standard assumption in the structural VAR literature. In the structural VAR literature, it

is standard to assume that the number of structural shocks that affect the variables being

modeled is equal to the number of the variables being modeled. For example, the typical

researcher who computes impulse responses from a VAR with N1 variables, like model (3),

assumes that the variation in y1 is generated by N1 structural shocks.16

16This assumption is seldom explicit in the structural VAR literature. In a classic paper, Sims (1986)
makes this assumption explicit when he writes in footnote 7 that his identification “requires (...) that the
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The case of Nq < N1. If Nq < N1, y1 responds to all N structural shocks, i.e.,

the impulse response of y to ε, C(L), does not have a block of zeros as in equation (4).

Nevertheless, Proposition 1 guarantees that a VAR with only N1 variables y1 suffices to

compute the impulse response of y1 to εq, C1q(L). By Corollary 1 this VAR suffices to

compute the object of interest, the impulse response of yi to εk Cik(L).

The case Nq < N1 is important because it applies among others to recursiveness, per-

haps the most popular identification approach in the structural VAR literature. Consider

the recursive identification in the classic analysis of monetary policy in Christiano et al.

(1999). Suppose that yi consists of the variable controlled directly by monetary policy (e.g.,

the short-term interest rate), all variables that enter the reaction function of the central

bank contemporaneously, and any other variables that the researcher is interested in. The

variables that enter the reaction function of the central bank contemporaneously are ordered

first, the variable controlled by monetary policy is ordered second, and the variables that

do not enter the reaction function of the central bank contemporaneously are ordered third.

Let yq denote the variables that enter the reaction function of the central bank contempo-

raneously and the variable controlled directly by monetary policy.17 Consider a variable

yj , yj /∈ yi. Does yj belong in the VAR to be used to compute the impulse response of yi

to monetary policy shocks? The recursive identification has the feature that yq responds

contemporaneously only to Nq structural shocks, where Nq denotes the number of variables

in yq. Therefore Proposition 1 applies. In particular, if yi is Granger-causally-prior to yj , yj

does not belong in the VAR to be used to compute the impulse response of yi to monetary

policy shocks under the identification of Christiano et al. (1999). The researcher can omit

yj and the impulse responses to monetary policy shocks are unaffected. Note that Granger-

causal-priority plus the recursive identification suffice. One does not have to assume that

the number of variables in the VAR match the number of structural shocks.

Identification. Typically a researcher knows a priori, e.g., based on an economic

theory, that a particular variable is necessary for identification of a structural shock that

the researcher is interested in. For instance, a researcher interested in identification of

news shocks may hold the view that an indicator of economic sentiment is necessary for

identification. We assume that if a researcher knows a priori that a variable is necessary for

identification of a structural shock that the researcher is interested in, the researcher has

number of variables in the model match the number of behavioral disturbances (...).”
17Note that yi consists of yq and any other variables that the researcher is interested in.
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included this variable in yi. Which variables are necessary for identification is application-

specific. The conditions that one needs to check in connection with identification are given

in Rubio-Ramirez et al. (2010).

Fundamentalness. Suppose that yi is not Granger-causally-prior to yj . In the lit-

erature on fundamentalness it is known that failure to include in a VAR a variable that

Granger-causes the included variables is a sufficient condition for nonfundamentalness. See,

e.g., Giannone and Reichlin (2006), Proposition 1. Therefore, if yi is not Granger-causally-

prior to yj and one omits yj from model (3), ε1 is nonfundamental for y1. Nonfundamental-

ness need not affect all structural shocks. It may happen that the impulse response of yi to

a subset of ε1 can still be computed from model (3). Nevertheless, we think that a simple

and prudent rule is to include yj in the VAR to be used to compute impulse responses of

yi.

2.4 Connecting the concept of Granger-causal-priority to data

Let us summarize the relation between Granger-causal-priority and the choice of variables.

If yi is Granger-causally-prior to yj , the forecasts of yi obtained from a VAR with all

variables y are equal to the forecasts of yi obtained from a smaller VAR that omits yj . In

this sense yj does not belong in the VAR to be used to forecast yi. Furthermore, if yi is

Granger-causally-prior to yj and an additional assumption holds, the impulse response of

yi to a structural shock of interest obtained from a VAR with all variables y is equal to

the impulse response of yi to that shock obtained from a smaller VAR that omits yj . In

this sense yj does not belong in the VAR to be used to compute impulse responses of yi to

structural shocks.

The principles stated in the previous paragraph guide the choice of variables so long as

we know, for each yj ∈ yJ , if yi is Granger-causally-prior to yj or not. In reality, we cannot

know if yi is Granger-causally-prior to yj or not. As Bayesians, we can infer the probability

that yi is Granger-causally-prior to yj given data. We show how to do it in Sections 3 and

4, thereby connecting the concept of Granger-causal-priority to data.
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3 Granger-noncausality: a closed-form Bayes factor

We turn to inference. In this section we consider a Bayesian econometrician who wants

to evaluate the posterior odds in favor of a hypothesis of Granger-noncausality.18 The

posterior odds are equal to the prior odds multiplied by the Bayes factor in favor of the

hypothesis. We derive a closed-form expression for the Bayes factor in favor of Granger-

noncausality in a Gaussian VAR with a conjugate prior. This result is of independent

interest, because researchers often test Granger-noncausality. We use this result in the next

section to evaluate the posterior probability of Granger-causal-priority.

Suppose that y follows the VAR given in equation (1). Let B be the K ×N matrix of

stacked coefficients, B = (B(1), ..., B(P ), γ)′, where K = NP + 1 is the number of right-

hand side variables in each equation in the VAR. The likelihood of the data implied by this

VAR, conditional on initial observations, is

p(Y |B,Σ) = (2π)−NT/2 |Σ|−T/2 exp

(
−1

2
tr(Y −XB)′(Y −XB)Σ−1

)
,

where

Y
T×N

=


y(1)′

y(2)′

...

y(T )′

 and X
T×K

=


y(0)′ y(−1)′ . . . y(1− P )′ 1

y(1)′ y(0)′ . . . y(2− P )′ 1
...

...
...

...

y(T − 1)′ y(T − 2)′ . . . y(T − P )′ 1

 .

Consider a zero restriction on a subset of coefficients in this VAR. The restriction has

the form that in each affected equation the coefficients of the same right-hand side variables

are restricted. Formally, let α denote the indexes of a subset of the equations. Let β denote

the indexes of a subset of the right-hand side variables. Consider the restriction

Bβα = 0, (5)

where Bβα denotes the matrix consisting of the intersection of rows β and columns α of

the matrix B and 0 denotes the matrix of zeros of the same size as Bβα. Note that a

Granger-noncausality restriction is a special case of restriction (5).

18As is well known, reporting the posterior odds in favor of a hypothesis is equivalent to reporting the
posterior probability of that hypothesis.
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We turn to the specification of the prior in the unrestricted VAR and the prior in the

restricted VAR.

3.1 Unrestricted VAR: conjugate prior and posterior

Let ωU denote the unrestricted VAR. We assume that the prior density of B and Σ in the

unrestricted VAR, p(B,Σ|ωU ), is conjugate and proper:

p(B,Σ|ωU ) ∝ |Σ|−(ν̃+K+N+1)/2 exp

(
−1

2
tr(Ỹ − X̃B)′(Ỹ − X̃B)Σ−1

)
, (6)

where ν̃ > N − 1, Ỹ and X̃ are hyperparameters of appropriate dimensions, and X̃ ′X̃ and

Ỹ ′(I − X̃(X̃ ′X̃)−1X̃ ′)Ỹ are nonsingular. Note that the standard prior used in the VAR

literature, the prior of Sims and Zha (1998) consisting of a modified Minnesota prior and

additional dummy observations, is a special case of prior (6).

Expression (6) is a kernel of a normal-inverted-Wishart density. It is straightforward to

show that

p(B,Σ|ωU ) = p(B|Σ, ωU )p(Σ|ωU ) = N
(

vec B̃,Σ⊗ Q̃
)
IW

(
S̃, ν̃

)
, (7)

where N denotes the multivariate normal density, IW denotes the inverted Wishart density,

B̃ = (X̃ ′X̃)−1X̃ ′Ỹ , Q̃ = (X̃ ′X̃)−1, and S̃ = (Ỹ − X̃B̃)′(Ỹ − X̃B̃).

Furthermore, the posterior density of B and Σ, p(B,Σ|Y, ωU ), satisfies

p(B,Σ|Y, ωU ) = p(B|Σ, Y, ωU )p(Σ|Y, ωU ) = N
(
vec B̄,Σ⊗ Q̄

)
IW

(
S̄, ν̄

)
, (8)

where

B̄ =
(
X̄ ′X̄

)−1
X̄ ′Ȳ , Q̄ =

(
X̄ ′X̄

)−1
, S̄ = (Ȳ − X̄B̄)′(Ȳ − X̄B̄),

X̄ =

X̃
X

 , Ȳ =

Ỹ
Y

 , and ν̄ = ν̃ + T.
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3.2 Prior in the restricted VAR

Let ωR denote the restricted VAR. Let B(βα) denote the vector collecting all coefficients in

B other than the coefficients in Bβα. We assume that the prior density of B(βα) and Σ in

the restricted VAR, p(B(βα),Σ|ωR), satisfies

p(B(βα),Σ|ωR) = p(B(βα),Σ|ωU , Bβα = 0). (9)

Equation (9) states that the prior in the restricted model is equal to the prior in the

unrestricted model conditional on the restriction. We think that assumption (9) is the

most natural assumption one can make concerning the prior in model ωR given a prior in

model ωU . Consider a researcher who holds prior p(B,Σ|ωU ). Suppose that this researcher

obtains a new piece of information: the researcher learns that Bβα = 0. Following the

rules of probability, the researcher will update his or her prior precisely using equation (9).

In addition to having this intuitive appeal, assumption (9) helps us derive a closed-form

expression for the Bayes factor in favor of Granger-noncausality. See Section 3.3. We do not

see how one can derive a closed-form expression for this Bayes factor without assumption

(9).

The prior density in the restricted VAR defined in equation (9), p(B(βα),Σ|ωR), is a con-

ditional density of the normal-inverted-Wishart density p(B,Σ|ωU ). While p(B(βα),Σ|ωR)

itself is not normal-inverted-Wishart, some marginal densities of p(B(βα),Σ|ωR) are normal-

inverted-Wishart and have intuitive properties. As an example, Appendix B shows that

the marginal density of the parameters of the equations indexed by α (i.e., the restricted

equations) is normal-inverted-Wishart. Furthermore, this density’s intuitive properties are

pointed out. In particular, suppose that model ωR is a VAR with Granger-causal-priority

given in equation (2) with a prior satisfying equation (9). Then the posterior predictive

density of y1 in model (2) is the same as the posterior predictive density of y1 in model (3)

with a standard prior.

3.3 Closed-form Bayes factor

We are ready to state and prove the main result of this section: The Bayes factor in favor

of restriction (5) can be expressed in closed-form.

Let p(Y |ωR) denote the marginal likelihood of the data implied by the restricted model
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ωR. Let p(Y |ωU ) denote the marginal likelihood of the data implied by the unrestricted

model ωU .

Proposition 2 The Bayes factor in favor of model ωR, defined in expressions (1), (5), and

(9), relative to model ωU , defined in expressions (1) and (6), is given by

p(Y |ωR)

p(Y |ωU )
=

ΓNα

(
ν̄−N(α)+Kβ

2

)
ΓNα

(
ν̄−N(α)

2

) ΓNα

(
ν̃−N(α)

2

)
ΓNα

(
ν̃−N(α)+Kβ

2

)

×

∣∣∣S̄αα∣∣∣ ν̄−N(α)
2

∣∣∣(Q̄ββ)−1
∣∣∣Nα2 ∣∣∣S̄αα + B̄′βα(Q̄ββ)−1B̄βα

∣∣∣− ν̄−N(α)+Kβ

2

∣∣∣S̃αα∣∣∣ ν̃−N(α)
2

∣∣∣(Q̃ββ)−1
∣∣∣Nα2 ∣∣∣S̃αα + B̃′βα(Q̃ββ)−1B̃βα

∣∣∣− ν̃−N(α)+Kβ

2

, (10)

where Nα is the number of the restricted equations, N(α) is the number of the unrestricted

equations, Kβ is the number of the right-hand side variables whose coefficients are re-

stricted, and ΓN (·) denotes the multivariate gamma function of dimension N , ΓN (z) =

πN(N−1)/4
∏N
j=1 Γ (z + (1− j)/2).

Proof. Step 1a: Given equation (7), the marginal prior density of B is matricvariate

Student, which implies that the marginal prior density of Bβα is also matricvariate Student.

Step 1b: Given equation (8), the marginal posterior density of B is matricvariate Student,

which implies that the marginal posterior density of Bβα is also matricvariate Student. Steps

1a-1b as well as the parameters of the two densities of Bβα follow directly from Bauwens

et al. (1999), Appendix A.2.7. Step 2: The Savage-Dickey result of Dickey (1971) implies

that if the prior in the restricted model ωR satisfies condition (9), the Bayes factor in favor

of the restricted model ωR relative to the unrestricted model ωU is equal to the ratio of the

marginal posterior density of Bβα evaluated at Bβα = 0 to the marginal prior density of

Bβα evaluated at Bβα = 0. Therefore, equation (10) is obtained as the ratio of the marginal

posterior density of Bβα from Step 1b evaluated at Bβα = 0 to the marginal prior density

of Bβα from Step 1a evaluated at Bβα = 0.19

Given Proposition 2, a researcher who wants to evaluate the posterior odds in favor of

the hypothesis of Granger-noncausality can proceed as follows: (i) specify the prior odds

19Thus there is no need to evaluate any density implied by the restricted model ωR; only the two densities
associated with the unrestricted model ωU , the marginal prior and the marginal posterior density of Bβα,
need to be evaluated.
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in favor of model ωR relative to model ωU ; it is common to specify the prior odds to be

uninformative, i.e., the prior odds equal to one; (ii) use equation (10) to compute the Bayes

factor in favor of model ωR relative to model ωU ; and (iii) multiply the prior odds by the

Bayes factor to obtain the posterior odds. The posterior odds in favor of model ωR relative

to model ωU are the posterior odds in favor of the Granger-noncausality restriction.

In the next section we use Proposition 2 to evaluate the posterior probability of Granger-

causal-priority.

4 Posterior probability of Granger-causal-priority

In this section we derive a closed-form expression for the posterior probability that yi is

Granger-causally-prior to yj .

In Section 3 we evaluated the posterior probability of Granger-noncausality conditional

on the set of models with two elements, the restricted model ωR and the unrestricted

model ωU . By contrast, evaluating the posterior probability of Granger-causal-priority is

complicated by the fact that there are multiple partitions of y consistent with Granger-

causal-priority of yi to yj . In other words, there are multiple restricted models consistent

with Granger-causal-priority of yi to yj .
20 Here we propose to evaluate the posterior proba-

bility of Granger-causal-priority conditional on the set of models Ω. Let us define Ω, explain

how to evaluate the posterior probability of Granger-causal-priority conditional on Ω, and

discuss why it is sensible to evaluate the posterior probability of Granger-causal-priority

conditional on Ω.

Definition 3 Let Ω be the set of models such that: (i) each model in Ω is a VAR of the

form given in equation (1), (ii) Ω includes the unrestricted VAR, (iii) Ω includes all VARs

with the restriction B12(L) = 0 for some partition of y into two subsets, y1 and y2, such

that yi ⊆ y1.

We continue to assume as in Section 3 that the prior in the unrestricted model in Ω is

conjugate and proper, i.e., satisfies expression (6), and the prior in each restricted model in

20This is true in the realistic case when there are variables in y that belong neither to yi nor to yj . In our
example in Section 2.1 there are two partitions of y consistent with Granger-causal-priority of yi to yj , i.e.,
there are two restricted models consistent with Granger-causal-priority of yi to yj .
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Ω satisfies condition (9) for appropriate α and β. Furthermore, we assume that all models

in Ω have equal prior probabilities.21

Definition 4 Let Ωj be the subset of Ω containing all models in which yi is Granger-

causally-prior to yj.

We are ready to make the main point of this section: Evaluating the posterior probability

that yi is Granger-causally-prior to yj conditional on Ω is equivalent to evaluating the

posterior probability of Ωj conditional on Ω, p(Ωj |Y,Ω). Furthermore, p(Ωj |Y,Ω) can be

expressed in closed-form. Namely,

p(Ωj |Y,Ω) =
p(Ωj |Y )

p(Ω|Y )
=

∑
ωk∈Ωj p(ωk|Y )∑
ωl∈Ω p(ωl|Y )

=

∑
ωk∈Ωj p(Y |ωk)p(ωk)/p(Y )∑
ωl∈Ω p(Y |ωl)p(ωl)/p(Y )

=

∑
ωk∈Ωj p(Y |ωk)∑
ωl∈Ω p(Y |ωl)

=

∑
ωk∈Ωj p(Y |ωk)/p(Y |ωU )∑
ωl∈Ω p(Y |ωl)/p(Y |ωU )

. (11)

The first equality follows from the definition of conditional probability and the fact that

Ωj ⊂ Ω. The second equality follows from the definitions of Ω and Ωj . The third equality

follows from Bayes’ law. The fourth equality follows from the assumption that the prior

probability p(ω) is equal for all models; thus the terms p(ωk)/p(Y ) and p(ωl)/p(Y ) are all

equal to one another. The fifth equality follows after we divide the numerator and the

denominator by p(Y |ωU ). The final expression is a ratio of two sums of Bayes factors,

where each Bayes factor has the form given in Proposition 2. See equation (10). Thus, the

posterior probability that yi is Granger-causally-prior to yj can be expressed in closed-form.

There are two advantages of evaluating the posterior probability of Granger-causal-

priority conditional on Ω, as proposed here. First, the posterior probability of Granger-

causal-priority conditional on Ω can be expressed in closed-form. By contrast, the posterior

probability of Granger-causal-priority conditional on some other set of models may be diffi-

cult to evaluate. For example, in Section 5.4 we study one generalization of Ω as a robustness

check and this exercise is computationally very demanding. Second, Ω is defined so as to

treat the null hypothesis and the alternative hypothesis as symmetrically as possible.22 In

21It is a straightforward extension to consider the case when different models in Ω have different prior
probabilities.

22It is always important to treat the null and the alternative symmetrically. For example, it is unappealing
to specify that many models are consistent with the null, while few models are consistent with the alternative.
This amounts to tilting the inference in favor of the null.
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particular, if yj consists of a single variable (as in the empirical application in this paper),

Ωj and its complement Ω\Ωj have equal size. To see this, note that Ω contains 2NJ models,

where NJ denotes the number of variables in yJ . Furthermore, if yj consists of a single vari-

able, Ωj contains 2NJ−1 models and Ω \Ωj also contains 2NJ−1 models. Thus, if yj consists

of a single variable, evaluating the posterior probability of Granger-causal-priority amounts

to evaluating the posterior odds in favor of a subset of models against the alternative of a

subset of models of equal size.

Given equation (11) and given that yj contains a single variable, a researcher who wants

to evaluate the posterior probability that yi is Granger-causally-prior to yj proceeds as

follows. The researcher begins attaching a prior probability of 0.5 to yi being Granger-

causally-prior to yj .
23 The researcher then revises the prior belief in light of the data, via

equation (11), arriving at the posterior probability of yi being Granger-causally-prior to yj .

Let us emphasize the following standard property of posterior probability.24 Asymptot-

ically, the posterior probability that yi is Granger-causally-prior to yj converges to one if yi

is Granger-causally-prior to yj and converges to zero if yi is not Granger-causally-prior to

yj . In other words, (i) a single model in Ω has a posterior probability of one asymptotically,

and (ii) this model has in y2 all variables that yi is Granger-causally-prior to and has in y1

all variables that yi is not Granger-causally-prior to.

This property of posterior probability has an important implication. A researcher who

evaluates the posterior probability that yi is Granger-causally-prior to yj , for each yj ∈ yJ ,

asymptotically zeros in on the best model in Ω, the model with a posterior probability of

one. Let y∗1 denote y1 in this model and let y∗2 denote y2 in this model. By the properties

of Granger-causal-priority given in Section 2, the researcher can omit all variables in y∗2

from the VAR to be used to predict yi or to compute impulse responses of yi to structural

shocks.25 Furthermore, we think that a simple and prudent rule is to retain all variables in

y∗1 in the VAR to be used to predict yi or to compute impulse responses of yi to structural

shocks.26

23The prior probability is equal to 0.5 because: (i) all models in Ω are assumed to have equal prior
probabilities, and (ii) Ωj and its complement Ω \ Ωj have equal size. If either (i) or (ii) fails to hold, the
prior probability will in general be some number between one and zero other than 0.5. The prior probability
then gets updated in the same way, except that if (i) fails to hold, a trivial modification of equation (11) is
required.

24See, e.g., Fernández-Villaverde and Rubio-Ramirez (2004).
25More precisely, this decision is justified in the case of a structural VAR if an additional assumption,

assumption (ii) in Proposition 1, holds.
26We make this argument at the end of Section 2.2 in the case of reduced-form VARs and at the end of
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Finally, we comment on computation. In principle, one can evaluate p(Ωj |Y,Ω) exactly

using expression (11). However, if NJ is a large number, a present-day computer may be

too slow to calculate all sums in expression (11). In our application NJ is a large number:

NJ = 38. See Section 5. Therefore, in our application we approximate p(Ωj |Y,Ω) using the

Markov chain Monte Carlo model composition algorithm of Madigan and York (1995). In

Appendix D we explain how we implement this algorithm and assess its convergence. Here

we emphasize that this algorithm is simple, fast and converges reliably. In our application,

generating a Markov chain sufficient to produce reliable numerical approximations of all

posterior probabilities, i.e., p(Ωj |Y,Ω) for all yj ∈ yJ , takes about one hour on a standard

personal computer.

5 Application

This section applies our methodology to data. In Section 5.1 we define y, yi, and yJ in

the data. We then state our prior (Section 5.2). In Section 5.3 we evaluate the posterior

probability that yi is Granger-causally-prior to yj , for each yj ∈ yJ in the data, using the

methodology from Section 4. From the previous discussion, we know what would happen

if we used this methodology asymptotically : The posterior probability that yi is Granger-

causally-prior to yj would be equal to either one or zero for each yj . We could then use

the posterior probabilities and the properties of Granger-causal-priority stated in Section 2

to make a decision about variable choice. What are we to do if we use this methodology

in a finite sample? One possibility is to make a decision informally using the results of

Section 5.3. For instance, one can rank yj ’s according to the posterior probability that yi

is Granger-causally-prior to yj and one can stipulate that a given yj belongs in the VAR

with yi so long as this yj is sufficiently well placed in the ranking; otherwise this yj is to

be omitted. Another possibility is to make a decision formally following Bayesian decision

theory. This requires specifying a loss function, i.e., a function that assigns a numerical

loss to every combination of actual variable choice and the correct variable choice, and

minimizing the posterior expected loss.27 We pursue this approach in Section 5.4. We

specify a loss function and choose a set of variables by minimizing the posterior expected

Section 2.3 in the case of structural VARs.
27By the “correct variable choice” we mean the choice one would make in the case when one knew if yi is

Granger-causally-prior to yj or not, for each yj ∈ yJ (as opposed to having to infer from data the probability
that yi is Granger-causally-prior to yj).
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loss. Section 5.5 reports root mean squared errors of point forecasts and gives an example

of impulse responses. Section 5.6 summarizes the general lessons from Section 5.

5.1 Data: defining y, yi, and yJ

We put together two datasets, one for the euro area and one for the United States. Each

dataset has three variables of interest (i.e., in each dataset yi has three elements) and thirty-

eight other variables (i.e., in each dataset yJ has thirty-eight elements). Table 1 lists all

variables.

The variables of interest (i.e., the elements of yi) are: a measure of real output, a measure

of the price level, and a measure of the short-term interest rate. We motivated this choice in

Section 1. In particular, in the euro area exercise we use real gross domestic product (GDP),

the harmonized index of consumer prices (HICP), and the overnight interbank interest rate

Eonia. In the U.S. exercise we use real GDP, the consumer price index (CPI), and the

federal funds rate.

In the euro area exercise the other variables (i.e., the elements of yJ) are: U.S. real GDP,

the U.S. consumer price index, the federal funds rate, and thirty-five euro area variables

listed in the next paragraph. In the U.S. exercise the other variables are: euro area real

GDP, the HICP for the euro area, the Eonia, and thirty-five U.S. variables listed in the

next paragraph.

The thirty-five variables are: (i) components of real GDP (consumption, government

consumption, investment, exports, imports, change in inventories); (ii) labor market vari-

ables (unit labor cost, employment, unemployment rate, hours worked); (iii) interest rates

(2-year and 10-year government bond yields, spread between corporate bonds rated BBB

with maturity 7-10 years and government bonds with the same maturity, lending rate to

non-financial corporations, mortgage interest rate); (iv) monetary aggregates (M1, M2, M3);

(v) credit aggregates (government debt, loans for house purchase, consumer loans, loans to

non-financial corporations); (vi) exchange rates (nominal exchange rate between the U.S.

dollar and the euro, nominal effective exchange rate); (vii) commodity prices and other

price indexes (oil price, index of commodity prices, consumer price index excluding energy

and food, producer price index); (viii) housing market variables (house price index, real

housing investment); (ix) stock market variables (stock index, stock volatility index); (x)

survey-based indicators of economic activity and sentiment (capacity utilization, consumer
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Table 1: Variable names, units and transformations

Variable Units Transformations

Euro area real GDP real currency units∗ SA log
Euro area HICP index SA log
Eonia percent
U.S. real GDP real currency units∗ SA log
U.S. CPI index SA log
Federal funds rate percent
Real consumption real currency units∗ SA log
Real government consumption real currency units∗ SA log
Real investment real currency units∗ SA log
Real exports real currency units∗ SA log
Real imports real currency units∗ SA log
Change in real inventories percent of real GDP SA
Unit labor cost index SA
Employment thousands of people SA log
Unemployment rate percent SA
Hours worked (U.S. only) hours SA log
2-year government bond yield percent
10-year government bond yield percent
Corporate bond spread percent
Lending rate to NFCs percent
Mortgage interest rate percent
M1 nominal currency units† SA log
M2 nominal currency units† SA log
M3 (euro area only) nominal currency units† SA log
Government debt nominal currency units‡ SA log
Loans for house purchase nominal currency units† SA log
Consumer loans nominal currency units† SA log
Loans to NFCs nominal currency units† SA log
Dollar-euro exchange rate dollars per euro log
Nominal effective exchange rate index log
Oil price dollar per barrel log
Commodity prices index log
Consumer prices excl. energy, food index SA log
Producer prices index SA log
House prices index SA log
Real housing investment real currency units∗ SA log
Stock index index log
Stock volatility index percent log
Capacity utilization percent SA
Consumer confidence index SA
Industrial confidence index SA
Purchasing managers’ index index SA

Notes: ∗Euro area: chained 2005 euros; United States: chained 2000 dollars. † Euro area: nominal
index; United States: dollars. ‡Euro area: euros; United States: dollars.
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confidence, industrial confidence, purchasing managers’ index).28

The main sample contains quarterly data from 1999Q1 to 2012Q4. In the euro area

exercise we decided to use data from 1999Q1, because this is when the monetary union

started operating. We then decided to use the same period in the U.S. exercise, for the sake

of comparability. In addition, we used a training sample in each exercise, as discussed in

the next subsection.

5.2 Prior

The prior in the unrestricted model, i.e., in model ωU ∈ Ω, consists of two pieces: (i) an

initial prior formulated before seeing any data, and (ii) a training sample prior. Formally,

matrices Ỹ and X̃ in expression (6) have the form

Ỹ =

YSZ
Yts

 , X̃ =

XSZ

Xts

 , (12)

and ν̃ = νSZ + Tts, where YSZ , Yts, XSZ , Xts, νSZ , and Tts are defined next. Given this

prior, the prior in each restricted model, i.e., in each model ωR ∈ Ω, is defined by equation

(9). The initial prior is the prior of Sims and Zha (1998), the standard prior used in the

VAR literature, implemented by means of dummy observations YSZ and XSZ . The training

sample prior is implemented with data from the training sample, 1989Q1-1998Q4, collected

in matrices Yts and Xts. Tts is equal to the number of periods in the training sample minus

the number of lags, P .29

To choose the values of the hyperparameters controlling the prior of Sims and Zha

(1998) we pursued an approach common in Bayesian econometrics: We searched for the

hyperparameter values that maximize the marginal likelihood implied by model ωU in the

training sample. The hyperparameter values we found were close to the hyperparameter

28Due to data availability, we include hours worked only for the United States and we include M3 only for
the euro area. The variables oil price and index of commodity prices are the same variables in the euro area
exercise and in the U.S. exercise. We use the Dow Jones Euro STOXX index and the Dow Jones Industrial
Average as the variable stock index in the euro area and in the United States, respectively. We use the
VSTOXX (spliced with the VIX before the year 2000) and the VIX as the variable stock volatility index in
the euro area and in the United States, respectively. The source of all data is the database of the ECB. The
data are available from the authors upon request.

29We found that adding this training sample improved the marginal likelihood implied by the unrestricted
model in the sample 1999Q1-2012Q4 compared with using only the prior of Sims and Zha (1998), both in
the euro area exercise and in the U.S. exercise.
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values used by Sims and Zha and common in the VAR literature. Appendix C discusses

the prior in detail and reports the hyperparameter values. Below we refer to the prior with

these hyperparameter values as the “baseline.” We also report how our findings change as

we vary the hyperparameter values.

5.3 Evaluating the probability of Granger-causal-priority

Table 2 reports the posterior probability that yi (output, the price level, and the short-term

interest rate) is Granger-causally-prior to a given yj , for each yj ∈ yJ , in the euro area (left

column) and in the United States (right column).30 Three main findings are evident:

(1) The posterior probability of Granger-causal-priority is close to zero for: (i) the change

in inventories, (ii) survey-based indicators of economic sentiment (industrial confidence

and consumer confidence), (iii) survey-based indicators of economic activity (purchasing

managers’ index in the euro area; purchasing managers’ index and capacity utilization in

the United States), (iv) interest rates on government debt and on private debt (the yield

on 2-year government bonds and the lending rate to non-financial corporations in the euro

area; the corporate bond spread, the yield on 2-year government bonds, and the lending

rate to non-financial corporations in the United States), and (v) the price of oil.31

(2) The posterior probability of Granger-causal-priority is close to one for the dollar-euro

exchange rate, house prices, loans for house purchase, and government debt.32

(3) The findings are remarkably similar between the euro area and the United States.

The variables at the top of Table 2 are essentially the same variables in the euro area and in

the United States. The variables at the bottom of Table 2 are essentially the same variables

in the euro area and in the United States. The rank correlation between the posterior

probabilities in the euro area exercise and in the U.S. exercise is 0.73.

Let us note two additional findings apparent from Table 2. First, no monetary aggregate

30Table 2 reports the findings obtained with one lag, i.e., P = 1. We chose to focus on the case P = 1
because the marginal likelihood implied by models in Ω was much higher with P = 1 than with any P > 1.
See also Appendix C. Below we report how our findings change as we vary the number of lags, i.e., as we
vary the value of P .

31The posterior probability of Granger-causal-priority is also close to zero for investment, exports, and
imports in the euro area and for the unemployment rate and the Eonia in the United States. By “close to
zero” we mean “smaller than 0.1.”

32The posterior probability of Granger-causal-priority is also close to one for the nominal effective exchange
rate, the consumer price index excluding energy and food, and the stock index in the euro area and for
consumer loans, housing investment, and M2 in the United States. By “close to one” we mean “larger than
0.9.”
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Table 2: Posterior probability that output, price level, and short-term interest rate are
Granger-causally-prior to a variable

Euro area United States
Variable Prob. Rank Variable Prob.

Change in inventories 0.00 1 Oil price 0.00
Industrial confidence 0.00 2 Industrial confidence 0.00
Purchasing managers’ index 0.00 3 Corporate bond spread 0.00
2-year government bond yield 0.02 4 Change in inventories 0.01
Oil price 0.02 5 2-year government bond yield 0.01
Lending rate to NFCs 0.04 6 Purchasing managers’ index 0.02
Investment 0.06 7 Capacity utilization 0.02
Exports 0.06 8 Unemployment rate 0.02
Imports 0.09 9 Eonia 0.04
Consumer confidence 0.10 10 Consumer confidence 0.04
Corporate bond spread 0.15 11 Lending rate to NFCs 0.06
Consumption 0.17 12 Hours worked 0.11
Mortgage interest rate 0.19 13 Mortgage interest rate 0.15
Unit labor cost 0.20 14 10-year government bond yield 0.15
Housing investment 0.21 15 Consumption 0.19
Unemployment rate 0.26 16 Investment 0.21
Employment 0.27 17 Euro area GDP 0.22
Federal funds rate 0.34 18 Producer prices 0.24
Capacity utilization 0.38 19 Employment 0.34
Producer prices 0.48 20 Imports 0.38
U.S. consumer prices 0.57 21 Stock index 0.49
10-year government bond yield 0.63 22 Nominal effective exchange rate 0.58
Government consumption 0.72 23 Commodity prices 0.64
Consumer loans 0.78 24 Exports 0.68
U.S. GDP 0.80 25 Euro area consumer prices 0.70
Loans to NFCs 0.81 26 Stock volatility index 0.70
M1 0.81 27 Government consumption 0.74
M2 0.83 28 Unit labor cost 0.77
M3 0.86 29 M1 0.77
Stock volatility index 0.87 30 Consumer prices excl. energy, food 0.84
Commodity prices 0.88 31 Loans to NFCs 0.87
Stock index 0.94 32 M2 0.92
Consumer prices excl. energy, food 0.96 33 Government debt 0.93
Nominal effective exchange rate 0.96 34 Housing investment 0.96
Government debt 0.99 35 Loans for house purchase 0.98
Loans for house purchase 0.99 36 Consumer loans 0.99
House prices 1.00 37 Dollar-euro exchange rate 0.99
Dollar-euro exchange rate 1.00 38 House prices 1.00

Note: Bold font indicates that a variable enters y1 in the best model, where “the best model” is defined in Section
5.4.
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and no credit aggregate ranks at the top of the table, either in the euro area or in the

United States. This finding stands in contrast to the result that multiple interest rates,

on government debt and on private debt, are important and rank at the top of the table.

Second, both stock market variables (the stock index and the stock volatility index) rank

in the lower half of Table 2 in the case of the euro area and in the case of the United States.

To study sensitivity of the findings reported in Table 2, we repeated the analysis in

subsamples, varied the values of the hyperparameters of the prior, and changed the number

of lags. Appendix E gives the details. Here we emphasize the main finding: The rank

correlation between the posterior probabilities in the “baseline” case (in a given column of

Table 2) and in any other specification that we considered is high. In particular, (i) this rank

correlation is always higher than the rank correlation between the posterior probabilities in

the euro area and in the United States in the “baseline” case, and (ii) the rank correlation

between the posterior probabilities in the “baseline” case and in any subsample considered

in Appendix E is higher than 0.9. In other words, the ranking of the variables is similar

across the different specifications. Consequently, the answer to the question “Is a variable

x more useful than a variable z?” is likely to be the same in the different specifications. We

think that this finding is an important indicator of robustness.

5.4 Choosing the best variables

In this subsection we specify a loss function and choose a set of variables by minimizing

the posterior expected loss. The main finding is that the variables chosen via this formal

procedure are the variables ranked at the top of Table 2, i.e., the variables associated

with lowest posterior probabilities of Granger-causal-priority. In other words, the formal

approach leads us to make the same decision about variable choice that we can make based

on the posterior probabilities of Granger-causal-priority alone, without specifying a loss

function. We think that this finding is comforting.

We assume the commonly used zero-one loss function. This loss function is simple

computationally and intuitive: A researcher with the zero-one loss function selects the

model implying the highest marginal likelihood of the data. Let ω∗ ∈ Ω denote the model

with the highest marginal likelihood. We refer to this model as “the best model.” Note that

model ω∗ will have in y1 the variables of interest (i.e., yi) and possibly one or more other

variables (i.e., possibly one or more yj ’s). We refer to any yj ’s in y1 in model ω∗ as “the
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best variables.”

We find that the best model in the euro area has in y1 the twenty variables ranked

at the top of the left column of Table 2 and listed there in bold font, from the change in

inventories to producer prices. The best model in the United States has in y1 the nineteen

variables ranked at the top of the right column of Table 2 and listed there in bold font,

from the price of oil to employment.

The best model fits the data very well. The log Bayes factor in the favor of the best

model (model ω∗) relative to the unrestricted model (model ωU ) is 42 in the euro area and

21 in the United States. See Table 3. A log Bayes factor of 42 corresponds to a posterior

odds of about 1018 to 1. A log Bayes factor of 21 corresponds to a posterior odds of about

109 to 1.

Choosing a subset of the available variables wisely improves fit, whereas choosing any

subset of the available variables can deteriorate fit. Table 3 reports the log Bayes factor,

relative to the unrestricted model, in favor of an arbitrarily chosen model with a Granger-

noncausality restriction that is very different from the Granger-noncausality restriction in

the best model. This log Bayes factor is -87 in the euro area and -91 in the United States,

indicating overwhelming evidence in favor of the unrestricted model.

Table 3: Log Bayes factors in favor of individual models in Ω relative to the unrestricted
model ωU

Euro area United States

Best model in Ω, ω∗ 42 21
Model “opposite” to ω∗ -87 -91

Note: The model “opposite” to ω∗ is constructed so that y1 in this model consists of yi and all
variables entering y2 in model ω∗.

How sensitive are the findings concerning which variables are the best variables? We

examined sensitivity in three ways. First, instead of looking only at the single best model

we considered “the set of best models” defined as all models ω ∈ Ω such that ln p(Y |ω) >

ln p(Y |ω∗) − 1, i.e., the marginal likelihood of a model in the set of best models is within

one log point of the marginal likelihood of model ω∗. The set of best models contains six

models in the euro area and fourteen models in the United States. The models in the set of

best models are very similar to each other and to model ω∗. For example, in the case of the
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United States the seventeen variables ranked at the top of the right column of Table 2 (i.e.,

from the price of oil to euro area GDP) enter y1 in each model in the set of best models.

Second, we searched for the best model in a set of models larger than Ω. Specifically, we

studied the set of models Ω̃ defined as the union of Ω and the set of models with multiple

Granger-noncausality relations imposed simultaneously.33 We were curious whether “allow-

ing for more zero restrictions” than in the set Ω would lead to much better fit and a very

different choice of variables. This turned out not to be the case. The marginal likelihood of

the best model in Ω̃ exceeds the marginal likelihood of the best model in Ω by only about

2 log points, in the euro area and in the United States. Furthermore, in the euro area the

best model in Ω̃ has in y1 the same variables as the best model in Ω; in the United States,

the best model in Ω̃ has in y1 the same variables as the best model in Ω except for one

variable.34

Third, we searched for the best model in subsamples, assuming different values of the

hyperparameters of the prior, and changing the number of lags. Appendix E gives the de-

tails. Here we summarize the findings as follows: A) In each specification that we considered

the best model has in y1 only or mainly the top ranking variables according to the posterior

probability of Granger-causal-priority. The ranking of the variables is similar across the

specifications (see the previous subsection), and thus the best model tends to include in

y1 the same variables in the different specifications. B) Assuming a prior tighter than the

“baseline” does not reverse the conclusion from the “baseline” specification that the best

model is not the unrestricted model, i.e., the best model has in y1 only a subset of the

variables in the dataset and y2 is nonempty. C) The number of variables entering y1 in the

best model varies across the specifications, from eleven to thirty-two. At the same time, we

do not find that assuming a prior tighter than the “baseline” systematically favors models

with more variables entering y1.

33Consider our example from Section 2.1. In this example, Ω includes models with a single Granger-

noncausality relation, e.g.,

Bxx 0 0
Bwx Bww Bwz
Bzx Bzw Bzz

 and

Bxx Bxw 0
Bwx Bww 0
Bzx Bzw Bzz

. Ω̃ in addition includes models

with multiple Granger-noncausality relations, e.g.,

Bxx 0 0
Bwx Bww 0
Bzx Bzw Bzz

.

34Studying Ω̃ has a serious disadvantage compared with studying Ω, because the Bayes factor for comparing
models in Ω̃ is not available in closed-form. It turns out that the computational burden increases enormously
as one switches to Ω̃ from Ω. Our exercise with Ω̃ included only seventeen variables and took several days
of computing time. The details of the exercise are in an online appendix available at http://www2.wiwi.hu-
berlin.de/bartosz/VariableChoiceOA.pdf.
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5.5 Root mean squared errors and impulse responses

This subsection reports root mean squared errors of point forecasts and gives an example

of impulse responses.

The methodology developed in this paper relies on marginal likelihood. Marginal likeli-

hood is an out-of-sample predictive density, as we discuss in the next section. Furthermore,

knowing the value of marginal likelihood is necessary and sufficient for making probability

statements about models given data. Therefore, knowing errors of out-of-sample point fore-

casts is of little additional value to Bayesians. However, reporting errors of out-of-sample

point forecasts is a common practice. This being the case, we think it is worthwhile to see

what the findings reported so far imply for errors of out-of-sample point forecasts.

We generated out-of-sample point forecasts from three different VARs. Each VAR in-

cludes yi (i.e., output, the price level, and the short-term interest rate). The VAR that we

refer to as “bottom 10” in addition to yi includes the ten variables ranked at the bottom

of Table 2, i.e., the ten variables associated with highest probabilities of Granger-causal-

priority. We expect the VAR “bottom 10” to yield bad point forecasts. The VAR “top

10” in addition to yi in includes the ten variables ranked at the top of Table 2, i.e., the

ten variables associated with lowest probabilities of Granger-causal-priority. We expect the

VAR “top 10” to yield good point forecasts. For comparison, we use the VAR “all” that

includes all variables, i.e., y. For each quarter from 1999Q1 to 2010Q4 we fitted the three

VARs to the data up to that quarter, and we generated out-of-sample point forecasts one

quarter ahead and one year ahead. We used a single lag and the “baseline” prior including

the training sample prior. We computed the point forecast as the median of the posterior

predictive density. As a benchmark, we produced analogous forecasts from the random walk

model with drift.

Table 4 reports the root mean squared errors (RMSEs) of the VAR point forecasts of

output and the short-term interest rate, relative to the RMSEs of the random-walk-with-

drift point forecasts. A number less than one indicates that a given VAR outperforms the

random walk with drift. The VAR “top 10” yields good forecasts: (i) the VAR “top 10”

typically outperforms the random walk with drift, (ii) the VAR “top 10” does about as well

as or better than the VAR “all,” and (iii) the VAR “top 10” always does better than the

VAR “bottom 10.”

We do not report RMSEs of the point forecasts of inflation. We found that the random
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walk with drift outperformed each of the VARs in the case of inflation. This is a common

finding. It is well known that during the Great Moderation the random walk with drift

beats VARs in terms of RMSEs of point forecasts of inflation. Furthermore, in the case

of inflation, the rankings of the three VARs based on the RMSEs of the point forecasts

were inconsistent across forecast horizons as well as between the euro area and the United

States. This result makes sense. When any VAR is beaten by the random walk with drift,

the least bad VAR (i.e., the VAR closest to the random walk with drift) can be a VAR with

“irrelevant” variables, like the variables in the VAR “bottom 10.”

Table 4: RMSEs of VARs relative to RMSE of random-walk-with-drift

Euro area United States

“bottom 10” “top 10” “all” “bottom 10” “top 10” “all”

One-quarter-ahead
Output 0.93 0.85 0.82 1.02 0.74 0.77
Short-term interest rate 0.97 0.70 0.75 1.04 0.79 0.79

One-year-ahead
Output 1.02 0.99 1.05 1.08 0.76 0.81
Short-term interest rate 1.14 1.04 1.36 1.09 0.95 0.97

Note: Bold font indicates the lowest RMSE for a given variable-horizon pair.

We now give an example of impulse responses. We consider the recursive identifica-

tion of monetary policy used by Christiano et al. (1999) and popular in the literature.

The variables that enter the reaction function of the central bank contemporaneously are

ordered first, the short-term interest rate (the variable controlled by monetary policy) is

ordered second, and the variables that do not enter the reaction function of the central

bank contemporaneously are ordered third. As is common, we divide our variables into

“slow-moving” and “fast-moving.” We assume that the “slow-moving” variables enter the

reaction function of the central bank contemporaneously, but do not respond to monetary

policy shocks contemporaneously, and that “fast-moving” variables do not enter the reac-

tion function of the central bank contemporaneously, but can respond to monetary policy

shocks contemporaneously. The “fast-moving” variables in our dataset are interest rates,

monetary aggregates, credit aggregates, exchange rates, and stock market variables. All

other variables that we have data on are “slow-moving”. We are not interested in whether
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this identification yields reasonable impulse responses in our sample. We do not expect this

to be the case, and searching for an identification of monetary policy that does produce

reasonable impulse responses is beyond the scope of this paper.35 We focus on the following

question. Suppose that one uses the same identification in a small VAR (i.e., a VAR with

a small subset of the variables that one has data on), a large VAR (i.e., a VAR with all

variables that one has data on), and different medium-sized VARs. Suppose also that the

impulse responses to the identified shock differ notably between the small VAR and the

large VAR. Is it true that the impulse responses in a medium-sized VAR with a wisely

chosen subset of the variables are very similar to the impulse responses in the large VAR?

We show that the answer is “yes.”

Figure 1 displays the impulse responses of selected euro area variables to a recursively

identified shock to the Eonia from four different VARs. The VAR that we refer to as

“small” includes in addition to yi commodity prices, the nominal effective exchange rate,

U.S. GDP, and the federal funds rate.36 The VAR “worst variables” is a medium-sized VAR

that includes in addition to yi the eighteen variables ranked at the bottom of Table 2 (left

column), i.e., the eighteen variables associated with highest probabilities of Granger-causal-

priority. The VAR “best variables” is a medium-sized VAR that includes in addition to yi

the twenty variables ranked at the top of Table 2 (left column), i.e., the twenty variables

associated with lowest probabilities of Granger-causal-priority. The VAR “large” includes

all variables, i.e., y. As Figure 1 shows, the impulse responses differ notably between the

VAR “small” and the VAR “large.” In particular, the VAR “small” displays the price puzzle

and permanent effects of the Eonia shock on output.37 The impulse responses in the VAR

“worst variables” are very similar to the impulse responses in the VAR “small.” Crucially,

the impulse responses in the VAR “best variables” are very similar to the impulse responses

in the VAR “large.”38 In particular, the price puzzle disappears and the effects of the Eonia

shock on output become transitory. We conclude that choosing a subset of the available

variables wisely can yield impulse responses very similar to the impulse responses from a

VAR that includes all available variables. This is an important result for a researcher with

35By “reasonable impulse responses” we mean impulse responses consistent with the intuition economists
have about how the economy reacts to a monetary policy shock.

36This choice of variables is motivated by Peersman and Smets (2003), a well-known study of the effects
of monetary policy shocks in the euro area.

37The “price puzzle,” well known in the VAR literature on monetary policy, is the tendency for the price
level to rise after what otherwise appears to be a monetary contraction.

38We obtained the same finding in the case of the United States.
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a preference for fitting a structural VAR to a subset of the variables in his or her dataset.

Figure 1: Impulse responses to a recursively identified shock to short-term interest rate,
euro area (posterior median, posterior 5th and 95th percentiles)
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5.6 Summing up

Let us conclude this section with general lessons. Evaluating the posterior probability of

Granger-causal-priority yields a ranking of the variables in one’s dataset. Furthermore, a

formal choice-of-variables procedure, based on a particular loss function, selects variables

from the top of the ranking. This finding suggests that in practice variable choice can

also occur informally, without specifying a loss function explicitly, simply by examining

the posterior probabilities of Granger-causal-priority. A researcher with a preference for a

small VAR will want to select only a few variables from the top of the ranking, whereas

a researcher who is less constrained will choose a larger subset of the ranking. Another,
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formal possibility is to specify a loss function, different from the zero-one loss function, that

explicitly incorporates a preference for a VAR of a particular size, or preferences about

other aspects of VAR specification.

6 Marginal likelihood versus other objects

The methodology developed in this paper relies on marginal likelihood. In particular, our

methodology involves comparisons of the marginal likelihood of an unrestricted VAR with

the marginal likelihoods of VARs with Granger-noncausality restrictions. See, in particular,

Proposition 2 and equation (11). In this section we compare marginal likelihood with three

other objects. We think that this will help readers understand our methodology.

As is well known, the marginal likelihood of the data Y implied by a model ω ∈ Ω can

be written as the product of one-period-ahead out-of-sample predictive densities:

p(Y |ω) = p(yi(1, ..., T ), yJ(1, ..., T )|yi(−P + 1, ..., 0), yJ(−P + 1, ..., 0), ω)

=
∏T−1

t=0
p(yi(t+ 1), yJ(t+ 1)|yi(−P + 1, ..., t), yJ(−P + 1, ..., t), ω). (13)

First, equation (13) shows that marginal likelihood measures the out-of-sample predictive

performance of a model. Hence, a high marginal likelihood of a VAR with a particular

Granger-noncausality restriction constitutes evidence that this restriction improves out-

of-sample forecasts. Second, one can rewrite equation (13) in terms of two-period-ahead

out-of-sample predictive densities, three-period-ahead out-of-sample predictive densities,

and so on. See, e.g., Geweke (2005), Section 2.6.2. Therefore marginal likelihood measures

the overall out-of-sample predictive performance of a model, at any horizon. Third, the

marginal likelihood of a model ω measures how well model ω fits all the data available to

the researcher, Y . To stress this fact, we write (yi, yJ) in equation (13) remembering that

y = (yi, yJ). We think that confronting each model with all the data is consistent with

the principle that “no information must be wasted” when one evaluates models. Fourth,

knowing the value of marginal likelihood is necessary and sufficient for making probabil-

ity statements about models given data. In other words, knowing the value of marginal

likelihood leads one to “update one’s prior” about models via Bayes’ theorem.
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An object with some popularity in the literature is the predictive density score.39 The

one-period-ahead predictive density score of yi implied by a model ω ∈ Ω is given by

g(Yi|ω, h = 1) =
∏T−1

t=0
p(yi(t+ 1)|yi(−P + 1, ..., t), yJ(−P + 1, ..., t), ω). (14)

Consider using the predictive density score of yi as a criterion for variable choice, instead

of marginal likelihood. First, the predictive density score measures the out-of-sample pre-

dictive performance of a model, like marginal likelihood. Second, the predictive density

score is specific to a given forecast horizon, h, unlike marginal likelihood. For instance,

expression (14) assumes that the forecast horizon is one period, h = 1. One obtains a

different expression and therefore a different value of the predictive density score for any

other forecast horizon h 6= 1. Hence, a methodology based on the predictive density score

of yi will yield different choices of variables for different forecast horizons. We think that

this will be a disadvantage in most contexts, because in most contexts – possibly always in

structural VARs – researchers seek findings that are general and not specific to a particular

forecast horizon.40 Third, one can compute the predictive density score of a subset of the

variables being modeled, here yi, paying no attention to prediction of the other variables,

here yJ . This feature can be seen as an advantage if the interest is in the models’ fit only

to Yi. On the other hand, we see this feature as inconsistent with the principle that “no

information must be wasted” when one evaluates models. Fourth, knowing the value of

the predictive density score of yi does not justify making probability statements given data.

The practical implication is that when one uses the predictive density score of yi, one cannot

summarize the evidence in the data by reporting posterior probabilities, as we do in Section

5.3. Furthermore, one cannot establish that a particular model is most probable given the

data, as we do in Section 5.4.

An additional important consideration is that the predictive density score is costly to

compute. Computing the predictive density score requires a loop in which for every period t

the researcher reestimates the model using the data up to period t, computes the predictive

density and evaluates it at the actually observed data point. By contrast, the marginal

likelihood of any model ω ∈ Ω can be evaluated analytically given Proposition 2.41

39See, e.g., Amisano and Giacomini (2007) and Geweke and Amisano (2011).
40Of course, sometimes researchers are interested in prediction only for a particular horizon.
41A closed-form expression for the Bayes factor in favor of any restricted model ωR ∈ Ω is given in

Proposition 2. The marginal likelihood of an unrestricted Gaussian VAR with a conjugate prior is standard
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Two other objects may seem to be possible criteria for variable choice. In the rest of

this section we argue that each object has a serious flaw.

Consider the following predictive density:

p(Yi|ω) =

∫
p(Yi, YJ |ω)dYJ

=
∏T−1

t=0
p(yi(t+ 1)|yi(−P + 1, ..., t), yJ(−P + 1, ..., 0), ω). (15)

One can think of p(Yi|ω) as the marginal likelihood of the data Y = (Yi, YJ) implied by a

model ω ∈ Ω “marginalized” with respect to YJ . The predictive density p(Yi|ω) measures

the out-of-sample fit to the data on yi assuming that no data on yJ have been observed except

for the initial observations. Note the term yJ(−P + 1, ..., 0) in equation (15). Consider the

following example. Suppose that we want to compare a VAR model ψ of yi and yJψ with

another VAR model ψ̃ of yi and another set of variables yJψ̃. Let yJψ̃ have the same number

of variables as yJψ. Furthermore, let each VAR have one lag and the same prior, e.g., the

prior of Sims and Zha (1998). Suppose that we rescale variables such that each variable in

yJψ and each variable in yJψ̃ have the same value in the initial period, t = 0. Then it is

straightforward to show that p(Yi|ψ) = p(Yi|ψ̃). The implication is strong. If one uses the

predictive density p(Yi|ψ) as a criterion to decide whether to include yJψ or yJψ̃ in a VAR

model with yi, one ends up indifferent. Even if yJψ is strongly related to yi and yJψ̃ follows

an independent white noise process!42

Next, consider the following predictive density:

p(Yi|YJ , ω) =
p(Yi, YJ |ω)∫
p(Yi, YJ |ω)dYi

=
∏T−1

t=0
p(yi(t+ 1)|yi(−P + 1, ..., t), yJ(−P + 1, ..., T ), ω). (16)

The density p(Yi|YJ , ω) is the predictive density of Yi conditional on the actually observed

YJ . This density measures the fit to the data on yi assuming that data on yJ have been

and available in closed-form. Multiplying the Bayes factor by the marginal likelihood of the unrestricted
VAR yields the marginal likelihood of the restricted VAR ωR.

42If one uses a training sample prior in addition to the prior of Sims and Zha (1998), in this example it is
no longer true that p(Yi|ψ) is literally equal to p(Yi|ψ̃). In our application, we evaluated p(Yi|ω) for many
VARs using a training sample prior in addition to the prior of Sims and Zha (1998). We found that the
differences between the values of p(Yi|ω) across different VARs were very small rather than literally zero.
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observed through the end of the sample, period T . Note the term yJ(−P + 1, ..., T ) in

equation (16). The implication is strong. The density p(Yi|YJ , ω) is not a measure of

out-of-sample predictive performance. The density p(Yi|YJ , ω) tells us how well model ω

captures the relation between yJ and yi given a particular YJ , namely the actually observed

YJ . The density p(Yi|YJ , ω) can attain a high value for a given model ω, even if that model

predicts both yJ and yi poorly out-of-sample.

7 Conclusions

We develop a Bayesian methodology to choose variables to include in a reduced-form or

structural VAR with an a priori given set of variables of interest. We rely on the idea of

Granger-causal-priority, related to the well-known concept of Granger-noncausality. Our

methodology is based on analytical results and thus it is simple to use. Applying the

methodology to the case when the variables of interest are output, the price level, and the

short-term interest rate, we find remarkably similar results for the euro area and the United

States.

We think of the application shown in this paper as an illustration, certainly not the final

word on which macroeconomic and financial variables interact most closely with output, the

price level, and the short-term interest rate. We are interested in modeling the euro area

economy and therefore we wanted to apply the methodology to euro area data. We then

had to accept the fact that the euro area data sample is fairly short as well as the fact that

a financial crisis occurs in the sample. In the future, it will be useful to redo this paper’s

analysis with models other than a VAR with a constant variance-covariance matrix which

may fit better in this particular period, also in the United States. In some models, such as

a VAR with stochastic volatility and a VAR with Markov-switching, the principle behind

the choice of variables will be the same as the principle used in this paper. However, the

computation of marginal likelihood will be much more complex than shown here.

A Proof of Proposition 1

Consider the VAR given in equation (1) and the impulse response of y to ε given by C(L) =

D(L)C(0). Partition y into subsets yq, yr, and y2, with yq ∪ yr = y1. Partition ε into

subsets εq, εr, and ε2, where εq is of the same size as yq, εr is of the same size as yr, ε2
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is of the same size as y2, and εq ∪ εr = ε1. The elements of ε can be ordered arbitrarily.

Therefore, the subsets of ε are ordered εq, εr, ε2 without loss of generality.

We can write the VAR given in equation (1) as


yq(t)

yr(t)

y2(t)

 = γ +


Bqq(L) Bqr(L) 0

Brq(L) Brr(L) 0

B2q(L) B2r(L) B22(L)



yq(t− 1)

yr(t− 1)

y2(t− 1)



+


Cqq(0) 0 0

Crq(0) Crr(0) Cr2(0)

C2q(0) C2r(0) C22(0)



εq(t)

εr(t)

ε2(t)

 .

The restrictions Bq2(L) = 0 and Br2(L) = 0, i.e., B12(L) = 0, follow from assumption

(i). The restrictions Cqr(0) = 0 and Cq2(0) = 0 follow from assumption (ii). Recursive

substitution yields


yq(t)

yr(t)

y2(t)

 = δ +


Dqq(L) Dqr(L) 0

Drq(L) Drr(L) 0

D2q(L) D2r(L) D22(L)



Cqq(0) 0 0

Crq(0) Crr(0) Cr2(0)

C2q(0) C2r(0) C22(0)



εq(t)

εr(t)

ε2(t)

 .

The restrictions Dq2(L) = 0 and Dr2(L) = 0, i.e., D12(L) = 0, follow from assumption (i).

Furthermore, assumption (i) implies that Dqq(L), Dqr(L), Drq(L), and Drr(L) each is a

function only of B11(L), i.e., D11(L) is a function only of B11(L).

We now argue that Cqq(0) is a function only of Σ11 and Crq(0) is a function only of Σ11.

Recall that C(0)C(0)′ = Σ. Therefore,

Cqq(0)Cqq(0)′ = Σqq,

Crq(0)Cqq(0)′ = Σrq,

where Σqq is a submatrix of Σ11 and Σrq a is submatrix of Σ11. The first equation im-

plies that Cqq(0) is a function only of Σqq. The second equation implies that Crq(0) =

ΣrqCqq(0)′−1, i.e., Crq(0) is a function only of Σqq and Σrq. Hence, Cqq(0) is a function only

of Σ11 and Crq(0) is a function only of Σ11.
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Finally, matrix multiplication yields


yq (t)

yr (t)

y2 (t)

 = δ +


Cqq(L) Cqr(L) Cq2(L)

Crq(L) Crr(L) Cr2(L)

C2q(L) C2r(L) C22(L)



εq (t)

εr (t)

ε2 (t)

 .

Consider Cqq(L) and Crq(L), i.e., the impulse response of y1 = {yq, yr} to εq. We have

Cqq(L) = Dqq(L)Cqq(0) +Dqr(L)Crq(0),

Crq(L) = Drq(L)Cqq(0) +Drr(L)Crq(0),

where all terms on the right-hand side of each of the two equations have been shown to

be functions only of B11(L) and Σ11. Thus the impulse responses of y1 to εq, C1q(L), is a

function only of B11(L) and Σ11.

B Prior in the restricted VAR

Consider the prior density of B(βα) and Σ in the restricted VAR, p(B(βα),Σ|ωR). Recall that

this density is defined in equation (9). In this appendix we focus on a particular marginal

density of p(B(βα),Σ|ωR). We define this density, state a proposition about it, and point

out this density’s intuitive properties.

Consider the coefficients in the equations indexed by α, i.e., the equations in which we

impose zero restrictions. Let B(β)α denote the matrix collecting the unrestricted coefficients

in these equations. Recall that the remaining coefficients in these equations, collected in

matrix Bβα, are set to zero in equation (5). Let Σαα denote the variance-covariance matrix

of the innovations in these equations. Consider the prior density of B(β)α and Σαα in the

restricted VAR, p(B(β)α,Σαα|ωR). Note that p(B(β)α,Σαα|ωR) is a marginal density of

p(B(βα),Σ|ωR).

Proposition 3 Consider model ωR, defined in expressions (1), (5), and (9). The marginal

38



prior density p(B(β)α,Σαα|ωR) is normal-inverted-Wishart and satisfies

p(B(β)α,Σαα|ωR) ∝ |Σαα|−(ν̃(β)α+K(β)+Nα+1)/2

exp

(
−1

2
tr(Ỹα − X̃(β)B(β)α)′(Ỹα − X̃(β)B(β)α)Σ−1

αα

)
. (17)

Furthermore, the marginal posterior density p(B(β)α,Σαα|Y, ωR) is normal-inverted-Wishart

and satisfies

p(B(β)α,Σαα|Y, ωR) ∝ |Σαα|−(ν̄(β)α+K(β)+Nα+1)/2

exp

(
−1

2
tr(Ȳα − X̄(β)B(β)α)′(Ȳα − X̄(β)B(β)α)Σ−1

αα

)
. (18)

The following notation appears in expressions (17)-(18): ν̃(β)α = ν̃ + Kβ − N(α), ν̄(β)α =

ν̃(β)α+T , Kβ is the number of the right-hand side variables whose coefficients are restricted,

K(β) is the number of the remaining right-hand side variables, Nα is the number of the re-

stricted equations, N(α) is the number of the unrestricted equations, Ỹα denotes the columns

of Ỹ corresponding to the equations indexed by α, X̃(β) denotes the columns of X̃ corre-

sponding to the right-hand side variables indexed by (β), i.e., the right-hand side variables

whose coefficients are unrestricted, Ȳα denotes the columns of Ȳ corresponding to the equa-

tions indexed by α, and X̄(β) denotes the columns of X̄ corresponding to the right-hand side

variables indexed by (β).

Proof. Follows from Theorems A.17 and A.20 in Bauwens et al. (1999).

Consider a researcher whose prior in the unrestricted VAR, p(B,Σ|ωU ), is the prior

of Sims and Zha (1998) with given hyperparameter values. Suppose that the researcher

considers the restriction that y2 does not Granger-cause y1, i.e., B12(L) = 0. Consider the

marginal prior density of the parameters of the equations with y1 on the left-hand side,

p(B(2)1,Σ11|ωR). By Proposition 3, p(B(2)1,Σ11|ωR) is the prior of Sims and Zha (1998)

with the same hyperparameter values as p(B,Σ|ωU ), except that the degrees of freedom of

the density p(Σ11|ωR) are greater by Kβ −N(α) than the degrees of freedom of the density

p(Σ|ωU ). HereKβ−N(α) = N2P−N2. ThusKβ−N(α) = 0 if P = 1, i.e., the hyperparameter

values are exactly the same if the VAR has one lag. In our empirical application we use the

prior of Sims and Zha (1998) and we have P = 1 in the baseline case and, therefore, the

hyperparameter values in p(B,Σ|ωU ) and p(B(2)1,Σ11|ωR) are exactly the same.
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Next, suppose that the researcher forecasts y1 using two models: (i) model ωR, the VAR

given in equation (2), and (ii) the VAR given in equation (3) with the prior of Sims and

Zha (1998) with the same hyperparameter values as p(B,Σ|ωU ), except for the degrees of

freedom correction. By Proposition 3, the posterior densities of B11(L) and Σ11 are identical

in the two models. Consequently, the posterior predictive densities of y1 are identical in the

two models.

C Prior of Sims and Zha (1998)

This appendix contains the details of the prior of Sims and Zha (1998) including our choice

of the hyperparameter values. The prior of Sims and Zha consists of four components

controlled by scalar hyperparameters λ1, λ3, λ4, µ5, µ6, and νSZ .43 As explained below, we

extend this set of hyperparameters with another scalar, µσ.

The first component is the Minnesota prior for B given by

p(vecB|Σ) = N

vec

 IN

0K−N×N

 ,Σ⊗WW ′

 ,

where W is a diagonal matrix of size K×K such that: (i) the diagonal entry corresponding

to variable n and lag p is equal to λ1/(σnp
λ3), and (ii) the last diagonal entry, corresponding

to the constant term, is equal to λ4. We set σn equal to σ̂nµσ, where σ̂n is the standard

deviation of the residuals from the univariate autoregression with P lags fit by ordinary least

squares to the n’th time series, and µσ is a scaling factor common for all n. (Typically, in

the literature µσ = 1.) We implement the Minnesota prior with K dummy observations

collected in the matrices

YMinnesota = W−1

 IN

0K−N×N

 , XMinnesota = W−1.

The second component is the no-cointegration prior. We implement the no-cointegration

prior with N dummy observations collected in the matrices

Yno−cointegration = µ5 diag(ȳ), Xno−cointegration = µ5(diag(ȳ), ...,diag(ȳ), 0),

43We use the notation of Sims and Zha (1998) for the hyperparameters. Historically, there was also a
hyperparameter λ2, but this hyperparameter is always equal to 1 in the conjugate framework.

40



where ȳ = (1/P )
∑0

t+P−1y(t), i.e., ȳ is equal to the average of the initial values of y, and

diag(x) denotes a diagonal matrix with vector x on the diagonal.

The third component is the one-unit-root prior. We implement the one-unit-root prior

with the single dummy observation

Yone−unit−root = µ6ȳ
′, Xone−unit−root = µ6(ȳ′, ..., ȳ′, 1).

The fourth component is the marginal prior about Σ, p(Σ) = IW(ZZ ′, νSZ), where Z is

an N ×N matrix and νSZ is a scalar hyperparameter. We set Z =
√
νSZ −N − 1 diag(σ),

where σ = (σ1, ..., σN ). This choice of Z implies that, so long as νSZ > N + 1, the prior

expectation of Σ is

E(Σ) =
ZZ ′

νSZ −N − 1
= diag(σ2).

Note that the density p(Σ) satisfies

p(Σ) ∝ |Σ|−(νSZ+N+1)/2 exp

(
−1

2
tr
(
ZZ ′Σ−1

))

= |Σ|−(νSZ+1)/2|Σ|−N/2 exp

(
−1

2
tr
(
Z ′ − 0B

)′ (
Z ′ − 0B

)
Σ−1

)
,

i.e., p(Σ) is proportional to a likelihood of N observations with Z ′ on the left-hand side

and 0N×K on the right-hand side multiplied by the factor |Σ|−(νSZ+1)/2. Therefore, we

implement the marginal prior about Σ with N dummy observations given in the matrices

YΣ = Z ′, XΣ = 0N×K .

Collecting all dummy observations introduced here yields the matrices YSZ and XSZ

appearing in the main text in expression (12), i.e.,

YSZ =


YMinnesota

Yone−unit−root

Yno−cointegration

YΣ

 , XSZ =


XMinnesota

Xone−unit−root

Xno−cointegration

XΣ

 .

Let us explain how we selected the values of the hyperparameters λ1, λ3, λ4, µ5, µ6, νSZ ,

and µσ. We searched for the hyperparameter values that maximize the marginal likelihood
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Table 5: Hyperparameter values in the “baseline” prior and in alternative priors

Priors λ1 λ3 λ4 µ5 µ6 νSZ µσ

“Baseline” 0.1 1 1 0.5 0.5 N+20 1
“Fixed νSZ” 0.2 1 1 0.5 0.5 N+2 3
“Tighter” 0.1 1 1 1 2 N+20 1
Sims and Zha (1998) 0.2 1 1 1 1 N+1 1

implied by the unrestricted VAR, i.e., by model ωU ∈ Ω, in the training sample. Simultane-

ously, we searched for the marginal-likelihood-maximizing lag length P . We used a grid of

values for each hyperparameter and lag length: λ1 ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4},

λ3 ∈ {0.5, 1, 2}, λ4 ∈ {0.5, 1, 2, 5}, µ5 ∈ {0, 0.5, 1, 2, 4}, µ6 ∈ {0, 0.5, 1, 2, 4}, νSZ ∈

{N + 2, N + 10, N + 20, N + 30, N + 40}, µσ ∈ {0.25, 0.5, 1, 2, 3, 4}, P = {1, 2, 3, 4}. We

found that the hyperparameter values that maximized the marginal likelihood in the euro

area were different from those that maximized the marginal likelihood in the United States.

However, the second-best hyperparameter values were the same in the euro area and in the

United States. The marginal likelihood associated with the second-best hyperparameter

values was approximately 1 log point lower than the maximum in the euro area and less

than 2.5 log points lower than the maximum in the United States. We decided to use the

second-best hyperparameter values as our “baseline” prior. Table 5 reports these hyperpa-

rameter values in the first row (“baseline”). These hyperparameter values are close to those

used by Sims and Zha (1998) and common in the literature. We report the hyperparameter

values used by Sims and Zha in the last row of Table 5. Furthermore, we found that in

both the euro area and the United States the marginal likelihood in the training sample

was maximized at lag length P = 1.

In the paper we report the findings obtained with the “baseline” prior and two alternative

prior settings, referred to as “fixed νSZ” prior and “tighter” prior, respectively. To define the

“fixed νSZ” prior, we repeated the maximization of the marginal likelihood in the training

sample keeping the value of νSZ fixed at νSZ = N + 2. Fixing νSZ at N + 2 is a common

practice in the literature. We found that with νSZ fixed at N + 2 setting µσ = 3 (i.e., σ̂

scaled by a factor of 3) dominated all other values of µσ and that λ1 should be higher than

0.1, while the best values of the other hyperparameters were not far from the “baseline”

42



prior. Therefore, in the “fixed νSZ” prior we decided to use νSZ = N + 2, µσ = 3, λ1 = 0.2

and the same values of the hyperparameters λ3, λ4, µ5, µ6 as in the “baseline” prior. Note

that, again, we found that the marginal likelihood in the training sample was maximized at

P = 1. In the “tighter” prior, we set µ5 = 2 (weight of the “no-cointegration” dummy) and

µ6 = 1 (weight of the “one-unit-root” dummy), while keeping all the other hyperparameters

at their “baseline” values. This prior is tighter than the “baseline.”

D Computational details

To study the set of models Ω we employ the Markov chain Monte Carlo model composition

(MC3) algorithm of Madigan and York (1995). MC3 is used when: (i) one wants to obtain

posterior results conditional on a set of models, and (ii) the set is too large to evaluate the

posterior results of interest in each model in the set in reasonable time. MC3 generates

a Markov chain that moves through the set of models visiting any given model with a

probability equal to that model’s posterior probability. The researcher computes posterior

results of interest based on the visited sample of models. By construction, the visited sample

of models contains many models with high posterior probabilities and few models with low

posterior probabilities. Since models with low posterior probabilities have little effect on

the posterior results of interest, the approximation error caused by using only a subset of

models quickly converges to zero.

For each model ω ∈ Ω, we define a set of models called the neighborhood of model ω,

nbr(ω). Suppose that the chain is at some model ω. We randomly draw a candidate model

ω′ from nbr(ω) attaching the same probability to each model in nbr(ω). The chain moves

from ω to ω′ with probability

min

{
1,

#nbr(ω)p(Y |ω′)
#nbr(ω′)p(Y |ω)

}
,

where #nbr(ω) denotes the number of models in nbr(ω). With the complementary proba-

bility the chain stays at model ω, i.e., we record another occurrence of state ω. The process

continues until the chain has the desired length. In each exercise (i.e., for each column in

Tables 2, 6, and 7), we ran two chains of one million draws each, starting from maximally

dispersed initial points. We estimated the posterior probabilities of Granger-causal-priority

(henceforth, “GCP probabilities”) in the way described below. In the tables we report the
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average of the two estimates. We established convergence by verifying that the estimates

from the two independent chains do not differ significantly. A chain of one million draws

runs about one hour on a standard personal computer.

Definition of a neighborhood in the set Ω. The neighborhood of a model ω ∈ Ω

is the set of all models that differ from ω only by the position of one variable, i.e., models

where one variable from y1 of ω is in y2 and models where one variable from y2 of ω is in

y1. For each ω, we have #nbr(ω) = NJ .

Initial points for the two chains. The first chain starts at the unrestricted model,

y1 = y. The second chain starts at the model where yi is Granger-causally-prior to all other

variables, y1 = yi and y2 = yJ . These two initial points are maximally dispersed, because

the number of moves necessary to get from one of the initial points to the other is weakly

larger than for any other pair of models in Ω. We also experimented with random initial

points, and the results were unaffected.

Estimator of GCP probability. In each chain we estimated the posterior probability

that yi is Granger-causally-prior to yj , p(Ω
j |Y,Ω), using as an estimator the frequency of

visits of the chain in Ωj . We discarded the first half of the chain (i.e., the first 500,000 states

of the chain) to ensure that the results do not depend on the initialization. That is, we

estimated the GCP probability as p̂(Ωj |Y,Ω) =
(∑1000,000

m=500,001 θ
j
m

)
/500, 000, where θjm is the

value of the indicator function taking the value of 1 if the m’th model in the chain belongs

to Ωj and 0 otherwise, θjm ≡ I(ωm ∈ Ωj). We computed numerical standard deviations of

p̂(Ωj |Y,Ω) using the Newey-West estimator that accounts for the autocorrelation of θjm up

to order 500. Most of the autocorrelations go to zero long before 500, but for few variables

the autocorrelation of the order 500 is equal to about 0.1. On average, the Newey-West

standard error is equal to about 0.005.

Convergence diagnostics. We tested whether the GCP probabilities differ signifi-

cantly between the two chains using the test statistic in Geweke (2005), Section 4.7. The

joint chi-squared test for the equality of the two vectors of GCP probabilities was never

rejected at the 5 percent level of significance. We also tested the equality of GCP proba-

bilities associated with individual variables. The test statistic has the asymptotic standard

normal distribution. The overwhelming majority of the test statistics lay below 2. However,

in individual cases the test statistic exceeded 2. In these cases, we ran more simulations

confirming that we kept obtaining probabilities within 0.01 of the reported numbers (i.e.,
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within 0.01 of the numbers like those in Table 2).

Finding the best model. The following piece of evidence makes us confident that

the best model visited by the chains that we ran is the best model in Ω: The ranking of

more than two thousand top models, i.e., the best model and the models directly below

the best model in terms of marginal likelihood, is the same in the two chains. The exact

numbers are 2646 models in the euro area exercise and 4025 models in the U.S. exercise, in

the “baseline” case.

We conclude that the findings reported in Section 5 and Appendix E are robust to Monte

Carlo error.

E Sensitivity analysis

We describe how the results reported in Table 2 change as we redo the analysis in sub-

samples, vary the values of the hyperparameters of the prior, and change the number of

lags.

We begin by repeating the analysis in subsamples: (i) we drop the last four quarters

from the sample, i.e., the sample ends in 2011Q4, (ii) we drop the last eight quarters from

the sample, i.e., the sample ends in 2010Q4, and (iii) we drop the last twelve quarters from

the sample, i.e., the sample ends in 2009Q4. Note that dropping the last twelve quarters

from the sample amounts to omitting as much as one-fifth of the data (in essence, the entire

period after the financial crisis of 2008-2009). The results are in Table 6 (the United States)

and in Table 7 (euro area). See the columns labeled “Dropping last...” 4Q, 8Q, and 12Q,

respectively. For comparison, each of the two tables reproduces (column “baseline”) the

results from Table 2. Consider the case of the United States (Table 6). The rank correlation

between the posterior probabilities in the “baseline” specification and in any subsample is

high, 0.94 or more. Furthermore, in each subsample the best variables (in bold font) are the

same or nearly the same as in the “baseline” specification. Recall that the best variables are

the variables than enter y1 in the best model, i.e., in the model attaining highest marginal

likelihood in a given specification. Consider the case of the euro area (Table 7). The rank

correlation between the posterior probabilities in the “baseline” specification and in any

subsample is high, 0.9 or more, though somewhat lower than in the case of the United

States. Furthermore, in each subsample the best variables are the same or nearly the same
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as in the “baseline” specification, though there is somewhat less overlap compared with in

the case of the United States.

Next, we compare the results obtained with the “baseline” prior with the results obtained

with two alternative prior settings, referred to in Tables 6-7 as “fixed νSZ” and “tighter.”

The details of each of the prior settings are in Appendix C. We note the following three

findings. First, the rank correlation between the posterior probabilities in the “baseline”

specification and under each alternative prior setting is high, 0.92-0.93 and 0.82 in one

case. Second, the number of variables entering y1 in the best model varies across the

different prior settings, from eleven to twenty-one. At the same time, we do not find

that assuming a prior tighter than the “baseline” systematically favors models with more

variables entering y1. Third, Tables 6-7 report the log marginal likelihood of the data

implied by the best model in Ω, log p(Y |ω∗), and the log marginal likelihood of the data

implied by the unrestricted model, log p(Y |ωU ), in each specification. For each prior setting

we find that log p(Y |ω∗) > log p(Y |ωU ), in the United States and in the euro area. In

particular, assuming a prior tighter than the “baseline” does not reverse the conclusion

from the “baseline” specification that the best model is not the unrestricted model.44

Finally, we consider the effects of changing the number of lags. Tables 6-7 show the

results with two lags, P = 2, assuming the “baseline” prior. The rank correlation between

the posterior probabilities obtained with one lag and obtained with two lags is fairly high,

0.81 in the United States and 0.83 in the euro area. In principle, we could have defined Ω

to include models with different values of P , instead of studying Ω conditional on P = 1

(Section 5) and redoing the study conditional on P = 2 (this appendix). However, it

turns out that adding lags deteriorates the fit greatly and thus including in Ω models with

different values of P would have had a negligible effect on the results reported in Section 5.

To see this, note that Tables 6-7 report the log marginal likelihood of the data in a given

specification implied by the set of models Ω, log p(Y |Ω). The difference of 22 log points or

more (compare the column “baseline” with the column “2 lags” in each table) corresponds

to a posterior odds of 109 to 1 or higher, in favor of the specification with P = 1 relative to

44We condition on values of the hyperparameters. A different approach would be to specify a prior about
the hyperparameters, as in Giannone et al. (2012), and report posterior probabilities of Granger-causal-
priority having integrated over the hyperparameters. To implement this approach, we would need to run a
Markov Chain alternating between a step in the space of VAR restrictions and a step in the space of the
hyperparameters. We conjecture that this approach is feasible computationally, but we chose not to pursue
it for fear that attention would have been diverted from the novelty in this paper.
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Table 6: Sensitivity analysis, United States, posterior probability that output, price level,
and short-term interest rate are Granger-causally-prior to a variable

Variable “Baseline” Dropping last... Changing prior 2 lags
4Q 8Q 12Q “fixed νSZ” “tighter”

Oil price 0.00 0.00 0.00 0.00 0.00 0.02 0.00
Industrial confidence 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Corporate bond spread 0.00 0.00 0.00 0.00 0.19 0.00 0.00
Change in real inventories 0.01 0.04 0.05 0.07 0.05 0.00 0.00
2-year government bond yield 0.01 0.02 0.03 0.05 0.05 0.31 0.00
Purchasing managers’ index 0.02 0.02 0.01 0.01 0.00 0.10 0.00
Capacity utilization 0.02 0.04 0.06 0.06 0.10 0.04 0.01
Unemployment rate 0.02 0.04 0.00 0.00 0.21 0.00 0.02
Eonia 0.04 0.06 0.01 0.00 0.03 0.85 0.88
Consumer confidence 0.04 0.06 0.10 0.11 0.10 0.13 0.00
Lending rate to NFCs 0.06 0.09 0.14 0.21 0.03 0.05 0.00
Hours worked 0.11 0.12 0.10 0.10 0.19 0.10 0.02
Mortgage interest rate 0.15 0.17 0.27 0.35 0.16 0.23 0.01
10-year government bond yield 0.15 0.16 0.24 0.33 0.11 0.29 0.02
Real consumption 0.19 0.26 0.35 0.36 0.21 0.35 0.01
Real investment 0.21 0.18 0.16 0.17 0.38 0.07 0.02
Euro area real GDP 0.22 0.24 0.23 0.21 0.21 0.69 0.78
Producers price index 0.24 0.18 0.26 0.27 0.18 0.38 0.03
Employment 0.34 0.26 0.28 0.28 0.48 0.27 0.04
Real imports 0.38 0.37 0.38 0.38 0.47 0.23 0.01
Stock index 0.49 0.54 0.58 0.58 0.57 0.80 0.04
Nominal effective exchange rate 0.58 0.56 0.58 0.48 0.36 0.31 0.03
Commodity prices 0.64 0.62 0.55 0.52 0.64 0.41 0.07
Real exports 0.68 0.69 0.64 0.59 0.44 0.74 0.04
Euro area consumer prices 0.70 0.62 0.62 0.51 0.41 0.67 0.17
Stock volatility index 0.70 0.59 0.43 0.44 0.56 0.51 0.41
Real government consumption 0.74 0.72 0.76 0.75 0.79 0.80 0.21
Unit labor cost 0.77 0.78 0.81 0.77 0.82 0.72 0.07
M1 0.77 0.73 0.46 0.31 0.81 0.14 0.04
Consumer prices excl. energy, food 0.84 0.63 0.47 0.48 0.69 0.77 0.09
Loans to NFCs 0.87 0.84 0.83 0.78 0.94 0.65 0.18
M2 0.92 0.89 0.74 0.57 0.89 0.98 0.92
Government debt 0.93 0.92 0.91 0.90 0.94 0.66 0.23
Real housing investment 0.96 0.86 0.84 0.82 0.94 0.90 0.36
Loans for house purchase 0.98 0.97 0.97 0.96 0.98 0.93 0.31
Consumer loans 0.99 0.99 1.00 0.96 0.96 0.89 0.74
Dollar-euro exchange rate 0.99 1.00 1.00 1.00 0.60 0.81 0.73
House prices 1.00 1.00 1.00 1.00 0.99 0.99 0.77

correlation with the baseline 0.99 0.96 0.93 0.95 0.80 0.48
rank correlation with the baseline 0.99 0.96 0.94 0.93 0.82 0.81

log p(Y |Ω) 3489 - - - 3468 3464 3438
log p(Y |ω∗) 3509 - - - 3489 3484 3461
log p(Y |ωU ) 3489 - - - 3484 3464 3456

Notes: The column “baseline” reproduces the results from Table 2. Bold font indicates that a variable enters y1 in
the best model, where “the best model” is defined in Section 5.4.
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Table 7: Sensitivity analysis, euro area, posterior probability that output, price level, and
short-term interest rate are Granger-causally-prior to a variable

Variable “Baseline” Dropping last... Changing prior 2 lags
4Q 8Q 12Q “fixed νSZ” “tighter”

Change in real inventories 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Industrial confidence 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Purchasing managers’ index 0.00 0.00 0.01 0.01 0.01 0.10 0.02
2-year government bond yield 0.02 0.02 0.03 0.03 0.28 0.28 0.00
Oil price 0.02 0.12 0.42 0.34 0.00 0.00 0.00
Lending rate to NFCs 0.04 0.05 0.02 0.03 0.04 0.07 0.00
Real investment 0.06 0.08 0.07 0.08 0.01 0.06 0.01
Real exports 0.06 0.07 0.06 0.08 0.01 0.07 0.00
Real imports 0.09 0.12 0.09 0.10 0.01 0.09 0.00
Consumer confidence 0.10 0.13 0.30 0.24 0.04 0.02 0.96
Corporate bond spread 0.15 0.04 0.10 0.15 0.97 0.00 1.00
Real consumption 0.17 0.21 0.10 0.11 0.03 0.19 0.00
Mortgage interest rate 0.19 0.18 0.07 0.12 0.26 0.15 0.04
Unit labor cost 0.20 0.26 0.18 0.25 0.06 0.29 0.01
Real housing investment 0.21 0.23 0.24 0.30 0.11 0.24 0.61
Unemployment rate 0.26 0.10 0.09 0.11 0.81 0.09 0.99
Employment 0.27 0.23 0.30 0.16 0.63 0.22 0.53
Fed funds rate 0.34 0.19 0.95 0.97 0.96 0.01 1.00
Capacity utilization 0.38 0.29 0.41 0.49 0.99 0.63 1.00
Producers price index 0.48 0.50 0.75 0.76 0.93 0.62 0.90
U.S. consumer prices 0.57 0.60 0.60 0.56 0.90 0.67 0.56
10-year government bond yield 0.63 0.39 0.21 0.30 0.90 0.35 0.48
Real government consumption 0.72 0.58 0.31 0.30 0.98 0.58 0.96
Consumer loans 0.78 0.68 0.45 0.24 0.99 0.71 0.98
U.S. real GDP 0.80 0.79 0.83 0.82 1.00 0.70 1.00
Loans to NFCs 0.81 0.61 0.72 0.69 1.00 0.71 1.00
M1 0.81 0.85 0.84 0.81 0.84 0.90 0.96
M2 0.83 0.75 0.34 0.40 1.00 0.87 1.00
M3 0.86 0.78 0.35 0.42 1.00 0.90 1.00
Stock volatility index 0.87 0.88 0.98 0.97 1.00 0.89 1.00
Commodity prices 0.88 0.87 0.95 0.94 0.98 0.71 0.93
Stock index 0.94 0.95 0.98 0.97 1.00 0.91 1.00
Consumer prices excl. energy, food 0.96 0.93 0.99 0.99 1.00 0.82 1.00
Nominal effective exchange rate 0.96 0.96 0.97 0.97 0.99 0.96 1.00
Government debt 0.99 0.99 1.00 0.98 1.00 0.99 1.00
Loans for house purchase 0.99 0.99 0.99 0.97 1.00 0.99 1.00
House prices 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Dollar-euro exchange rate 1.00 1.00 1.00 1.00 1.00 1.00 1.00

correlation with the baseline 0.98 0.85 0.85 0.86 0.95 0.79
rank correlation with the baseline 0.98 0.90 0.91 0.92 0.93 0.83

log p(Y |Ω) 4852 - - - 4849 4814 4816
log p(Y |ω∗) 4873 - - - 4873 4834 4840
log p(Y |ωU ) 4831 - - - 4837 4797 4808

Notes: The column “baseline” reproduces the results from Table 2. Bold font indicates that a variable enters y1 in
the best model, where “the best model” is defined in Section 5.4.
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the specification with P = 2. We conclude that in our application it is reasonable to focus

on the findings conditional on P = 1.
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