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Abstract

Firms respond heterogeneously to aggregate fluctuations, yet standard linear models

impose restrictive assumptions on firm sensitivities. Applying the Generalized Random

Forest to U.S. firm-level data, we document strong nonlinearities in how firm characteristics

shape responses to macroeconomic shocks. We show that nonlinearities significantly

lower aggregate responses, leading linear models to overestimate the economy’s sensitivity

to shocks by up to 1.7 percentage points. We also find that larger firms, which carry

disproportionate economic weight, exhibit lower sensitivities, leading to a median reduction

in aggregate economic sensitivity of 52%. Our results highlight the importance of accounting

for nonlinearities and firm heterogeneity when analyzing macroeconomic fluctuations and

the transmission of aggregate shocks.

JEL Codes: D22, E32, C14, E5

Keywords: Firm Sensitivity, Monetary Policy, Business Cycle, Uncertainty, Oil Shock.
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Non-technical Summary

This paper investigates the heterogeneity in firm-level responses to aggregate economic shocks, de-

parting from traditional models that impose linear constraints on the effects of firm characteristics. Using

an advanced machine learning methodology - specifically, the Generalized Random Forest (GRF) devel-

oped by Athey et al. (2019) - the study analyzes a comprehensive dataset of U.S. firms spanning from

1990 to 2019. In contrast to conventional linear panel models, which assume a direct, proportional rela-

tionship between firm attributes (such as size, leverage, liquidity, and industry scope) and their sensitivity

to macroeconomic fluctuations, the GRF framework enables the detection of complex, nonlinear interac-

tions among these characteristics. This methodological innovation permits a more flexible estimation of

how firms respond to various sources of aggregate shocks, including business cycle fluctuations, monetary

policy shocks, uncertainty shocks, and oil price shocks.

The empirical findings indicate that the relationship between firm characteristics and sensitivity to

aggregate fluctuations exhibits pronounced nonlinearities. Although average responses estimated by the

GRF are broadly similar to those derived from linear models, the distribution of firm sensitivities is con-

siderably more moderated under the GRF approach. Specifically, the GRF estimates reveal substantially

lower dispersion and kurtosis, suggesting that traditional linear models may overstate the heterogeneity

among firms. Moreover, the analysis identifies firm size as a dominant determinant of economic weight,

with larger firms exhibiting more muted responses to shocks relative to their smaller counterparts. To

bridge firm-level responses with aggregate outcomes, the study develops an aggregation framework that

weights individual firm sensitivities by their economic significance. The results demonstrate that the

overall impact of aggregate shocks is significantly influenced not only by the average firm response but

also by the covariance between firm sensitivities and their respective economic weights. In particular,

the presence of large, less-sensitive firms is shown to dampen the aggregate effects of economic shocks,

leading to more stable macroeconomic outcomes than those predicted by linear models.

In sum, this paper contributes to the literature by highlighting the importance of accounting for

nonlinearities and complex interactions in firm behavior. The findings underscore that an accurate un-

derstanding of aggregate economic dynamics requires a comprehensive analysis of firm heterogeneity.

The insights provided by the GRF methodology have important implications for both policymakers and

practitioners, suggesting that policies designed to stabilize the economy should consider the diverse and

nonlinear responses of firms to economic disturbances. By advancing the empirical framework for ana-

lyzing firm-level sensitivity, the paper offers a more nuanced perspective on the transmission mechanisms

of aggregate shocks, thereby enriching our understanding of macroeconomic dynamics.
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1 Introduction

Firms do not respond uniformly to aggregate fluctuations and shocks. Some adjust sharply to changes

in GDP growth and interest rates, while others remain largely unaffected. Studying the cross-sectional

heterogeneity in firm sensitivity to aggregate fluctuations and its underlying drivers provides insights into

the dynamics of aggregate outcomes across different phases of the economic cycle (Cooley and Quadrini,

2006; Buera and Moll, 2015). Prior research suggests that firm responses to aggregate shocks depend

linearly on their underlying characteristics, such as size and default risk (Gertler and Gilchrist, 1994;

Ottonello and Winberry, 2020). However, more recent evidence indicates that these relationships may

be nonlinear (Crouzet and Mehrotra, 2020; Paranhos, 2024). The extent to which nonlinearities in the

relationship between firm sensitivities and their underlying characteristics matters for both firm and

macroeconomic outcomes remains an open question.

In this paper, we study the role of nonlinearities and heterogeneity in firm response to aggregate fluc-

tuations using a nonparametric machine learning approach. While a heterogeneous linear panel regression

model can capture systematic heterogeneity–such as differences in sensitivity based on firm characteristics

such as size, leverage, and industry–it imposes linearity in how characteristics impact firm sensitivity,

ruling out nonlinearities and complex interactions among characteristics. By using a machine learning

approach, we can estimate how firms respond to aggregate fluctuations as a function of a large set of

characteristics without imposing restrictive parametric assumptions on the underling mapping. These

nonlinearities may be crucial for understanding firm-level heterogeneity in sensitivities, offering new in-

sights into the transmission mechanisms of aggregate shocks and their macroeconomic implications.

We employ the Generalized Random Forest (GRF, henceforth) model by Athey et al. (2019) to analyze

how U.S. firms respond to aggregate fluctuations. Using firm-level quarterly Compustat data spanning

from 1990 to 2019, we estimate the firm-level responses of key firm outcomes: sales, investment, debt

issuance, and market value, as functions of balance-sheet characteristics and across multiple sources of

aggregate fluctuations. We focus on four key sources of aggregate fluctuations that are extensively studied

in the literature: business cycle fluctuations (Crouzet and Mehrotra, 2020); and three major exogenous

shocks: monetary policy shocks (Bauer and Swanson, 2023), uncertainty shocks (Jurado et al., 2015),

and oil price shocks (Känzig, 2021). Finally, we model firms’ sensitivity to aggregate fluctuations using

a set of financial and non-financial characteristics that are widely examined in prior research, including

leverage, liquidity, distance to default, share of short-term debt, size, return on assets, sales volatility,

and industry scope.

We provide evidence of strong nonlinearities in how balance-sheet characteristics influence conditional

firm sensitivities across all outcome variable-aggregate shock pairs we study. While the average firm

sensitivities are statistically identical between GRF and the linear panel model (LPM, henceforth), we find

substantial differences in higher-order moments. The standard deviation of firm sensitivities estimated by
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the GRF model is 50% lower than that of the LPM, while kurtosis (excess tail risk) in GRF is 20% lower.

This suggests that the nonlinear model captures more moderate and accurate patterns of heterogeneity,

whereas the LPM misspecifies the distribution of heterogeneity across firms despite providing a reasonable

first-order approximation. Using machine learning tools such as accumulated local effects, we qualitatively

show that the marginal effect of each balance-sheet characteristic on firm-level sensitivities is not constant

but exhibits kinks, U-shaped, or inverted U-shaped patterns, ultimately rejecting the linearity assumption

embedded in the LPM. Additionally, using Friedman’s H-statistic, we find that between 10% and 40%

of the total effect of each characteristic on firm outcomes is mediated through its interaction with other

characteristics, with firm size playing a particularly prominent role.

We evaluate the role of individual firm characteristics in shaping firms’ sensitivities to aggregate

shocks and their heterogeneity. One advantage of machine learning approaches is their ability to mitigate

the curse of dimensionality, allowing us to analyze a large set of characteristics while automatically de-

tecting their relative importance. Using the absolute mean Shapley value of each characteristic, we assess

its quantitative importance for the firm responses to aggregate shocks. We find that size is the dominant

factor in explaining firms’ sensitivity to aggregate shocks. However, more broadly, no single characteristic

overwhelmingly dominates, reinforcing the importance of incorporating multiple characteristics to explain

firm-level sensitivities. We also assess the contribution of each characteristic to heterogeneity in firms’

sensitivities by measuring the depth-weighted frequency of splits where the characteristic is used. Our

results indicate that heterogeneity is driven by multiple characteristics and that the ranking of charac-

teristics varies significantly across aggregate shock-outcome variable pairs. For example, firm size, along

with other non-financial characteristics such as industry scope, plays a dominant role in explaining firms’

sensitivity to business cycle fluctuations and uncertainty shocks, whereas default risk and other financial

characteristics are significantly more important in shaping heterogeneity in responses to monetary policy

shocks.

Motivated by such evidence, we pursue two additional questions. First, do nonlinearities in firm

sensitivities matter at the aggregate level? While we document evidence of nonlinearities at the firm

level, they may not be quantitatively relevant at the aggregate level. Second, how much does firm

heterogeneity influence aggregate responses? Given the highly unequal distribution of firm weights in the

economy, the sensitivity of larger firms disproportionately shape macroeconomic outcomes.

We begin by proposing a theory of aggregation that links firm-level responses to macroeconomic

outcomes by weighting firms’ sensitivities to shocks according to their contribution in the economy. The

aggregate response to macroeconomic shocks depends not only on individual firm reactions but also on

their relative size in the economy. In our framework, aggregate fluctuations are driven by two compo-

nents: the average firm-level response to a given shock, and the covariance between firm sensitivities and

their economic weight. The first captures how firms, on average, react to shocks, while the second reflects

whether firms with greater economic importance exhibit systematically different sensitivities. A posi-
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tive covariance implies that more sensitive firms hold greater weight, amplifying aggregate fluctuations,

whereas a negative covariance suggests that less sensitive firms dominate, dampening macroeconomic

volatility. We use this decomposition to quantify the role of firm heterogeneity in shaping aggregate

outcomes.

We show that models ignoring nonlinearities tend to overestimate the economy’s sensitivity to busi-

ness cycle fluctuations and shocks. By comparing aggregate responses estimated using the GRF with

those from a standard LPM, we quantify the macroeconomic impact of nonlinearities. In particular, the

GRF model consistently yields lower aggregate response estimates, causing linear models to overstate

the economy’s responsiveness to aggregate shocks. The quantitative discrepancies are substantial. For

example, while a LPM predicts that a 1% increase in GDP leads to a 2.4% rise in aggregate sales and a

5.4% increase in stock market value within a year, accounting for nonlinearities reduces these estimates

by approximately 0.3 and 0.2 percentage points, respectively. A similar pattern holds for contractionary

monetary policy shocks: the GRF model predicts a 6.6% smaller drop in stock market prices and a more

subdued response of aggregate investment. The primary driver of these differences is the covariance term,

as the LPM consistently estimates larger covariance effects than GRF. This suggests that incorporating

nonlinearities weakens the relationship between firms’ sensitivities and their economic weight, ultimately

dampening aggregate fluctuations.

Lastly, we find that heterogeneity in firm sensitivity dampens business cycle fluctuations and the

aggregate response to shocks. We quantify this effect by measuring the contribution of the covariance term

to the overall aggregate response. Our results show that larger firms, which tend to have lower absolute

sensitivities, systematically reduce the impact of shocks. Specifically, we estimate that their presence

lowers the aggregate response of sales by 6% and investment by 53% to business cycle fluctuations while

amplifying the stock market response by approximately 24%. A similar pattern emerges for uncertainty

and monetary policy shocks–where, despite a strongly negative unweighted average firm response, the

aggregate effect is muted due to lower sensitivities among firms with greater economic weight. This

dampening is particularly strong for investment, where the covariance term fully offsets the average firm

response to these shocks. These findings highlight that aggregate fluctuations are shaped not just by the

average firm response but also by the interaction between firm sensitivities and their economic relevance,

underscoring the importance of accounting for firm heterogeneity in macroeconomic analysis.

We further explore the quantitative role of heterogeneity in firm sensitivities across several dimen-

sions. Using a rolling window regression framework, we show that the decomposition between mean and

covariance terms remains stable over time, suggesting no significant composition effects over the past

three decades. We then decompose the role of heterogeneity into within- and across-industry margins,

finding that both contribute equally to dampening aggregate fluctuations. Finally, we examine the

relative importance of financial and non-financial firm characteristics by constructing counterfactual

scenarios that hold one type of heterogeneity constant while allowing the other to vary. We find that
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abstracting from heterogeneity in non-financial characteristics leads to larger and statistically significant

deviations from the benchmark aggregate response compared to shutting down heterogeneity in financial

characteristics. This suggests a stronger covariance between firms with large economic weight and

variations in non-financial characteristics, further emphasizing their role in shaping aggregate dynamics.

The remainder of the paper is organized as follows. Section 2 provides information on the method-

ologies we use, Linear Panel Model and random forest based on GRF, and on the Monte Carlo exercise.

Section 3 presents the data used in the empirical application and the key results on firm-level sensitivities

and their drivers. Section 4 proposes an aggregation theory and presents the results on the aggregate

implications. Section 5 concludes.

Literature. This paper contributes to the rapidly growing literature applying machine learning tech-

niques to economic analysis. Machine learning offers advantages both for the estimation of conditional

average treatment effects and causal inference in high-dimensional settings (Athey and Imbens, 2017; Var-

ian, 2014) and for predicting outcomes to improve targeting and forecasting (Mullainathan and Spiess,

2017). Our work relates to the estimation of conditional average treatment effects using machine learn-

ing; however, few studies have applied machine learning techniques to examine firm-level heterogeneous

sensitivity to aggregate shocks and macroeconomic fluctuations more broadly.1 2 3 The closet study

to our work is Paranhos (2024), which examines the relationship between firms’ default risk and the

effectiveness of monetary policy transmission to investment decisions, by generalizing standard local pro-

jection methods nonparametrically. Differently from their work, we apply random forest models to study

firm heterogeneity in sensitivity to multiple aggregate shocks and multiple firm outcomes, incorporating

a high-dimensional firm characteristic space. Our findings highlight the strong quantitative role of inter-

actions among characteristics in shaping firm-level sensitivities, indicating that multiple characteristics

jointly drive heterogeneity in firm-level outcomes.

Our work also contributes to the literature that studies the heterogeneity in firm-level sensitivity to

aggregate shocks and its determinants. A non-exhaustive list of important contributions includes Ot-

tonello and Winberry (2020), Jeenas (2018), Gertler and Gilchrist (1994) and Jungherr et al. (2024), that

study the roles of leverage and distance to default, liquidity, size, and debt maturity for the response of

1Estimating conditional average treatment effects using machine learning is more common on the consumers
and household side rather than on the firm side. For instance, Belloni et al. (2017) estimates the effect of 401(k)
eligibility and participation on accumulated assets using local quantile treatment effects. Khazra (2021) explores
the heterogeneity of house price elasticity of consumption using micro panel data via GRF (Athey et al., 2019),
finding that neglecting local heterogeneities in elasticity leads to overestimating the total consumption response
during housing market booms and busts.

2The forecasting advantages of machine learning have been explored in macroeconomics in relation to inflation
forecast, with Paranhos (2025) and Nakamura (2005) both using neural networks to predict future inflation.

3Machine learning is more widely used in finance and asset prices; for instance, Freyberger et al. (2020)
and Gu et al. (2020) use machine learning techniques to predict stock market returns and asset risk premiums,
respectively, accounting for non-linearities and many characteristics.
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firm investment to monetary policy shocks, respectively; Gürkaynak et al. (2022), who investigate how

liquidity and leverage influence the response of market value; Gertler and Gilchrist (1994) and Crouzet

and Mehrotra (2020) examine respectively the role of size and industry scope for the response of sales

and investments to monetary policy and business cycle fluctuations; Covas and Haan (2011) and Begenau

and Salomao (2019) study debt issuance by firm size over the business cycle. Prior research typically

examines a single balance-sheet characteristic at a time and imposes linearity in how firm characteristics

influence responses to aggregate shocks. In contrast, we depart from the standard linear panel regression

approach and apply machine learning methods to incorporate a large set of firm characteristics simulta-

neously.4 We show that the heterogeneity in firm sensitivities is highly non-linear with strong interactions

among characteristics, underscoring the importance of a comprehensive analysis with a high dimensional

characteristic space.

Moreover, the macroeconomic literature has devoted limited attention to heterogeneity in firm-level

sensitivity to uncertainty and oil shocks, despite these being key drivers of macroeconomic fluctuations

(Christiano et al., 2014; Känzig, 2021). For instance, Alfaro et al. (2024) shows that aggregate financial

frictions amplify the negative effects of uncertainty shocks on investment, sales, and debt issuance, while

Kumar et al. (2023) finds that the impact of uncertainty on sales and investment depends on firm size,

using an RTC design. In the case of oil shocks, Narayan and Sharma (2011) and Tsai (2015) study how

a firm’s market value reacts to oil shocks depending on its size and industry scope. We expand this

literature by providing novel evidence on the heterogeneity in firm-level sensitivity to uncertainty and oil

shocks, its determinants, and its aggregate impact.

Lastly, our paper contributes to the growing literature on the macroeconomic implications of firm-level

heterogeneity–including differences in size, leverage, industrial sector, and debt maturity structure–for

aggregate fluctuations and the transmission of shocks. Prominent contributions in this area include Cooley

and Quadrini (2001), Cooley and Quadrini (2006), Buera and Moll (2015), Crouzet (2018), Ottonello and

Winberry (2020), Deng and Fang (2022), and Krusell et al. (2023), among others. Unlike most earlier

contributions, which rely on quantitative macroeconomic models, we develop an aggregation framework in

the spirit of Crouzet and Mehrotra (2020) and leverage the estimated distribution of firm-level sensitivities

from the random forest model to decompose the aggregate effect into a mean and a covariance term.

5 Our findings on the dampening effects of firm-level heterogeneity on the transmission of shocks to

macroeconomic aggregates provide a more general perspective than previous studies, demonstrating that

firm-level heterogeneity systematically weakens the aggregate response to macroeconomic fluctuations.

4For data limitation, we do not consider additional firm characteristics such as paying dividends (Farre-Mensa
and Ljungqvist, 2016) or firm age (Cloyne et al., 2018).

5Chang et al. (2024a), Chang et al. (2024b), and Lenza and Savoia (2024) offer an alternative approach
based on functional VARs and heterogeneous VARs, which integrate aggregate variables with cross-sectional
distributions to study their dynamic interactions. In contrast, our approach uses machine learning techniques to
estimate firm-level sensitivities to aggregate shocks, which we then aggregate in a bottom-up framework to assess
macroeconomic implications.
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Moreover, differently from previous studies, we assess the quantitative role of the heterogeneity driven

by the non-linear relationships between firm sensitivity and underlying characteristics.

2 Metholodogy

Our objective is to analyze how firms’ balance-sheet characteristics affect the sensitivity of their

outcomes to aggregate fluctuations and the heterogeneity of these responses. We employ the General-

ized Random Forest algorithm, introduced by Athey et al. (2019), to estimate heterogeneous firm-level

responses and compare its performance to that of a standard linear panel regression model. To assess

their quantitative accuracy, we conduct Monte Carlo simulations under various data-generating process

scenarios in Appendix A.2.

2.1 Linear Panel Regression

Consider an empirical setting where we observe the outcome variables and characteristics of a set of

firms, indexed by i, over multiple consecutive periods, indexed by t. The outcome variable of interest,

Yi,t, represents firm-level performance measures such as sales growth, investment, or other key indicators.

Let Wt denote the treatment effect or a source of aggregate fluctuation that is common to all firms.

Firm-level characteristics, Xi,t−1, can influence the sensitivity of Yi,t to Wt.

To estimate the heterogeneous response of firms’ outcomes (Yi,t) to an aggregate shock (Wt), condi-

tional on a set of firm-level characteristics (Xi,t−1) we estimate the following heterogeneous linear panel

regression using OLS:

Yi,t = α+ β0 ·Wt + β1 ·Xi,t−1 + β′
2 (Wt ·Xi,t−1) + ϵi,t, (1)

where ϵi,t is an i.i.d. error term, and firm characteristics are predetermined at t − 1. The parameter

vector of interest, β2, captures how firms’ sensitivity to aggregate shocks varies with their characteristics.

The marginal effect of the aggregate shockWt on firm outcomes is given by β0+β
′
2Xi,t−1, which depends

linearly on Xi,t−1. Equation (1) provides a standard econometric framework for estimating heterogeneity

in firms’ responsiveness to aggregate shocks.

2.2 A Brief Description of a Generalized Random Forest

Machine learning methods provide a flexible approach to estimating heterogeneous sensitivities, al-

lowing for a potentially complex, high-dimensional characteristic space and non-linear relationships in

the marginal effects. Specifically, the GRF algorithm developed by Athey et al. (2019), enables the
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nonparametric estimation of the following model:

Yi,t = b
(
Xi,t−1

)
·Wt + εi,t , β(x) = E

[
b
(
Xi,t−1

) ∣∣Xi,t−1 = x
]
, (2)

where ϵi,t is an i.i.d. error term, b is a flexible function of firms’ characteristics, and β(x) is the average

conditional effect of the aggregate shock Wt on the outcome Yi,t for firms with characteristics equal to x.

The latter, which is our object of interest, is determined as follows in the GRF algorithm:

β̂(x) =

∑n
i=1 αi(x)

(
Wi − W̄α

) (
Yi − Ȳα

)∑n
i=1 αi(x)

(
Wi − W̄α

) , (3)

where, αi(x) is a weight determined by the causal forest, W̄α =
∑n

i=1 αi(x)Wi is a weighted average of

the shock, and Ȳα =
∑n

i=1 αi(x)Yi is a weighted average of the outcome.

The GRF algorithm estimates β(x) in two steps: first, it constructs a forest of decision trees designed

to partition the data in a way that maximizes heterogeneity in firms’ responses to aggregate shocks, and

second, it estimates the conditional average treatment effect (CATE) using a locally weighted regression

approach. In the first stage, GRF builds a collection of honest and adaptive decision trees that recursively

split the data based on firm characteristics Xi,t−1. Unlike standard regression trees, which minimize pre-

diction errors, GRF partitions the sample to maximize heterogeneity in firms’ sensitivity to the aggregate

shock Wt. The algorithm is considered “honest” because it uses one subsample to determine optimal

splits and a separate subsample to estimate treatment effects within each leaf, thereby mitigating overfit-

ting. Each tree is constructed by selecting a random subsample of the data, and splits are determined by

optimizing a criterion that prioritizes variation in the estimated treatment effects rather than differences

in outcome levels alone. In other words, the algorithm selects splits by maximizing the expected het-

erogeneity in treatment effects across partitions, typically based on the variance of Wt within candidate

splits. Once the forest is grown, it provides a data-driven partitioning of the firm characteristic space,

grouping together firms that exhibit similar estimated sensitivity to aggregate fluctuations.

In the second stage, GRF estimates the heterogeneous treatment effect β(x) by aggregating informa-

tion across trees. For a given firm with characteristics Xi,t−1 = x, the algorithm identifies neighboring

firms that frequently appear in the same leaves across multiple trees. The estimated treatment effect is

then computed using a local linear regression, where each observation is assigned a weight αi(x) based

on how often it appears in the same terminal node as the hypothetical firm x. These weights, which

are determined by the structure of the causal forest, ensure that β̂(x) is locally smoothed and not overly

sensitive to a single partition. Finally, using these weights, GRF estimates β(x) via a weighted regression

of firm outcomes Yi,t on aggregate shocks Wt, ensuring that identification relies on variation inWt within

locally homogeneous subgroups. The algorithm further regularizes estimation by tuning the minimum

leaf size, selecting the optimal number of trees, and controlling for variance in the estimated treatment
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effects.

Advantages of GRF. The GRF algorithm in Equation (2) offers key advantages over the standard

linear panel regression in Equation (1), making it particularly well-suited for estimating the heterogeneous

effects of aggregate shocks. The GRF agnostic approach to the function b
(
Xi,t−1

)
allows it to account

for non-linear, flexible relationships in the marginal effects of shocks, accommodating a complex, high-

dimensional balance-sheet characteristic space. The linear panel regression model assumes that firms’

characteristics linearly influence the heterogeneity in their sensitivity to aggregate shocks. However, this

linearity assumption may be restrictive and could lead to misspecification if the nonlinear component of

heterogeneity is significant. While the linear panel regression model can incorporate more complex forms

of heterogeneity by including polynomial terms in the firm-level characteristics, it remains a parametric

approach that requires the econometrician to take a stance of the unknown forms of non-linearities, making

the LPM vulnerable to errors from model misspecification. In contrast, GRF explores the covariate

space non-parametrically, adaptively detecting intricate relationships without requiring a pre-specified

form. Moreover, GRF can efficiently handle a high-dimensional characteristics space, automatically

putting more weight on the most important covariates. This feature of the GRF mitigates the curse

of dimensionality inherent in models with large sets of covariates and interactions. Enumerating all

possible pairwise (or higher-order) interactions in a linear model quickly leads to over-parameterization

and multicollinearity, while GRF adaptively partitions the data, freeing the researcher from having to

manually specify functional forms or interactions. Thus, the linearity and parametric features of the

linear panel regression model become more restrictive in the presence of high-dimensional characteristics

space.6

3 Application to U.S. Firms

We apply the GRF algorithm to examine how firm outcomes respond to aggregate fluctuations based

on a high-dimensional set of observed balance-sheet characteristics, using firm-level data from the U.S.

over the period 1990–2019. We begin by describing the data, followed by an analysis of the estimated

firm-level sensitivities and a comparison with those obtained from a linear panel regression.

6However, GRF’s flexibility comes with trade-offs, such as the potential loss of precision in smaller samples
and reliance on careful hyperparameter tuning. When the true relationship between covariates and the conditional
effect of shocks is linear–or can be sufficiently well captured by a modest set of polynomial terms– a linear panel
regression model may perform comparably to GRF. We illustrate the relative performance of the models in the
Monte Carlo simulation exercise in Appendix A.2.
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3.1 Data and measurement

Our primary data source is the quarterly Compustat dataset, which provides comprehensive financial

statement information for publicly listed companies in the U.S. We merge firm-level data with a set of

aggregate variables and shocks commonly used in the literature. The final dataset includes 220,259 firm-

quarter observations spanning from 1990 Q1 to 2019 Q4. These dates align with those of the aggregate

variables in the panel, excluding the COVID-19 period. Additionally, all variables are deflated using the

implied price index of gross value added in the U.S. non-farm business sector. Below, we provide a brief

overview of the primary firm-level balance-sheet variables and the measurement of aggregate variables.

Additional details on variable construction and data cleaning are provided in Appendix B.

Firm-level data. Our empirical analysis utilizes two sets of firm-level variables. The goal is to

estimate the heterogeneous sensitivity of four firm outcome variables: annual real sales growth, debt

issuance (measured by the one-year percentage change in short- and long-term debt), market value growth,

and the investment rate (measured as the one-year percentage change in capital stock using the perpetual

inventory method). The second set consists of eight firm-level balance-sheet characteristics, which we

categorize into two groups: financial and non-financial variables. Non-financial characteristics include firm

size (measured by the logarithm of total assets), industry scope (captured by NAICS 5-digit industry

codes), ten-years sales volatility, and firm profitability (measured by return on assets, ROA). Financial

characteristics include the liquidity ratio (cash-to-total assets), leverage ratio (total debt-to-total assets),

distance to default (Merton, 1974)), and debt liquidity (measured by the proportion of short-term debt

to total debt). These firm-level balance-sheet characteristics have been widely used in the literature to

study the heterogeneity in the transmission of aggregate fluctuations onto firm outcomes.7 Appendix

B presents selected summary statistics and histograms of all firm-level variables used in the empirical

analysis. Notably, Table 5 in Appendix B reports the pairwise correlation between all independent

variables, showing that, although some correlation exists among firm-level characteristics, they provide

distinct information along different dimensions.

Aggregate fluctuations. We investigate the sensitivity of firm outcomes to the following aggregate

fluctuations: business cycles, macroeconomic uncertainty shocks, monetary policy shocks, and oil price

shocks.8. Business cycle fluctuations are proxied by the annual percentage change in real GDP following

7For instance, Ottonello and Winberry (2020), Cloyne et al. (2018), and Jeenas (2018) study the role that
distance to default, leverage and liquidity play in the transmission of monetary policy shocks to investment,
respectively. Similarly, Alfaro et al. (2024) studies the effects of uncertainty on firms’ financial variables such as
liquidity and leverage, while Crouzet and Mehrotra (2020) focuses on how size and industry scope impact the
response to business cycle fluctuations.

8We examine oil price shocks for two reasons. First, they provide a clear and distinct example of exogenous
inflation changes driven by supply factors. Second, oil price shocks have gained increasing importance in the
macroeconomic literature, particularly following the Covid-19 pandemic.
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Crouzet and Mehrotra (2020) Monetary policy shocks are measured using interest rate surprises around

Federal Reserve announcements, identified using high-frequency variations in the 3-month federal funds

rate futures, and cleaned of past aggregate fluctuations as in Bauer and Swanson (2023). Uncertainty

shocks are exogenous change in macroeconomic uncertainty, as measured in Jurado et al. (2015). Oil price

shocks are proxied with high-frequency changes in oil supply expectations around OPEC announcements

from Känzig (2021). To normalize the size of the shocks, we use them as instruments for a set of

endogenous variables. Using the exogenous variables as instrument imposes a unit effect normalization of

the shocks in terms of a one-unit change in the endogenous variable (Stock andWatson, 2018). Specifically,

we use the one-year percentage change in the one-year government bond yield for monetary policy shocks,

the one-year change in the oil price index for oil price shocks, and the volatility index for uncertainty

shocks. Figure 8 in Appendix B presents the time series of the aggregate fluctuations used in the paper.

Estimation details. We estimate the sensitivity of four firm outcome variables to each aggregate

shock, conditional on eight firm-level balance-sheet characteristics, considering a total of 16 scenarios. For

each outcome variable-aggregate shock pair, we estimate the GRF model in Equation (2) and the LPM

in Equation (1) via OLS. Since the outcome variables are constructed as one-year percentage changes,

we lag the balance-sheet characteristics by four periods in the empirical application.

In the GRF model, we set the number of trees in the forest to 2,000, with equal weighting. We use

honest splitting for sub-sample partitioning, allocating 50% of the data to build each tree and ensuring

a minimum of five observations per tree leaf. Observations are clustered at the firm level with equal

weight, so firms with more observations receive greater weight, thereby reducing the influence of entry and

exit. Splitting is allowed across all characteristics, with the tuning parameter controlling the maximum

imbalance of a split set at 0.05. For the LPM, we estimate the equation using OLS. We include the

interaction between the aggregate shock, Wt , and industry scope, while absorbing the level of industry

scope to reduce computational burden.

In both models, we do not include time fixed effects, as our objective is to estimate the average

unconditional effects of aggregate shocks on firm outcomes.9 We also omit firm fixed effects because

our primary interest is in assessing the role of industry scope – which is constant at the firm level –

in driving and explaining the response of outcome variables and their heterogeneity across firms. In a

LPM, demeaning variables at the firm level neutralizes all variation in industry scope, allowing for the

estimation of its heterogeneous effect but not its average effect. However, demeaning is not feasible in

the GRF model, as the algorithm operates on variables in levels. Thus, we opt to include industry scope

for comparability purposes across models while effectively partialling out other (potentially unobserved)

firm-level heterogeneity.

9If macroeconomic confounding factors are a concern, macroeconomic variables can be partialled out before
estimation.
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Finally, the data are “centered” before GRF estimation takes place: this step involves differencing

out the effect of the firm-level characteristics on the outcome variables. This is done to ensure that the

GRF model captures the effect of the aggregate shocks on the outcome variables, conditional on the

firm-level characteristics, rather than the effect of the firm-level characteristics themselves. The LPM

does not require this step, as the inclusion of firm-level characteristics in the model already partials out

their effect on the outcome variables. We effectively estimate the random forest on centered variables

Ỹi = Yi− ŷ(−i)
i (Xi) and W̃i =Wi− ŵ(−i)

i (Xi), where ŷ
(−i)
i (Xi) and ŵ

(−i)
i (Xi) are leave-one-out estimates

of marginal expectations, computed without the i-th observation.10

3.2 Documenting non-linearities in firms’ sensitivities

We compare the firm-level sensitivities estimated using the GRF from Equation (2) with those ob-

tained from the linear panel regression model featuring only linear heterogeneity in balance-sheet char-

acteristics as in Equation (1). We document the presence of strong non-linearities in how balance-sheet

characteristics influence the marginal effect estimated using GRF, which are overlooked by the LPM. In

doing so, we leverage a combination of quantitative and qualitative machine learning tools and standard

statistical testing.

Comparison with linear model. Table 1 shows that the Generalized Random Forest and the

LPM yield similar estimates of the mean firm-level sensitivity across all outcome variables and aggre-

gate shocks, but they diverge substantially in higher-order moments. The signs and magnitudes of the

average conditional effects align with economic intuition and are consistent with findings in the existing

literature.11 While the average conditional effects are statistically identical between GRF and the LPM,

higher-order moments (i.e., standard deviation, skewness, and kurtosis) of the distribution of firm-level

sensitivities exhibit significant differences between the two methods. Specifically, the distribution of sen-

sitivities estimated using the LPM exhibits, on average, 50% greater dispersion and 20% higher kurtosis

than GRF. This suggests that GRF captures more moderate and precise patterns of heterogeneity, while

the LPM provides a good first-order approximation but amplifies extreme values due to its rigid func-

tional form and potential overfitting in high-dimensional spaces. By capturing nonlinear interactions,

machine learning provides a more stable and realistic characterization of firm responses, demonstrating

that nonlinearities not only affect individual firms but also shape the overall distribution of responses at

the macro level.

10Athey et al. (2019) note that the performance of the forests can be improved by this procedure, and that
the estimator β̂(x) is more robust to confounding effects. Chernozhukov et al. (2018) also apply a similar orthog-
onalization procedure.

11For example, both GRF and the LPM estimate that a 1% increase in GDP is associated, on average, with a
2.1% increase in firms’ sales, closely aligning with the 3% reported by Crouzet and Mehrotra (2020) using QFR
establishment-level data.
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Table 1: Summary statistics of estimated firm-level sensitivities

GRF Linear Panel Model

Outcome variable Mean St. Dev. Skewness Kurtosis Mean St. Dev. Skewness Kurtosis

Panel A: Business Cycle

Sales 2.15 0.71 0.45 2.64 2.16 1.61 0.51 2.68

Market Value 4.24 1.40 0.06 2.34 4.38 2.86 0.11 2.85

Investment 0.91 0.60 0.22 2.55 0.90 1.09 0.18 3.04

Debt 1.26 1.00 0.01 2.46 1.27 1.93 0.20 3.39

Panel B: Monetary Policy

Sales 1.31 3.33 0.30 2.65 1.08 5.59 0.44 3.30

Market Value -9.17 7.99 0.30 2.28 -9.87 11.26 -0.14 3.19

Investment -0.86 2.27 -0.22 2.66 -1.11 3.51 0.04 3.00

Debt -1.05 3.78 -0.08 2.81 -0.95 8.26 0.57 3.63

Panel C: Uncertainty

Sales -0.22 0.12 -0.11 2.41 -0.22 0.25 -0.42 3.64

Market Value -1.29 0.26 -0.18 2.52 -1.30 0.53 -0.14 2.99

Investment -0.09 0.11 -0.41 2.61 -0.09 0.20 0.13 2.97

Debt -0.07 0.16 -0.32 2.74 -0.10 0.39 0.10 3.59

Panel D: Oil Price

Sales -0.02 0.06 0.02 2.75 -0.02 0.14 0.10 4.42

Market Value -0.03 0.17 -0.18 2.53 -0.01 0.34 -0.30 3.21

Investment -0.04 0.05 -0.27 2.66 -0.04 0.09 0.02 3.51

Debt -0.07 0.10 -0.24 3.08 -0.07 0.21 -0.27 3.81

Notes: The table presents the summary statistics of the estimated firm-level sensitivities obtained from the
GRF and the linear panel regression model across different outcome variables and shocks. Metrics include
the mean, standard deviation, skewness, and kurtosis for each method. Panels A through D correspond to
business cycle fluctuations, monetary policy, uncertainty, and oil price shock, respectively for all outcome
variables analyzed.

These differences in higher-order moments result in substantial firm-level deviations between the

sensitivities estimated by GRF and the LPM, despite their strong overall correlation. Figure 11 compares

the individual firm-level sensitivities estimated by GRF to those obtained from the linear panel regression.

Across all cases, the sensitivities estimated by GRF and the LPM exhibit a strong positive correlation,

as indicated by the red linear fit trend, suggesting that both methodologies capture similar patterns in

firm-level sensitivities to aggregate shocks. While sensitivities cluster around the 45-degree line in central

regions, firm-level deviations between GRF and the linear model are substantial, particularly in the tails

of the distribution and for firms with extreme balance-sheet characteristics. These deviations, which can

be as large as 100% in magnitude and even opposite in sign, suggest that balance-sheet characteristics

influence the conditional effect in complex and nonlinear ways that the LPM fails to capture.12

Accumulate Local Effects. An Accumulated Local Effects (ALE) plot is a visualization tool

used to illustrate the relationship between one or more features and the predicted outcome of a machine

learning model. It helps interpret the marginal effect of a feature on model predictions while accounting for

12Figure 12 in Appendix C reports the distribution of errors, defined as the percentage deviation between GRF
and linear panel sensitivities, for each aggregate shock-outcome variable pair.
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interactions and correlations with other features.13 We use ALE plots to assess whether the marginal effect

of each balance-sheet characteristic on firm-level sensitivities varies with the level of the characteristic

itself, providing evidence of potential nonlinearities in firm responses.

Figure 13 in Appendix C presents ALE plots for each balance-sheet characteristic across outcome

variable-aggregate shock pairs. These plots reveal strong nonlinearities in most cases. While the estimated

relationships are monotonic in some instances, ALE plots frequently exhibit pronounced concavities or

convexities, suggesting that a linear specification may be an inadequate approximation–particularly in

the tails of the distribution of firm characteristics. For example, distance to default often exhibits a kink

around values of five or ten, beyond which the marginal effect flattens out. Similarly, the effect of firm

size frequently follows an S-shaped pattern, where marginal effects are strongest for firms near the center

of the size distribution. Other characteristics, such as cash holdings, sales volatility, and ROA, display

U-shaped or inverted U-shaped patterns, further rejecting linearity. Only in a few cases we observe

approximately linear marginal effects–for instance, leverage appears to have an approximately constant

effect on the sensitivity of market value to uncertainty shocks.

Role of interactions between characteristics. We show that interactions between firms’ char-

acteristics strongly influence firms’ sensitivities to aggregate shocks. The linearity assumption embedded

in the LPM rules out any non-linearity in which combinations of characteristics jointly influence firms’

sensitivities by interacting with each other.

We quantify the strength of these interactions for the GRF estimated sensitivities leveraging machine

learning tools. Specifically, we rely on the Friedman’s H-statistic, which is a measure used to quantify the

degree of interaction between characteristics in a predictive model. It evaluates whether the joint effect of

two or more characteristics on the model’s output is significantly greater than the sum of their individual

effects. The statistic is computed by comparing the variance in the model’s predictions explained by the

interaction between characteristics with the total variance explained by the characteristics. The statistic

has the desirable property of ranging from zero to one, where zero indicates purely additive effects with

no interaction between characteristics, and one indicates that characteristics only affect the model jointly.

We consider two cases: a total interaction measure evaluating a characteristic’s interaction with all other

characteristics in the model, and a two-way interaction measure assessing the interaction between two

characteristics.14

13ALE plots provide a more reliable alternative to the commonly used Partial Dependence Plot (PDP). A
key assumption underlying PDPs is that the analyzed features are independent of others, which may not hold in
empirical applications. In contrast, ALE plots compute local effects within intervals, conditioning on the joint
distribution of other features and thereby allowing for correlations.

14Formally, the H-statistic is defined as H2
j =

∑n
i=1

[
f̂(x(i))−PDj(x

(i)
j )−PD−j(x

(i)
−j)

]2∑n
i=1 f̂2(x(i))

, where f̂(x(i)) is the predic-

tion function for observation i, and PDj(x
(i)
j ) and PD−j(x

(i)
−j) are the partial dependence functions that depend

on characteristic j and all features except the j-th characteristic, respectively. The statistic can be easily extended
to the pairwise case, where the 2-way partial dependence function replaces the prediction function.
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Figure 1: Strength of interactions
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Notes: This plot presents the strength of interaction between firm characteristics for each aggregate shock.
We measure the strength of interaction of each characteristic using the Friedman’s H-statistic against all other
characteristics. Each panel corresponds to a specific shock (e.g., business cycle, uncertainty, monetary policy,
or oil price shock). The characteristics on the y-axis are ordered by their average strength of interaction within
each aggregate shock, with filled points representing the average strength of interaction for each characteristic.
“Financial” characteristics are depicted in red, while “Non-Financial” characteristics are shown in black. Unfilled
shapes overlay the interaction strength for individual outcome variables: circles represent sales, triangles represent
market value, squares represent debt, and diamonds represent investment. The x-axis reports the interaction
strength, where a value of 0.01 corresponds to 1%.

Figure 1 shows that interactions among characteristics are quantitatively relevant and strongly in-

fluence firms’ sensitivities to aggregate shocks. We measure the strength of interactions that each char-

acteristic has with all other characteristics together for each outcome variable - aggregate shock pair.

On average, interactions can represent up to 40% of the variance in the outcome variable explained by

a given characteristic, underscoring the importance of this form of non-linearities. Firm size is the char-

acteristic with the highest or second highest H-statistic across all aggregate shocks, indicating that a

large portion of its relevance for firms’ sensitivities derives from its influence on the effect of other char-

acteristics. Non-financial characteristics exhibit stronger interactions than financial characteristics for

business cycle fluctuations and uncertainty shocks, while the ranking is more balanced between financial
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and non-financial characteristics for monetary policy and oil price shocks. Notably, on average across all

cases, firms’ debt and investment choices are the outcome variables that exhibit the strongest influence

from interactions among characteristics.

Figure 14 in Appendix C evaluates the role of pairwise interactions among firms’ characteristics,

extending the insights from the joint interaction case above. We focus on the ten most significant

characteristic pairs for each outcome variable-aggregate shock pair, presenting the average strength of

interactions across outcome variables for each aggregate shock. We find that monetary policy and oil price

shocks exhibit stronger pairwise interactions, while business cycle fluctuations and uncertainty shocks have

fewer and more moderate interactions, indicating that interactions are more diffuse among characteristics

in the latter case. Interestingly, we also find that financial and non-financial characteristics interact with

each other, highlighting the importance of including both sets of characteristics in the analysis. For

instance, firm size strongly interacts with many, often all, other characteristics, in line with its strong

quantitative relevance in the joint interaction case.

Statistical tests for non-linearity. We complement the machine learning tools by formally testing

whether the relationship between the conditional effect estimated using GRF and firms’ characteristics

is linear. In the LPM, the implied conditional effect of an aggregate shock on firms’ outcomes is linear

in firms’ characteristics, i.e. b(Xi,t−1) = β0 +
∑

j∈J βj · X
j
i,t−1, where J is the set of characteristics.

We test whether the estimated GRF sensitivities, ̂β(Xi,t−1), are linear in the characteristics, leveraging

three different statistical measures commonly used in testing for linearity: the estimated degrees of a

Generalized Additive Model (GAM henceforth), and the Harvey-Collier and Regression Specification

Error Test (RESET henceforth) tests.

We estimate a GAM of the firms’ sensitivities on firms’ characteristics. In a GAM, a univariate

dependent variable depends linearly on unknown smooth functions of some predictor variables. Formally,

this translates into estimating the following GAM: ̂β(Xi,t−1) =
∑

j∈J fj(X
j
i,t−1), where J is the set

of characteristics and fj is a smooth function of characteristic j.15 The effective degrees of freedom

estimated by the GAM for each smooth function fj can be interpreted as a proxy for the degree of non-

linearity in the relationship between dependent and predictor variables: an EDF around one indicates a

linear relationship, while an EDF larger than one indicates a non-linear relationship. The last column of

Table 6 in Appendix C reports the minimum estimated degree of freedom across characteristics for each

outcome variable - aggregate shock pair. In all cases, the minimum EDF is around six, well above the

threshold value of one, indicating the presence of strong non linearities in firms’ characteristics, in line

with partial dependence analysis.

As an alternative, we run the RESET to check for misspecification in a linear OLS regression of

15We exclude industry scope from the set of characteristics because it is unreasonable to assess whether the
conditional effect is non linear in 5-digit NAICS. We include 5-digit NAICS fixed effects to control for heterogeneity
in industry scope.
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̂β(Xi,t−1) onto the complete set of firms’ characteristics as explanatory variables. The test adds higher-

order terms or interaction terms of the independent variables to the regression. If these added terms are

statistically significant, it suggests that the model may be misspecified. Columns (3) and (4) of Table

6 report the test statistics and the corresponding p-values for each outcome variable - aggregate shock

pair, respectively. Also, in this case, linearity is rejected as no outcome variable - aggregate shock pair

accepts the null hypothesis of correct model specification.

Lastly, the Harvey-Collier test for linearity involves a t-test on the mean of the recursive residuals

between dependent and independent variables, which should be equal to zero under the null hypothesis

that their relationship is linear. We perform the test for each aggregate shock-outcome variable pair by

testing the linearity between the firm-level sensitivities estimated using GRF and firms’ characteristics.

Formally, we consider a linear OLS regression of ̂β(Xi,t−1) onto the complete set of firms’ characteristics

as explanatory variables The first two columns of Table 6 report the test statistics and the corresponding

p-values, respectively. As expected, linearity is strongly rejected, in line with previous statistical measures.

3.3 Relevance of characteristics for heterogeneity

We use traditional and modern machine learning tools to evaluate the role of firm characteristics

in shaping firms’ responses to aggregate shocks and their heterogeneity across firms. Unlike traditional

parametric models, GRF estimates firm-level sensitivities without imposing a predetermined functional

form. GRF efficiently manages this complexity by automatically assigning greater weight to the most

relevant covariates. This approach allows for a more precise assessment of how firm characteristics drive

variation in sensitivity across firms. Crucially, the use of a high-dimensional characteristic space does not

compromise the interpretability of the results.

Heterogeneity in characteristics’ relevance We quantify the marginal impact of a character-

istic on firms’ sensitivities using Shapley values, a game-theoretic approach for attributing the contribu-

tion of individual features to a machine learning model’s predictions. Shapley values measure a feature’s

marginal contribution by computing the difference in predictions with and without the feature across all

possible subsets, averaging these contributions over all subsets. Given the computational requirements,

we compute Shapley values for each characteristic in all outcome variable-aggregate shock pairs over a

grid of 100 points corresponding to the characteristic’s percentiles. To quantify the average importance of

a characteristic to firms’ sensitivities, we follow standard practice and compute the mean absolute value

of the estimated Shapley values over the hundred points. The intuition is that each Shapley value is a

force that either increases or decreases the model’s output; therefore, characteristics with large absolute

Shapley values are relatively more important. We normalize the importance of each characteristic so

that it is equal to one for the characteristic with the highest mean absolute value in each given outcome

variable - aggregate shock pair.
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Figure 2: Marginal impact of characteristics on firms’ sensitivity - Shapley values
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Notes: This plot visualizes Shapley value-based importance of various characteristics across different shocks
and outcome variables. Each panel corresponds to a specific aggregate shock (e.g., business cycle, uncertainty,
monetary policy, or oil price shock). The y-axis orders characteristics by their mean absolute Shapley value,
capturing their marginal contribution to firms’ sensitivities. We compute Shapley values for each characteristic
in all outcome variable-aggregate shock pairs over a grid of 100 points corresponding to the characteristic’s
percentiles. We compute the mean absolute value of the estimated Shapley values over the hundred points.
We normalize importance by scaling each characteristic to the highest mean absolute Shapley value within each
outcome variable - aggregate shock pair, setting the maximum to one. Filled points represent the average across
outcome variables for each characteristic, with financial characteristics in red and non-financial characteristics in
black. Unfilled shapes overlay the importance for individual outcome variables: circles represent sales, triangles
represent market value, squares represent debt, and diamonds represent investment.

Figure 2 shows that size is the leading feature in explaining firms’ sensitivity to aggregate shock,

being the most relevant characteristic for the response to business cycle fluctuations and uncertainty

shocks, and the second most relevant for monetary policy and oil price shocks. Distance to default is

the most relevant characteristic in explaining firms’ sensitivity to monetary policy shock. Importance

measures are dispersed, but the distribution of importance measures does not exhibit a strong skewness.

In other words, we do not see many cases where one characteristic has an overwhelming effect on firms’

sensitivity relative to all the other characteristics. This indicates that, on average, the importance of each

characteristic, relative to the most important characteristic, is comparable in magnitude, underscoring the
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importance of including multiple characteristics to explain firm-level sensitivities to aggregate shocks. We

find that non-financial characteristics are overwhelmingly more important than financial characteristics

for sensitivity to business cycle fluctuations, while the relative importance of the two sets of characteristics

is ambiguous for the other shocks.

Heterogeneity in firms’ sensitivity We also assess the importance of each characteristic in driv-

ing heterogeneity in firms’ sensitivities.16 Specifically, we measure the contribution of each characteristic

to heterogeneity by analyzing its role in the moment function, which is derived from the proportion of

splits associated with the characteristic of interest. In a random forest framework, the importance of a

characteristic is measured as the depth-weighted frequency of splits where the characteristic is used. This

metric provides an intuitive interpretation of how much of the variation in sensitivities is attributable to

each firm characteristic. We compute this measure for each characteristic across all outcome variable-

aggregate shock pairs, allowing us to decompose the sources of heterogeneity in firm responses to aggregate

fluctuations.

Figure 3 shows that heterogeneity is dispersed across many characteristics. On average, most char-

acteristics contribute between 10% and 20% to the overall heterogeneity in firms’ sensitivities, with only

a few instances exceeding 50%. This suggests that firm-level heterogeneity is not driven by a single

characteristic but rather by a broad set of attributes. Furthermore, the ranking of characteristics varies

significantly across aggregate shock-outcome variable pairs. For example, firm size, along with other

non-financial characteristics such as industry scope, plays a dominant role in explaining firms’ sensi-

tivity to business cycle fluctuations and uncertainty shocks. In contrast, financial variables are more

relevant for monetary policy and uncertainty shocks, with distance to default explaining nearly 60% of

the heterogeneity in monetary policy shocks, while cash holdings and leverage account for large shares of

heterogeneity in response to uncertainty shocks.

We find that these measures of importance are strongly correlated, despite there being no ex-ante

reason for such a correlation. Figure 16 in Appendix C illustrates the relationship between the share

of heterogeneity and the Shapley-based characteristic relevance, after controlling for aggregate shocks,

outcome variables, and characteristic fixed effects. The two measures exhibit a positive correlation,

suggesting that the characteristics influencing firms’ sensitivities on average are also those driving hetero-

geneity across firms. Additionally, we find a positive correlation between the strength of interactions and

Shapley-based relevance, indicating that a characteristic’s importance for the outcome variable depends

significantly on its interaction with other characteristics.

16We formally test for the presence of heterogeneity in conditional average effects across firms using the
machine-learning based Chernozhukov et al. (2018) test. Appendix A provides details on the construction of the
test. Figure 15 in Appendix C reports the coefficients and the corresponding p-values of the heterogeneity in
treatment effects test. In almost all outcome variable - aggregate shock pairs, the Chernozhukov et al. (2018) test
strongly supports the presence of heterogeneity in sensitivities across firms.
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Figure 3: Characteristics importance for heterogeneity
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Notes: This plot visualizes the share of heterogeneity explained by each characteristic across different shocks and
outcome variables. The share of heterogeneity explained by each characteristics is computed as the depth-weighted
frequency of splits in the forest where the characteristic is used. Each panel corresponds to a specific shock (e.g.,
business cycle, uncertainty, monetary policy, or oil price shock). The characteristics on the y-axis are ordered by
their average importance share within each shock, with filled points representing the average importance share
of each characteristic. “Financial” characteristics are depicted in red, while “Non-Financial” characteristics are
shown in black. Unfilled shapes overlay the importance share for individual outcome variables: circles represent
sales, triangles represent market value, squares represent debt, and diamonds represent investment. The x-axis
shows the importance share, where a value of 0.01 corresponds to 1% of total heterogeneity.

3.4 Discussion

Figure 3 also offers insights consistent with theoretical predictions in the literature. First, we find that

non-financial characteristics collectively emerge as the primary drivers of firms’ sensitivity to business

cycle fluctuations, accounting for 86.5% of the heterogeneity in investment responses and 76% in sales.

Among these, industry affiliation plays the most prominent role in explaining sales growth variability,

contributing 45% to its heterogeneity. Firm size, in turn, is particularly important for understanding

differences in investment and debt issuance, accounting for nearly 50% of the heterogeneity during eco-

nomic booms and recessions. In contrast, heterogeneity in stock market responses is more closely tied
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to profitability, which contributes 35% to the variation in price responses. Financial characteristics con-

sistently play a limited role across all firm-level outcomes. Our findings are in line with the theoretical

conclusions of Crouzet and Mehrotra (2020), who argue that firms’ heterogeneous sensitivity to business

cycle fluctuations is primarily driven by differences in industry scope and demand-side forces, rather than

by financial frictions or variation in the cost of external finance.

Second, Figure 3 highlights two key insights related to the literature on monetary policy. First, firms’

default risk emerges as the most important variable explaining heterogeneity in responses to identified

monetary policy shocks. Specifically, we find that distance-to-default accounts for more than 50% of the

variation in stock price and sales growth responses at the micro-level, and shares the top position with

liquidity in explaining the heterogeneity in firms’ investment responses (contributing 23% and 21%, re-

spectively).17 Second, industry and other non-financial characteristics appear to be much less important,

particularly in explaining heterogeneity in investment and stock price sensitivity.

Our findings are theoretically consistent with mechanisms based on financial frictions and suggest a

more limited role for sectoral heterogeneity, despite its prominence in the monetary policy literature. In

particular, our results support the theoretical frameworks proposed by Ottonello and Winberry (2020)

and Jeenas (2018), which highlight the role of financial frictions and cash liquidity in generating cross-

firm heterogeneity in the transmission of monetary policy. By contrast, our findings are less supportive

of sectoral-channel mechanisms emphasized by Pasten et al. (2020) and Ozdagli and Weber (2017), who

argue that sectors with greater price flexibility and stronger network centrality disproportionately shape

the aggregate response to monetary shocks. While we do not rule out the relevance of sectoral propaga-

tion mechanisms at the macroeconomic level, our micro-level evidence indicates that firm-specific financial

characteristics–particularly leverage and liquidity–are the dominant source of heterogeneity. Sectoral affil-

iation, by contrast, explains relatively little of the variation in firm-level responses, suggesting that models

emphasizing financial frictions provide a more compelling explanation of the observed heterogeneity.

Third, Figure 3 shows that non-financial characteristics, particularly size and industry, are relevant

for the heterogeneity in the response of investment and stock market prices to changes in uncertainty

(57% and 41%, respectively). Instead, financial characteristics, particularly distance-to-default, leverage,

and liquidity, are relevant only for the response of debt issuance and, to a certain extent, for the response

of sales. These patterns are consistent with theoretical frameworks that generate heterogeneity through

financial frictions, as in Alfaro et al. (2024), while also highlighting the relevance of an additional source of

heterogeneity–likely stemming from differences in demand elasticity and cyclical exposure at the sectoral

level–which may be equally important in explaining the heterogeneous stock price responses to uncertainty

shocks.

17Additionally, debt issuance in response to monetary policy shocks, which is less studied in the literature,
is largely driven by leverage (17%) and short-term debt (16%). This finding aligns with the idea that firms
preserving financial capacity are more likely to adjust their debt positions.
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Lastly, relatively few studies have examined the heterogeneous effects of oil shocks across firms. We

contribute to this literature by showing that financial characteristics–particularly leverage and liquidity–

play a key role in explaining heterogeneity in firms’ market value responses, accounting for 32% and 22% of

the variation, respectively. In contrast, real outcome variables such as sales, investment, and debt exhibit

a more balanced split between financial and non-financial characteristics, along with a more dispersed

contribution across predictors. These patterns are consistent with the idea that financial strength and

cash buffers help firms better withstand shocks to marginal costs.

4 Aggregate Implications of Firms’ Heterogeneity

This section studies the aggregate implications of the heterogeneity and non-linearity in firms’ sen-

sitivity to aggregate shocks. We first propose a theory of aggregation to compute the response of any

aggregate variable to aggregate fluctuations by aggregating firm-level individual responses. Then, using

the aggregation theory and the estimated sensitivities, we assess the contributions of non-linearity and

heterogeneity in firms’ sensitivity to the overall response of the aggregate economy.

4.1 A simple theory of aggregation

Consider a set It of firms continuing to operate between t and t − 1. Let Gt and gi,t denote the

aggregate and the firm-level response of variable Yt following an aggregate shock Wt, respectively:

Gt =
Yt
Yt−1

gi,t =
Yi,t
Yi,t−1

. (4)

Let ωit−1 be the share of Yt−1 accounted for by firm i:

ωit−1 =
Yi,t−1

Yt−1
where Yt−1 =

∑
i∈It

Yi,t−1. (5)

It follows that we can write the aggregate response of variable Yt to an aggregate shock at time t as:

Gt =
∑
i∈It

ωi,t−1gi,t. (6)

Importantly, in our setting, we can easily construct the aggregate response Gt using the firm-level re-

sponses from the estimated models as ĝi,t = ̂β (xi,t−1)Wt and construct the corresponding shares from

our dataset.

The aggregation in Equation (6) highlights that both firm-level sensitivities and shares matter for
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the aggregate response. In fact, we can write Equation (6) to achive the following decomposition:

Gt = gt + Cov(wi,t−1, gi,t), (7)

where the first term is the unweighted average sensitivity across firms, 1
|It|

∑
i∈It

gi,t, and the

second term is the covariance between firm sensitivity and firms’ importance in the aggregate,∑
i∈It

(
ωi,t−1 − 1

|It|

)
(gi,t − gt). The first term captures how, on average, firms respond to aggregate

fluctuations without considering their relative importance in the economy. The second term reflects

how heterogeneity in firms’ sensitivities interacts with the heterogeneity in their weights. A positive

covariance indicates that firms with higher sensitivities tend to have greater relative importance in the

aggregate, amplifying the aggregate response. Conversely, a negative covariance suggests that firms with

lower sensitivities are more influential, dampening the overall aggregate response.

We use Equations (6) and (7) to construct and decompose aggregate responses into an average term

and a covariance term. We begin by constructing a measure of the average aggregate effects of a shock on

a given observable using micro-level data. First, we calculate the aggregate response to a shock, Ĝt, by

weighting the predicted firm-level sensitivities, ĝi,t, estimated using the GRF algorithm, by their relative

importance in the aggregate. This importance is proxied by each firm’s share of a total outcome measure,

such as sales or assets, wi,t−1.

We construct the aggregate response Gt using Equation (6) and estimate the average aggregate effect

of a shock using the following time-series regression:

Ĝt = α+ γWt + ϵt, (8)

where the coefficient γ reflects the average aggregate effect of a 1% aggregate shock on an outcome. This

coefficient captures the effect of both the average sensitivity of firms and the interaction between firm-

level heterogeneity and their weights. We then separate the contributions of the average and covariance

terms by regressing the two terms in Equation (7) on the aggregate shock in a time-series regression like

Equation (8).

We use this theory of aggregation and relative decomposition to quantify the impact of non-linearities

in aggregate fluctuations and the role of firm-level heterogeneity at the aggregate level.

4.2 The aggregate role of non-linearities in sensitivity

We show that non-linearities in firm-level sensitivities are not only prevalent at the micro level but

also significantly influence the aggregate response of outcomes to macroeconomic fluctuations. While

Section 3 documents substantial non-linearities in firms’ sensitivity to aggregate fluctuations due to

balance-sheet characteristics, their macroeconomic relevance depends on the distribution of weights and

ECB Working Paper Series No 3107 24



Table 2: Comparing average aggregate response

GRF Linear Panel Model

Outcome variable Coefficient StD. Error Coefficient StD. Error Difference

Panel A: Business Cycle

Sales 2.07 0.03 2.41 0.04 -0.341***

Market Value 5.22 0.06 5.42 0.08 -0.199**

Investment 0.43 0.01 0.23 0.04 0.203***

Debt 0.02 0.03 0.15 0.05 -0.134**

Panel B: Monetary Policy

Sales 1.04 0.11 0.84 0.26 0.201

Market Value -16.78 0.19 -17.97 0.40 1.195***

Investment 0.07 0.03 -0.06 0.15 0.131

Debt -0.99 0.07 0.77 0.27 -1.757***

Panel C: Uncertainty

Sales -0.18 0.01 -0.22 0.00 0.038***

Market Value -1.13 0.01 -1.08 0.02 -0.045**

Investment 0.01 0.00 0.08 0.01 -0.071***

Debt 0.05 0.00 0.05 0.02 -0.002

Panel D: Oil Price

Sales 0.01 0.00 0.06 0.00 -0.048***

Market Value 0.04 0.01 0.09 0.01 -0.047***

Investment -0.02 0.00 0.03 0.00 -0.051***

Debt -0.05 0.00 -0.04 0.01 -0.006

Notes: The table presents, for each outcome variable - aggregate shock pair, the estimated average aggregate
response from Equation (8) using GRF and LPM, along with their respective standard errors. Coefficients are
estimated using the time-series regression in Equation (8), using the aggregate response series from Equation
(6). Panels A through D correspond to business cycle fluctuations, monetary policy, uncertainty, and oil
price shocks, respectively, for all analyzed outcome variables. We also report the statistical significance of
the differences at the following levels: * p < 0.10, ** p < 0.05, and *** p < 0.01.

their correlation with firm sensitivities. If the sensitivity of firms with larger weights is not particularly

affected by the presence of non-linearities, then the firm-level non-linearities may not fully translate into

aggregate fluctuations. To evaluate their aggregate impact, we construct the economy-wide response of

sales, market value, investment and debt using firm-level sensitivities estimated from both GRF and the

LPM. We then compare the average aggregate effect of a shock, γ from Equation (8) across methods, to

assess the role of non-linearities and higher-order interactions in shaping macroeconomic dynamics. We

collect and report the estimated effects with relative standard errors in Table 2.

Table 2 shows that the differences between the average aggregate response estimated via GRF and

LPM are statistically significant and economically relevant, indicating that non-linearities in firms’ sensi-

tivities play a crucial role in shaping the aggregate response to macroeconomic fluctuations. We find that,

in most of cases, the non-linearity bias in the average aggregate response is negative, i.e. GRF tends to

estimate a lower aggregate response. Panel A suggests that firm-level non-linearities significantly dampen

the response of sales and stock market prices to business cycle fluctuations. While a LPM predicts that
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a 1% increase in GDP leads to a 2.4% rise in aggregate sales and a 5.4% increase in stock market value,

accounting for non-linearities reduces these estimates by approximately 0.3 and 0.2 percentage points,

respectively. Panels B, C, and D reinforce this result by showing a similar dampening effect across

macroeconomic shocks. In response to a contractionary monetary policy shock that raises interest rates

by 1 percentage point (Panel B), the GRF model estimates a substantially smaller decline in stock market

prices, nearly 7% less than the linear model prediction. Similarly, the aggregate investment response is

near zero in the GRF model but about 0.1 percentage point more negative in the linear model. A similar

pattern emerges in response to uncertainty and oil price shocks (Panels C and D, respectively), where

the GRF model predicts a more muted decline in investment. These findings suggest that non-linearities

play a key role in shaping aggregate investment responses to macroeconomic shocks.

Figure 17 in Appendix C shows that the primary driver of the differences in the average aggregate

effects obtained from the two methods is the difference in the covariance terms. The mean components

from GRF and the LPM are nearly identical and statistically indistinguishable, confirming that both

methods estimate similar average sensitivities. However, the covariance terms – which capture the inter-

action between the distribution of sensitivities and firms’ weights – differ significantly and explain most

of the discrepancies in aggregate responses. Specifically, the covariance terms in the LPM tend to be

higher than the GRF ones, suggesting that accounting for nonlinearities weakens the relationship between

firms’ sensitivity and weight when the covariance is positive or causes them to move further in opposite

directions when the covariance is already negative

4.3 The aggregate role of heterogeneity in sensitivity

We apply the mean-covariance decomposition from Equation (7) to quantify the role of heterogeneity

in shaping the average aggregate effect of aggregate fluctuations. Figure 9 in Appendix B shows that

the distribution of firms’ weights, ω, is highly unequal, with a small number of firms accounting for a

disproportionately large share. This concentration can have significant macroeconomic implications when

firm-level sensitivities to aggregate shocks are heterogeneous. If firms with larger shares systematically

exhibit higher or lower sensitivity to shocks, their disproportionate weight in the economy may amplify

or dampen aggregate fluctuations. By isolating the covariance term in Equation (7), we quantify the

extent to which this heterogeneity influences the overall aggregate response. These findings are crucial

for understanding the distributional consequences of shocks and the role that dominant firms play in

shaping macroeconomic dynamics.

Figure 4 shows that the covariance term dampens the effect of aggregate shocks, highlighting the im-

portant role of firm-level heterogeneity in shaping the average aggregate response. While the unweighted

average firm response (i.e., mean term) to aggregate shocks is substantial and aligns with economic intu-

ition, the covariance term consistently exhibits the opposite sign of the mean effect, thereby dampening
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Figure 4: Decomposition of average aggregate responses
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Notes: The figure illustrates the decomposition of aggregate responses into mean and covariance terms for each
outcome variable and aggregate shock. Bars represent the contributions of the mean and covariance terms, while
the black point denotes the total average aggregate response. We estimate Equation (8) using the mean and
covariance terms in Equation (7) as dependent variable, Ĝt. The mean and covariance terms are constructed
using benchmark set of firm-level sensitivities estimated with the GRF algorithm.

the overall response. This dampening effect arises because firms with larger shares, ω, exhibit lower

absolute sensitivities to aggregate shocks. As a result, their disproportionate weight in the economy

moderates the overall response, stabilizing fluctuations in economic expansions and contractions and re-

ducing aggregate volatility. This pattern holds across all cases studied, except for the stock market’s

reaction to business cycle and monetary policy shocks, where the covariance term amplifies the aggregate

response.

Quantitatively, the covariance term plays a significant but heterogeneous role across outcome variables

and shocks. In response to business cycle fluctuations, it dampens the aggregate response of sales and

investment by approximately 6% and 53%, respectively, while amplifying the response of stock market

prices by about 24%. These effects become even more pronounced for specific exogenous shocks. We

find that following a monetary policy shock, the covariance term amplifies the stock market response

by nearly 89% and fully offsets the unweighted average firms’ investment response. Similarly, after
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an unexpected increase in uncertainty, while the unweighted average firm-level response is large and

negative, the aggregate effect is often muted as firms that contribute more to the economy exhibit lower

sensitivities. In some cases, the heterogeneity in firm-level sensitivity is stronger than the mean effect,

driving the direction of the overall aggregate response. This is relevant in the case of oil price shocks

on sales and market value, which negatively affect most firms on average but may result in a positive

aggregate response due to the disproportionate influence of firms with greater economic weight.

Over time We show that the estimated average aggregate responses remain stable over the period

considered. To assess whether these responses are driven by specific time periods, we estimate the time-

series framework in Equation (8) using a five-year rolling window. Figure 18 in Appendix C reports

the estimated coefficients along with their decomposition into mean and covariance terms. The results

indicate that, overall, the average aggregate responses exhibit substantial stability over time, with both

the mean and covariance components remaining relatively constant. The only exception is market value,

which shows a slight increase in aggregate sensitivity, particularly to business cycle fluctuations and

oil price shocks. This increase is primarily driven by a rising mean effect rather than changes in the

composition of firms and their sensitivities, suggesting an overall increase in firms’ average stock price

sensitivity to cyclical and supply shocks. In some cases, such as the response of investment to business

cycle fluctuations and uncertainty shocks, the stability of the average aggregate response masks offsetting

dynamics between the mean and the covariance terms: a decline in the covariance term, reflecting a weaker

correlation between firms’ shares and sensitivities, is accompanied by a change in the mean sensitivity of

similar magnitude but opposite sign.

Within and across sector heterogeneity We show that both within-sector and across-sector

heterogeneity equally contribute to the dampening of the aggregate response due to firms’ heterogeneity.

To illustrate this, we consider a counterfactual scenario where the sensitivity of each firm is set to the

median sensitivity of all firms within the same sector for a given quarter, where sectors are defined as

5-digit NAICS industries. We then construct a counterfactual aggregate response using the aggregation

theory and the counterfactual sensitivities. Re-estimating the time-series framework in Equation (8),

we obtain a counterfactual average aggregate response that accounts only for across-sector variation in

firms’ sensitivities. Comparing these counterfactual average aggregate response coefficients and their

decomposition into mean and covariance terms with those obtained in the benchmark case using the

full set of firms’ sensitivities, we can assess the relative importance of within-sector and across-sector

heterogeneity in firms’ sensitivities.

Figure 20 in Appendix C shows that accounting only for sectoral heterogeneity reduces by half the

effect of firms’ heterogeneity on the average aggregate response. Not surprisingly, the mean effects esti-

mated when setting firms’ sensitivities equal to the median sensitivity with each sector are quantitatively
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and statistically identical to the benchmark case, as the average effect is usually well approximated by

the average sensitivity across firms. However, the covariance term estimated in the counterfactual case

is approximately half of the covariance term estimated in the benchmark case across all scenarios. This

indicates that firms’ heterogeneity due to both within-sector and across-sector variation equally con-

tributes to the dampening effect of the covariance term in Figure 4. In other words, sectors with larger

economic shares exhibit lower sensitivities in absolute terms, but firms with larger shares in each sector

also exhibit lower sensitivities relative to the sectoral average. Both margins of heterogeneity are equally

significant in shaping the aggregate response to shocks, underscoring the importance of accounting for

both dimensions of heterogeneity.

Heterogeneity in financial and non-financial characteristics To estimate the role of het-

erogeneity in characteristics for aggregate dynamics, we estimate the aggregate response of the outcome

variables under alternative distributions of financial and non-financial firm characteristics. We compare

the aggregate response when financial characteristics are held constant at the quarter median – allow-

ing non-financial heterogeneity to fully operate – and vice versa. Figure 19 in Appendix C shows that

abstracting from the heterogeneity in non-financial characteristics generates relatively larger and statis-

tically significant departures from the aggregate response of the benchmark case than abstracting from

the heterogeneity in financial characteristics. The greater role of non-financial characteristics is observed

not only when non-financial characteristics are overwhelmingly relevant for the heterogeneity in firm-level

responses, but also in aggregate shock-outcome variable pairs in which the role of financial characteristics

is predominant. For instance, as shown in Section 3, the heterogeneity in non-financial characteristics im-

pacts the aggregate response more than the heterogeneity in financial characteristics in the response of the

investment and debt to the business cycle, where the share of importance of non-financial characteristics is

overwhelming (86% and 67%, respectively). However, the role of the heterogeneity in non-financial char-

acteristics remains stronger even when the share of importance of financial characteristics exceeds 60%,

such as in the response of market value and investment to monetary policy (65% and 61%, respectively).

The reason is that the aggregate response depends on how the distribution of firms’ shares correlates with

the underlying distribution of characteristics and sensitivities. While the mean term of the aggregate

response does not change when abstracting from either financial or non-financial characteristics, most

of the adjustment comes from the covariance term. This indicates the presence of a stronger covariance

between firms with large weight in the economy and the heterogeneity in the underlying non-financial

characteristics.
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5 Conclusions

This paper highlights the importance of understanding firm-level sensitivity to aggregate shocks,

the factors driving this sensitivity, its heterogeneity, and its implications for macroeconomic dynamics.

Leveraging the Generalized Random Forest model, we uncover substantial nonlinear heterogeneity in

firms’ responses to economic shocks – features that traditional linear models fail to capture. At the firm

level, we show that characteristics such as size play a critical role in shaping these sensitivities, with strong

nonlinearities and interactions driving heterogeneity across firms. At the macro level, we demonstrate that

these firm-level nonlinearities reduce the average aggregate response of the economy to aggregate shocks.

Moreover, heterogeneity in firm sensitivities systematically dampens the aggregate response, suggesting

that larger firms tend to exhibit lower sensitivity to shocks. Our findings underscore the necessity

of employing advanced statistical models – such as machine learning – to accurately characterize firm

heterogeneity and its aggregate implications. These insights have important implications for policymakers

seeking to understand how the distribution of firm characteristics affects the effectiveness of monetary

interventions and the magnitude of business cycle fluctuations. Future research can extend this framework

by examining cross-country differences in firm sensitivities, incorporating international linkages, and

assessing how heterogeneous firm responses shape the global transmission of economic shocks.
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Appendix

A Theoretical Details

A.1 Generalized Random Forest - Algorithm

The GRF relies heavily upon the Random Forests (RF) models, since they both perform random

split selection and sub-sampling. To this extent, GRF augments the methodology of RF by allowing the

estimated parameters to be a weighted average of predictions, and not a pure simple average as performed

in RF.

Formally, the objective of RF models is to estimate the expected value of an outcome Yi,t, conditional

on covariates Xi,t for a given data generating process: µ(x) = E[Yi,t|Xi,t = x]. The GRF aims to estimate

the following moment condition:

E[ψθ(x),ν(x)(O)i,t|Xi,t = x] = 0 ∀x ∈ X , and i = 1, . . . , n, t = 1, . . . , T (9)

where Oi,t contains the set of observables, both dependent and covariates variables described in the

previous section, as well as the set of exogenous shocks (Wt) that we focus on; Xi,t represents the set of

auxiliary covariates, while ν(x) is an optional nuisance parameter. Our focus is to estimate the elasticity

θ̂(x) for each dependent variable-shock pair, as function of all covariates.

The GRF model fits the empirical version of condition 9 by minimizing the weighted moment condi-

tion:

(θ̂(x), ν̂(x)) ∈ argminθ,ν

{
|

n∑
i=1

αi(x)ψθ,ν(Oi,t)|2

}
(10)

The main additional feature of the GRF comes from the weighting function αi(x): this aims to find

firms with similar elasticities - depending on their characteristics Xi,t - and associate higher weights to

them. The algorithm developed by Athey et al. (2019) grows a set of B trees and defines Lb(x) as the

training set falling in the same “leaf” as x.

αbi(x) =
1({Xi ∈ Lb(x)})

|Lb(x)|
, αi(x) =

1

B

B∑
b=1

αbi(x)

By bootstrapping the dataset and growing random forests, the methodology allows estimating the

parameters of interest defined on many dimensions, in contrat with linear models (e.g. OLS). The

interpretation of the estimated parameters θ̂(x) is of a conditional local average treatement of the elasticity

for a given shock.

We further estimates the average effect in the causal forests via estimates of the average partial effect,

ECB Working Paper Series No 3107 34



i.e. E[Cov(Wt, Yi,t)/Var(Wt|Xi,t)]. These average effects are reported in Figure 11.

A.2 Monte Carlo simulation

We conduct a Monte Carlo simulation to compare the precision of the GRF and a linear panel

regression in estimating heterogeneous responses to aggregate fluctuations. We assume several underlying

data-generating processes, incorporating both linear and nonlinear relationships in the conditional effects,

with multiple covariates driving the heterogeneity. An econometrician seeking to understand how firms

respond to aggregate shocks as a function of their balance-sheet characteristics does not observe the

true data-generating process. Instead, they estimate the conditional effects using either a linear panel

regression model, as specified in Equation (1), or the GRF algorithm, as described in Equation (2).

Data generating process We generate synthetic data to replicate the econometric setting used in

the empirical application studies below. We assume that the simulated economy consists of 6000 firms,

indexed by i, over T = 20 periods. We denote with Xj
i,t denote the j-th characteristic of firm i at time

t, where j = 1, . . . , 6. Each covariate follows an independent autoregressive process with a persistence

of 0.9, and shocks drawn from a standard normal distribution with mean zero and unit variance. We

assume a relatively high value of persistence to be consistent with the balance sheet characteristics in the

empirical application. The aggregate shock, Wt, is also drawn from a standard normal distribution. We

assume that the outcome variable for firm i at time t, Yi,t, depends on the firm’s characteristics and the

aggregate shock according to the following specification:

Yi,t =Wt +
J∑

j=1

Xj
i,t + F

(
{Xj

i,t}
J′

j=1

)
·Wt + εi,t, εi,t ∼ N(0, 1), (11)

where εi,t is an independent and identically distributed noise term drawn from a normal distribution with

mean zero and variance normalized to one. The aggregate shock, Wt, propagates to Yi,t differently across

firms, depending on a subset of firm characteristics, {Xj
i,t}J

′

j=1. The function F
(
{Xj

i,t}Jj=1

)
governs

the heterogeneity in firms’ responses to aggregate fluctuations. Without loss of generality, we model

heterogeneity as a function of the contemporaneous realization of Xj
i,t, given that Wt is independently

drawn by construction and the covariates evolve solely based on their own history.

We consider three scenarios for the function F to evaluate the performance of a linear panel regression

and the GRF under different data-generating processes: (i) linear, (ii) non-linear, and (iii) threshold-

based. The corresponding data-generating processes are specified as follows:

i. Linear:

F
(
{Xj

i,t}
J′

j=1

)
=

J′∑
j=1

Xj
i,t.
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ii. Non-linear:

F
(
{Xj

i,t}
J′

j=1

)
=



J′∑
j=1

Xj
i,t + α1

J′∑
j=1

Xj,2
i,t , Quadratic

J′∑
j=1

Xj
i,t + α1

J′∑
j=1

J′∑
k=j+1

Xj
i,t ·X

k
i,t. Interactions

iii. Threshold-based:

F
(
{Xj

i,t}
J′

j=1

)
=

J′∑
j=1

(
α11Xj

i,t>0 + α21Xj
i,t≤0

)
·Xj

i,t.

The heterogeneous effect is estimated using both a linear panel regression and the GRF. To assess

the models’ ability to recover the true heterogeneity as the dimensionality of the characteristic space

increases, we vary the number of covariates relevant for the heterogeneity, J ′, up to six. The models are

evaluated using standard statistical metrics, including Root Mean Squared Error (RMSE), average bias,

and explained heterogeneity.18

Results. Table 3 shows that GRF consistently outperforms a linear panel regression in capturing

heterogeneous sensitivities, particularly when the heterogeneity is nonlinear or exhibits complex patterns.

In cases of linear heterogeneity, GRF performs similarly to a correctly specified OLS, provided that the

number of characteristics driving the heterogeneity is small. However, as the dimensionality of the

heterogeneity increases, GRF’s precision declines due to the limitations imposed by the dataset’s size.

Figure 10 compares the relationship between predicted and true sensitivities for a data-generating process

with a single variable driving the heterogeneity. The results show that the loss of precision of the GRF

is primarily concentrated in the tails of the distribution, where data are sparse. The advantages of

GRF are especially pronounced in nonlinear data-generating processes, where a linear panel regression

is misspecified and fails to fully capture heterogeneity. Although both methods experience some loss

of precision as the number of covariates, J ′, increases – reflected in higher RMSE and lower explained

variance – GRF remains more robust in high-dimensional settings, effectively capturing more intricate

patterns of heterogeneity.

A direct comparison between sensitivities estimated by a linear panel regression and GRF provides

a useful diagnostic tool to detect misspecification due to nonlinear heterogeneity in the data.19 Figure

18The average bias of an estimator is defined as the expected deviation of the estimator from the true parameter
value, averaged over multiple simulation runs. Explained heterogeneity is measured as the ratio of the variance
of the predicted treatment effects to the variance of the true treatment effects. A value close to one indicates
that the model effectively captures the variability in the true treatment effect, while a value near zero suggests
poor performance in identifying heterogeneity. Values greater than one may signal overfitting, where the model
captures noise rather than the underlying structure.

19This is not a formal test but rather a graphical check that suggests the presence of unmodeled nonlinear
heterogeneity in the estimated model.
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Table 3: Results Monte Carlo simulation

Linear Panel Model GRF

DGP of Heterogeneity Bias RMSE Explained Bias RMSE Explained

Panel A: Variables relevant for heterogeneity J′ = 1

Linear 0.01 0.01 1.00 0.01 0.10 1.00

Quadratic 0.18 6.84 0.00 0.01 0.48 0.98

Threshold 0.02 0.66 0.73 0.01 0.08 0.99

Panel B: Variables relevant for heterogeneity J′ = 3

Linear 0.01 0.01 1.00 0.01 0.43 0.91

Quadratic 0.55 12.10 0.00 0.03 2.40 0.88

Interaction 0.05 8.33 0.00 0.02 1.58 0.82

Threshold 0.05 1.57 0.85 0.02 0.87 0.86

Panel C: Variables relevant for heterogeneity J′ = 6

Linear 0.01 0.01 1.00 0.03 1.55 0.64

Quadratic 1.15 17.70 0.00 0.16 6.05 0.70

Interaction 0.13 18.78 0.00 0.08 8.88 0.35

Threshold 0.14 1.74 0.90 0.02 1.41 0.73

Notes: The table compares the performance of a linear panel regression and the GRF in estimating heterogeneous
sensitivities across different data-generating processes and levels of heterogeneity complexity. The evaluation
metrics include absolute average bias (Bias), root mean squared error (RMSE), and the proportion of variance
in true heterogeneity explained by each model (Explained). Panel A, B, and C report results for a setting where
only one, three, and six characteristics drives heterogeneity, respectively. We assume α1 = 0.5 for quadratic and
interaction heterogeneity, and set α1 and α2 of 0.5 and 1.5 for threshold-based heterogeneity. Results are averaged
over 10 simulations of a panel comprising 6,000 firms observed over 20 periods.

5 compares the sensitivities estimated by both methods in a Monte Carlo simulation with three sources

of heterogeneity (J′ = 3). When the true data-generating process is linear, the estimates from both

models align closely along the 45-degree line. However, in scenarios with nonlinear or threshold-based

heterogeneity, the correlation between the two weakens, and the distribution of predicted sensitivities

becomes more dispersed. Depending on the scenario, the differences between the sensitivities estimated

by the two methods can be as large as 100% or even exhibit opposite signs, underscoring the strong

misspecification bias introduced by imposing linearity in firm-level sensitivities.
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Figure 5: Comparison of sensitivities on simulated data

−10

0

10

−10 0 10

Linear

0

10

0 10

Quadratic

−10

0

10

−10 0 10

Interaction

−10

0

10

−10 0 10

GRF Micro−Sensitivities

LP
M

 M
ic

ro
−

S
en

si
tiv

iti
es

Threshold

Notes: The figure presents predicted firm-level sensitivities from a Monte Carlo simulation across four scenarios:
linear (top left), nonlinear quadratic (top right), nonlinear interaction (bottom left), and threshold-based (bottom
right). The x-axis represents firm-level sensitivity estimates from the GRF, while the y-axis shows estimates from
the linear panel regression. Each point corresponds to a simulated firm-time observation. The black dashed line
represents the 45-degree reference line, while the red solid line depicts the fitted linear regression. Results are
based on a single simulation of a panel with 6,000 firms observed over 20 periods. We assume a α1 = 0.5 for
quadratic and interaction heterogeneity, and set α1 and α2 of 0.5 and 1.5 for threshold-based heterogeneity. The
data-generating process assumes that three characteristics (J ′ = 3) drive heterogeneity.
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B Construction of the dataset and cleaning

B.1 Firm-level variables

We construct the firm-level variables in the Compustat database following standard practices. Out-

come variables are calculated as a 1-year percentage growth using the Haltiwanger formula. Nominal

sales are represented by the variable saleq in Compustat. The market value of the firm is the stock price

(prccq) multiplied by the number of outstanding shares (cshoq). The investment rate is the 1-year change

in capital stock, with capital stock equal to the book value of capital calculated using the perpetual in-

ventory method. The initial value of a firm’s capital stock is measured as the earliest available entry of

ppegtq, and we then iteratively construct it from ppentq. Debt issuances are the percentage change in to-

tal debt, calculated as the sum of debt in current liabilities (dlcq) and long-term debt (dlttq). Inventories

are represented by the variable invtq in Compustat. Independent variables are always expressed in levels.

Leverage is calculated as the ratio of debt in current liabilities (dlcq) and long-term debt (dlttq) to total

assets (atq). The cash ratio is the ratio of cash and short-term investments (cheq) to total assets (atq).

Sales growth volatility is the standard deviation of firms’ real sales growth in a 10-year rolling window.

Distance to default is calculated for each firm using the algorithm in Merton (1974). The short-term

debt ratio is the ratio of current debt (dlcq) to total debt. Size is the log of total assets (atq). Return

on assets is the ratio of net income (niq) to total assets. Finally, industry scope is proxied with industry

classification based on the NAICS-5 industry digit. All the independent variables, with the exception of

industry classification, are yearly averaged before cleaning.

Additionally, to compute variables in real terms, we deflate capital stock, sales, and total assets using

the implied price index of gross value added in the U.S. non-farm business sector.

B.2 Sample selections and cleaning

The sample period is 1990Q1 to 2019Q4. We perform the following cleaning steps:

i) We keep only US-based firms, fici,t =“USA”.

ii) To avoid firms with strange production functions, drop regulated utilities and financial companies,

we drop all firm-quarters for which the 4-digit sic code is in the range [4900,5000) or [6000,7000).

iii) To get rid of years with extremely large values for acquisitions to avoid the influence of large

mergers, we drop all firm-quarters for which the value of acquisitions acqi,t is greater than 5% of

total assets atqi,t.

iv) We drop all firm-quarters for which the measurement of Total Assets atqi,t, Sales saleqi,t, Property,

Plant and Equipment (Net) ppentqi,t, Cash and Short-Term Investments cheqi,t, Debt in Current

Liabilities dlcqi,t, Total Long-Term Debt dlttqi,t, Total Inventories invtqi,t are missing or negative.
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v) We drop all firm-quarters before a firm’s first observation of Property, Plant, and Equipment

(Gross) ppegtqi,t.

Before estimating the models, we trim the variables at the top 1.5% level when the variables are

strictly positive, and we trim 1.5% on both sides if the variables can also be negative. To reduce the

number of missing values in the GRF, we linearly interpolate each independent variable after completing

all cleaning steps.

We further group variables by type, distinguishing between financial and non-financial characteristics.

Financial variables include leverage, liquidity, distance to default, and short-term debt. Non-financial

variables include size, sales growth volatility, return on assets, and industry classification at the 5-digit

NAICS level.
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B.3 Distribution of firms’ outcome and features

Figure 6: Distribution of the independent variables
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Notes: The figure shows the distribution of firm-quarter balance-sheet characteristics used as independent vari-
ables in the empirical application. The data are from quarterly Compustat, spanning from 1990-Q1 to 2019-Q4.
Variables are trimmed at the 98.5th percentile and then linearly interpolated before the empirical application. The
plot for NAICS shows the percentages at the 4-digits level (i.e. each bin collects 1000 industry codes). Additional
details on variable construction and data cleaning are provided in Appendix B.
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Figure 7: Distribution of the dependent variables
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Notes: The figure shows the distribution of firm-quarter balance-sheet characteristics used as dependent variables
in the empirical application. The data are from quarterly Compustat, spanning from 1990-Q1 to 2019-Q4. Growth
rates are annual and they are calculated using the Haltiwanger formula. Variables are trimmed at the 1.5th and
98.5th percentile before being used in the empirical application. Units of measurement are in percentage points,
where 0.01 represents 1%. Additional details on variable construction and data cleaning are provided in Appendix
B.
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Figure 8: Time series of the aggregate fluctuations
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Notes: The figure shows the time-series of the aggregate fluctuations and shocks used in the empirical application.
Units of measurement are in percentage points, where 0.01 represents 1%. Additional information on the variable
construction can be found in Appendix B.
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B.4 Summary statistics and correlation matrix

Table 4: Summary statistics

Statistics

Variable Mean Median St. Dev. Min Max IQR Skewness Obs.

Panel A. Characteristics

Size 0.63 0.64 2.41 -9.36 8.61 3.40 -0.01 448856

Leverage 0.29 0.26 0.21 0.00 1.00 0.28 0.90 339760

Liquidity 0.14 0.07 0.17 0.00 0.99 0.16 2.04 363361

Distance to Default 5.76 4.74 4.45 0.00 21.03 5.84 1.05 336085

Short-Term Debt 0.30 0.20 0.29 0.00 1.00 0.43 0.89 443857

ROA -0.02 0.01 0.07 -0.46 0.08 0.04 -2.76 437471

Sales Volatility 0.27 0.20 0.23 0.00 1.12 0.25 1.52 378874

Panel B. Outcome

Sales Growth 0.04 0.03 0.27 -1.03 1.07 0.22 -0.04 239625

Market Value Growth 0.01 0.03 0.51 -1.43 1.32 0.61 -0.19 214285

Investment Rate 0.07 0.02 0.28 -0.86 1.60 0.20 1.45 418937

Debt Rate 0.01 -0.02 0.45 -1.53 1.64 0.35 0.32 227627

Notes: The first panel contains the summary statistics for quarterly balance-sheet firm characteristics used
as independent variables. The second panel contains the summary statistics for the outcome variables.
The data are from quarterly Compustat, covering 1990Q1-2019Q4. All dependent variables are trimmed
at the 1.5th and 98.5th percentiles, while independent variables are trimmed at the 98.5th percentile when
positive. Independent variables are linearly interpolated after cleaning steps. Units of measurement of the
outcome variables are in percentage points, where 0.01 represents 1%. Additional information on variable
construction can be found in Appendix B.
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B.5 Distribution of firms’ shares

Figure 9: Distribution of the shares of outcome variables
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Notes: This figure presents the distribution of firm-level shares across different outcome variables. The x-axis
represents the firm-level share on a log scale, while the y-axis denotes the density. The vertical lines indicate the
first, second, and third quartiles of the distribution.
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C Additional Figures and Tables - Firm level

C.1 Comparing LPM and GRF sensitivities

Figure 10: Estimated sensitivities on simulated data

Notes: This figure illustrates the relationship between estimated sensitivities and the covariate X across different
data-generating processes and one characteristic relevant for the heterogeneity (J ′ = 1). The sensitivities are
estimated using the GRF and the LPM via OLS, and compared to the the true underlying heterogeneity. The
black line represents the true sensitivities, while the red and blue lines correspond to GRF and LPM estimates,
respectively. Results are based on a single simulation of a panel with 6,000 firms observed over 20 periods.
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Figure 11: Comparison of sensitivities on actual data

Notes: The figure compares firm-level sensitivities to aggregate fluctuations estimated using the GRF and a linear
panel regression. The LPM estimates are derived by regressing each firm’s outcome variable on the aggregate
shock, with interactions between the shock and all firm-level characteristics. Each subplot represents a specific
aggregate shock - outcome variable pair. The columns correspond to the four outcome variables (sales, market
value, investment, and debt), while the rows represent the four aggregate shocks (business cycle, uncertainty,
monetary policy, and oil price shocks). The dashed black line represents the 45-degree line, indicating perfect
alignment between the two estimates, while the red line shows the fitted relationship between the GRF and LPM
sensitivities. Firm-level sensitivities are trimmed at the 1.5% level on both tails.
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Figure 12: Density of differences between GRF and LPM sensitivities
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Notes: The figure presents the kernel density estimates of the percentage difference between LPM and GRF
firm-level sensitivities across four dependent variables: Sales, Market Value, Debt, and Investment. The x-axis
represents the percentage difference between LPM and GRF estimates, calculated as (LPM/GRF−1)×100. Each
panel corresponds to a specific aggregate shock: business cycle, uncertainty, monetary policy, and oil price. The
densities highlight the distribution of deviations for each dependent variable, with colors indicating the specific
variable. Differences are trimmed at 2.5% on both sides.
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C.2 Non-linearities and heterogeneity

Table 6: Statistical test for non-linearity

Harvey-Collier Test RESET Test GAM

Outcome variable Statistic P-Value Statistic P-Value Min EDF

Panel A: Business Cycle

Sales 1.95 0.05 604.78 0.00 7.64
Market Value 14.03 0.00 2439.42 0.00 7.87
Investment 8.81 0.00 2554.48 0.00 7.02
Debt 7.01 0.00 3786.25 0.00 5.73

Panel B: Monetary Policy

Sales 8.59 0.00 10479.23 0.00 7.41
Market Value 18.93 0.00 5384.36 0.00 7.00
Investment 3.91 0.00 243.82 0.00 7.51
Debt 4.58 0.00 193.67 0.00 7.59

Panel C: Uncertainty

Sales 15.01 0.00 669.88 0.00 6.64
Market Value 14.69 0.00 1928.16 0.00 7.86
Investment 14.02 0.00 3156.06 0.00 6.10
Debt 5.85 0.00 289.32 0.00 6.88

Panel D: Oil Price

Sales 4.19 0.00 492.47 0.00 7.27
Market Value 9.30 0.00 2939.43 0.00 7.46
Investment 1.11 0.27 152.68 0.00 7.66
Debt 2.52 0.01 47.78 0.00 7.35

Notes: The table reports the results of three different linear specification tests between covariates and the
conditional average sensitivities produced by GRF for each outcome variable across four shocks. We assess the
linearity of the conditional effect of an aggregate shock on firms’ outcome in firms’ characteristics, i.e. b(Xi,t−1) =
β0 +

∑
j∈J βj · Xj

i,t−1, where J is the set of characteristics. The null hypothesis of Harvey-Collier Test and the
RESET Test is that the model is linear. For both tests, we report the test statistics and p-value of the test.
We estimate a GAM model that includes all characteristics. For each characteristic we estimate the effective
degrees of freedom (EDF). We report the minimum effective degrees of freedom among characteristics in each
outcome variable - aggregate shock. Results are presented for debt, investment, market value, and sales under
each aggregate shock (business cycle, uncertainty, monetary policy, and oil price).
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Figure 14: Pairwise strength of interactions
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Notes: This heatmap visualizes the average pairwise strength of interaction between firm characteristics for each
aggregate shock. We measure the strength of interaction of each pair of characteristic using the pairwise Friedman’s
H-statistic. Each panel corresponds to a specific shock (e.g., business cycle, uncertainty, monetary policy, and
oil price). For each pair of characteristics, interaction values are averaged across outcome variables. For each
outcome variable - aggregate shock pair, we consider the ten strongest pairwise interactions. Interaction strength
is categorized into three ranges: low (0–0.2), medium (0.2–0.5), and high (0.5+). The ranges are determined
based on commonly observed thresholds in machine learning literature and are tailored to highlight meaningful
variation in the dataset. The x-and y-axes denote the interacting characteristics, and the color scale indicates the
strength of the interaction. The diagonal is omitted as it represents the self-interaction of a characteristic, which
is not defined in this context.

C.3 Chernozhukov et al. (2018) test for heterogeneity

The test creates two synthetic variables, Ci and Di:

Ci = β̄(Wi − Ŵi),

Di = (β̂cf − β̄)(Wi − Ŵi),
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where the former uses only the average treatment effect while the latter is the prediction that takes into

account the heterogeneity as predicted by the casual forest. The test consists in running the following

regression of residuals in treatment on Ci and Di:

Yi − Ŷi = γCi + δDi (12)

The null hypothesis of the test is δ = 0, which indicates that the casual forest does not capture any

heterogeneity. In line with the evidence on the CV, we find that we can reject the null hypothesis of no

heterogeneity in treatment effects for almost all aggregate shock-outcome variable pairs.

Figure 15: Test for heterogeneity in sensitivity

13.12 9.92 9.5 3.99

15.84 13.42 13.41 12.01

5.18 1.34 3 −0.18

7.74 3.63 5.06 1.05Investment

Debt

Market Value

Sales

Bus
ine

ss
 C

yc
le

M
on

et
ar

y P
oli

cy

Unc
er

ta
int

y

Oil P
ric

e

Shock

O
ut

co
m

e

T_Value

0

5

10

15

Notes: The table reports the t-statistic of the Chernozhukov et al. (2018) test for each aggregate shock
- outcome variable pair. An absolute t-statistic value below 1.648 indicates no particular degree of
heterogeneity, while a value above the threshold of 1.648 suggests a statistical high level of heterogeneity
in firm sensitivity at a 90% confidence interval.
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Figure 16: Correlation between importance measures
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Notes: The figure reports the scatter plots between the share of heterogeneity explained by each characteristics
and the Shapley-based measure of relevance (left panel) and the strength of interaction measure (central panel),
and between the strength of interaction measure and the Shapley-based measure of relevance (right panel).
The share of heterogeneity explained by each characteristics is computed as the depth-weighted frequency of
splits in the forest where the characteristic is used. We compute Shapley values for each characteristic in all
outcome variable-aggregate shock pairs over a grid of 100 points corresponding to the characteristic’s percentiles.
We compute the mean absolute value of the estimated Shapley values over the hundred points. We normalize
importance by scaling each characteristic to the highest mean absolute Shapley value within each outcome variable
- aggregate shock pair, setting the maximum to one. We measure the strength of interaction of each characteristic
using the Friedman’s H-statistic against all other characteristics. In all cases, we absorb aggregate shocks, outcome
variables, and characteristic fixed effects. Black dashed lines represent a linear fit.
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D Additional Figures and Tables - Aggregate

D.1 Mean-covariance decomposition across models

Figure 17: Comparison Mean - Covariance Decomposition
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Notes: The figure decomposes the average aggregate response into mean and covariance components for both GRF
and linear panel model. Each point represents the estimated coefficient from Equation (8), with the mean term
capturing the average firm-level sensitivity (diamond markers) and the covariance term reflecting the interaction
between firm shares and sensitivities (circle markers). Blue markers denote estimates from the GRF model, while
red markers correspond to estimates from the LPM. Error bars indicate 95% confidence intervals based on robust
standard errors.
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Figure 18: Aggregate Response Decomposition Over Time
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Notes: The figures illustrate the mean and covariance decomposition of the average aggregate response across all
outcome variable - aggregate shock pairs, utilizing a five-year rolling window version of Equation (8). Specifically,
we estimate the time-serie model with the mean and covariance components, as defined in Equation (7), serving
as the dependent variable Zt. Each point in the time series represents the corresponding coefficient estimate,
derived from a sample ending at the respective quarter and spanning the preceding five years. The mean and
covariance components are calculated based on the benchmark GRF set of firm-level sensitivities.
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D.2 Heterogeneity in sensitivities

Figure 19: Role of financial and non-financial heterogeneity
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Notes: The figure illustrates the contribution of financial and non-financial heterogeneity to the average aggregate
response. To isolate their respective roles, we construct two counterfactual firm-level sensitivities and aggregate
series: one where financial characteristics are fixed at quarter median while non-financial characteristics vary, and
another where non-financial characteristics are fixed while financial characteristics vary. We then compute the
aggregate response by weighting these sensitivities by firms’ shares and estimate the average aggregate response
using the time-series model in Equation (8). The red and blue triangles indicate respectively the differences
between the counterfactual aggregate responses based on financial and non-financial characteristics relative to the
benchmark average aggregate response. Standard error are clustered at quarterly level.
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Figure 20: Within and across sector heterogeneity
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Notes: This figure presents a comparison of firm-level sensitivity estimates under different counterfactual sce-
narios. The benchmark sensitivity is computed using the original firm-level estimates, while the counterfactual
sensitivities are obtained by normalizing firm responses across different dimensions. In the top panel, we compare
the mean components across the benchmark, normalized by quarter, and normalized by sector-quarter speci-
fications. The bottom panel displays the corresponding comparison for the covariance effect. The fitted lines
represent linear approximations of the relationship between the benchmark and counterfactual estimates. A lower
covariance or mean effect in the counterfactual scenarios indicates that firm-level heterogeneity plays a significant
role in shaping aggregate responses.
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