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Abstract. We compare sparse and dense representations of predictive models in macroe-

conomics, microeconomics and �nance. To deal with a large number of possible predictors,

we specify a prior that allows for both variable selection and shrinkage. The posterior

distribution does not typically concentrate on a single sparse model, but on a wide set of

models that often include many predictors.
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NON-TECHNICAL SUMMARY

The recent availability of large datasets, combined with advances in the �elds of statistics,

machine learning, and econometrics, have generated interest in predictive models with many

possible predictors. Nowadays, a researcher who wants to forecast the future growth rate

of US GDP, for example, can use hundreds of potentially useful predictive variables, such

as aggregate and sectoral employment, prices, interest rates, and many others. In this type

of 'big data' situation, standard estimation techniques � such as ordinary least squares

(OLS) or maximum likelihood � perform poorly. To understand why, consider the extreme

case of an OLS regression with as many regressors as observations. The in-sample �t of

this model will be perfect, but its out-of-sample performance would be embarrassingly bad.

More formally, the proliferation of regressors magni�es estimation uncertainty, producing

inaccurate out-of-sample predictions. As a consequence, methods aimed at dealing with

this curse of dimensionality have become increasingly popular. These methodologies can be

divided into two broad classes: (i) sparse modelling techniques, which focus on selecting a

small set of explanatory variables with the highest predictive power and (ii) dense modelling

techniques, which recognise that all possible explanatory variables might be important

for prediction, although the impact of some of them may be small. The latter insight

justi�es the use of shrinkage or regularisation techniques that prevent over�tting by forcing

parameter estimates to be small when sample information is weak.

While similar in spirit, these two approaches might di�er in their predictive accuracy.

Low-dimensional, sparse models may also appear easier to interpret economically, which

is an attractive property for researchers. Before even starting to discuss whether these

structural interpretations are warranted � in most cases they are not, given the predictive

nature of the models � it is important to address whether the data are informative enough

to favour sparse models and rule out dense ones.

We propose to shed light on this issue by developing a variant of the so-called `spike-and-

slab' model. This model is �exible enough to allow for variable selection and shrinkage,

thus encompassing both sparse and dense predictive approaches. We estimate the model on

six popular 'big' datasets that have been used for predictive analyses with large information

in the �elds of macroeconomics, �nance, and microeconomics. Our main result is that it

is not usually possible to identify sparse predictive representations by selecting a handful
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of predictors from larger pools of variables. Therefore, the idea that economic data are

informative enough to identify sparse predictive models might simply be an illusion.
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1. Introduction

The recent availability of large datasets, combined with advances in the �elds of statistics,

machine learning and econometrics, have generated interest in predictive models with many

possible predictors. In these cases, standard techniques such as ordinary least squares,

maximum likelihood, or Bayesian inference with uninformative priors perform poorly, since

the proliferation of regressors magni�es estimation uncertainty and produces inaccurate

out-of-sample predictions. As a consequence, inference methods aimed at dealing with this

curse of dimensionality have become increasingly popular.

As suggested by Ng (2013) and Chernozhukov et al. (2017), these methodologies can be

generally divided in two broad classes. Sparse-modeling techniques focus on selecting a

small set of explanatory variables with the highest predictive power, out of a much larger

pool of regressors. For instance, best subset, forward stepwise selection, one covariate at

a time multiple testing procedures, or the popular lasso belong to this class of estimators

that produce sparse representations of predictive models (Beale et al., 1967, Hocking and

Leslie, 1967, Draper and Smith, 1966, Chudik et al., 2018, Tibshirani, 1996, Hastie et al.,

2015; see also Belloni et al., 2011a for a recent survey and examples of big data applications

of some of these methodologies in economics). At the opposite side of the spectrum, dense-

modeling techniques recognize that all possible explanatory variables might be important

for prediction, although their individual impact might be small. This insight motivates

the use of shrinkage or regularization techniques, which prevent over�tting by essentially

forcing parameter estimates to be small when sample information is weak. Factor analysis

or ridge regressions are standard examples of dense statistical modeling (Pearson, 1901,

Spearman, 1904, Lawley and Maxwell, 1963, Tikhonov, 1963, Hoerl and Kennard, 1970,

Leamer, 1973; see also Stock and Watson, 2002a,b and De Mol et al., 2008 for big data

applications of these techniques in economics).

In this paper, we ask whether economic predictive problems are more likely character-

ized by sparsity or density. We study this question in a �exible modeling framework that

encompasses both cases. In particular, we specify a so-called �spike-and-slab� prior for the

coe�cients of a linear predictive model, in the spirit of Mitchell and Beauchamp (1988).

This prior states that regression coe�cients can be non-zero with a certain probability q.

This hyperparameter determines the degree of sparsity of the model, and we refer to it

as the probability of inclusion. When a coe�cient is not zero, it is modeled as a draw
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from a Gaussian distribution. The variance of this density is scaled by the hyperparameter

γ2, which thus controls the degree of shrinkage when a predictor is included. The higher

γ2, the higher the prior variance, the less shrinkage is performed. In sum, our model has

three key ingredients. First, it allows for the possibility of sparsity by assuming that some

regression coe�cients may be equal to zero. Second, it shrinks the non-zero coe�cients

towards zero, as an alternative way to reduce estimation uncertainty and avoid over�tting

for high-dimensional models. Third, it treats the degree of sparsity and shrinkage sepa-

rately, as they are controlled by di�erent hyperparameters, q and γ2. We conduct Bayesian

inference on these hyperparameters, eliciting a hyperprior that is agnostic about whether

to deal with the curse of dimensionality using sparsity or shrinkage.

We estimate our model on six popular datasets that have been used for predictive analyses

with large information in macroeconomics, �nance and microeconomics. In our macroeco-

nomic applications, we investigate the predictability of economic activity in the US (Stock

and Watson, 2002a), and the determinants of economic growth in a cross-section of countries

(Barro and Lee, 1994, Belloni et al., 2011a). In �nance, we study the predictability of the US

equity premium (Welch and Goyal, 2008), and the factors that explain the cross-sectional

variation of US stock returns (Freyberger et al., 2017). Finally, in our microeconomic anal-

yses, we investigate the factors behind the decline in the crime rate in a cross-section of

US states (Donohue and Levitt, 2001, Belloni et al., 2014), and the determinants of rulings

in the matter of government takings of private property in US judicial circuits (Chen and

Yeh, 2012, Belloni et al., 2012). Notably, these six applications exhibit substantial vari-

ety, spanning time-series, cross-section and panel data, di�erent numbers of predictors and

predictors-to-observations ratios.

Our Bayesian inferential method delivers three main results. First, we characterize the

marginal posterior distribution of the probability of inclusion q. Only in one case, the �rst

microeconomic application, this posterior is concentrated around very low values of q. In all

other applications, larger values of q are more likely, suggesting that including more than a

handful of predictors improves predictive accuracy. Second, the joint posterior distribution

of q and γ2 typically exhibits a clear negative correlation: the higher the probability of

including each predictor, the lower the prior variance of the non-zero coe�cients. This

intuitive �nding highlights that larger-scale models perform well (and do not over�t) in

our framework because they typically entail a higher degree of shrinkage. Third, while
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the appropriate degree of shrinkage and model size are quite well identi�ed, the data are

much less informative about the identity of the predictors to include or exclude from the

model. Summing up, model uncertainty is pervasive, and ignoring it�as well as ignoring

the evidence in favor of denser models with shrinkage�leads to an �illusion of sparsity.�

These �ndings serve as a warning against the use of sparse predictive models without critical

judgement.

For an accurate interpretation of these results, it is important to appreciate the strengths

and weaknesses of our approach to inference. If a prediction model with many predictors

�lacks any additional structure, then there is no hope of recovering useful information about

the [high-dimensional parameter] vector with limited samples� (Hastie et al., 2015, p. 290).

Put di�erently, inference with weak assumptions is especially di�cult in big data problems,

and some constraints must be imposed to extract information. A widespread approach

in the literature is to assume that the response variable depends on a few common fac-

tors of the predictors, which aids the recoverability of certain linear combinations of the

corresponding dense parameter vector. Another popular (and polar opposite) strategy is

to �bet on sparsity� (Hastie et al., 2001), by imposing that the majority of the unknown

coe�cients are nearly or identically zero. When valid, these assumptions help to estimate

the unknown parameters, but are not suitable to infer the degree of sparsity�the goal of

this paper�since this property of the model is postulated a priori.

Our approach relaxes all sparsity and density constraints, and instead imposes some

structure on the problem by making an assumption on the distribution of the non-zero

coe�cients. The key advantage of this strategy is that the share of non-zero coe�cients is

treated as unknown, and can be estimated. Another crucial bene�t is that our Bayesian

inferential procedure fully characterizes the uncertainty around our estimates, not only of

the degree of sparsity, but also of the identity of the relevant predictors. The drawback

of this approach, however, is that it might perform poorly if our parametric assumption

is not a good approximation of the distribution of the non-zero coe�cients. Even if we

take this concern into consideration, at the very least our results show that there exist

reasonable prior distributions of the non-zero regression coe�cients that do not lead to

sparse posteriors. More constructively, to address this robustness concern, we extend our

analysis in two further directions. First, we present simulation evidence to show that

our model generally recovers the true degree of sparsity. This result suggests that our
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�not-much-sparsity� �ndings do not re�ect over�tting due to the inclusion of redundant

predictors. Second, we demonstrate that the out-of-sample prediction performance of our

model is superior to that of sparse models in our six applications.

In a related paper, Abadie and Kasy (2019) evaluate the risk of regularized estimators

such as lasso, ridge and pre-testing estimators. Their analysis applies to linear regression

settings like ours when the predictors are orthogonalized. In line with our approach, they

emphasize the importance of selecting regularization parameters based on data-driven pro-

cedures. In addition, they conclude that pre-testing strategies perform well when the true

data-generating process involves zero and non-zero regression coe�cients, with the latter

well separated from the former. On the contrary, ridge estimators dominate when the e�ects

of di�erent predictors on the dependent variable are �smoothly distributed.� A strength of

our model is that it encompasses these estimation strategies. They correspond to speci�c

choices of the hyperparameters q and γ2 that can be inferred from the data, without the

need to commit to dense or sparse estimators based exclusively on a-priori considerations

about the data-generating process.

On a separate note, an important last point to emphasize is that the de�nition of spar-

sity is not invariant to transformations of the regressors. For example, consider a model

in which only the �rst principal component of the explanatory variables matters for pre-

diction. Such a model is sparse in the rotated space of the predictors corresponding to the

principal components. It is instead dense in the untransformed, or �natural� space of the

original regressors, since the �rst principal component combines all of them. This paper

studies the issue of sparsity versus density in the natural space of the untransformed re-

gressors. There are a number of reasons that motivate this focus. First, for any model, it

is always possible to construct a rotated space of the predictors a posteriori, with respect

to which the representation is sparse. Therefore, the question of sparsity versus density is

meaningful only with respect to spaces that are chosen a priori�such as that of the origi-

nal regressors or of a-priori transformations of them�and do not depend on the response

variable and the design matrix. Second, our choice facilitates the comparability with the

literature on lasso and variable selection, which typically assumes the existence of a sparse

representation in terms of the original predictors. Third, analyzing sparsity patterns in this

natural space is usually considered more interesting from an economic perspective because

it may appear easier, and thus more tempting, to attach economic interpretations to models
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with few untransformed predictors. Before even starting to discuss whether these structural

interpretations are warranted�in most cases they are not, given the predictive nature of

the models�it is important to address whether the data are informative enough to clearly

favor sparse models and rule out dense ones.

The rest of the paper is organized as follows. Section 2 describes the details of our

prediction model. Section 3 illustrates the six economic applications. Section 4 and 5

present the main estimation results. Section 6 o�ers some concluding remarks.

2. Model

We consider the following linear model to predict a response variable yt,

(2.1) yt = u′tφ+ x′tβ + εt,

where εt is an i.i.d. Gaussian error term with zero mean and variance equal to σ2, and ut

and xt are two vectors of regressors of dimensions l and k respectively, typically with k � l,

and whose variance has been normalized to one.1 Without loss of generality, the vector ut

represents the set of explanatory variables that a researcher always wants to include in the

model, for instance a constant term or �xed e�ects in a panel regression. Therefore, the

corresponding regression coe�cients φ are never identically zero. Instead, the variables in

xt represent possibly, but not necessarily useful predictors of yt, since some elements of β

might be zero.

To capture these ideas, and address the question of whether sparse or dense represen-

tations of economic predictive models �t the data better, we specify the following prior

distribution for the unknown coe�cients
(
σ2, φ, β

)
,

p
(
σ2
)
∝ 1

σ2

φ ∼ �at

βi|σ2, γ2, q ∼

 N
(
0, σ2γ2

)
with pr. q

0 with pr. 1− q
i = 1, ..., k .

1The linear term in the predictors can also be interpreted as an approximation of a more general functional
form. For additional �exibility, the explanatory variables can also include nonlinear transformations of the
predictors, as in some of our empirical applications.
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The priors for σ2 and the low-dimensional parameter vector φ are rather standard, and

designed to be uninformative. Instead, the elements of the vector β are either zero, with

probability 1−q, or normally distributed with the same variance, given the standardization

of the regressors. The hyperparameter γ2 plays a crucial role since it controls the variance

of this Gaussian density, and thus the degree of shrinkage when a regressor is included in the

model. Without the possibility of shrinkage, the only way to improve prediction accuracy

and avoid over�tting in high-dimensional models would be through variable selection. As

a consequence, sparsity would emerge almost by construction.2

A similar way to describe our prior for β would be to say that βi|σ2, γ2, q ∼ N
(
0, σ2γ2νi

)
for i = 1, ..., k, with νi ∼ Bernoulli (q). This formulation is useful because it highlights the

relation between our model and some alternative speci�cations adopted in the literature on

dimension reduction and sparse-signal detection. For example, the Bayesian ridge regression

corresponds to simply setting q = 1. This dense model can also be interpreted as a regression

on the principal components of the x's, with less shrinkage on the impact of more important

principal components (Ba«bura et al., 2015, Kozak et al., 2017). Therefore, this setting

encompasses cases in which the bulk of the variation of y and x is driven by a few common

factors. The Bayesian lasso, lava, horseshoe and elastic net methods can instead be obtained

by replacing the Bernoulli distribution for νi with an exponential, a shifted exponential,

a half-Cauchy, or a transformation of a truncated Gamma density, respectively (Park and

Casella, 2008, Chernozhukov et al., 2017, Carvalho et al., 2010, Li and Lin, 2010). None of

these alternative priors, however, admit a truly sparse representation of (2.1) with positive

probability.

Our prior on β belongs to the so-called �spike-and-slab� class, initially proposed by

Mitchell and Beauchamp (1988) to perform variable selection and �nd sparse represen-

tations of linear regression models. Di�erently from them, however, the �slab� part of our

prior is not a uniform density but a Gaussian, as in George and McCulloch (1993, 1997),

and Ishwaran and Rao (2005). In addition, relative to most variants of the spike-and-slab

prior adopted in the literature on variable selection, we treat the hyperparameters q and γ2

as unknown and evaluate their posterior distribution, along the lines of George and Foster

2As a robustness, to allow for di�erential degrees of shrinkage, we have also experimented with an extended
version of the model in which the non-zero coe�cients are drawn from a mixture of two Gaussian distribu-
tions with high and low variance, as opposed to a single one. We do not report the results based on this
alternative speci�cation, since they are similar to the baseline.
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(2000) and Liang et al. (2008). They are crucial objects of interest for our analysis of

sparsity patterns.

To specify a hyperprior on q and γ2, we de�ne the mapping R2
(
γ2, q

)
≡ qkγ2v̄x

qkγ2v̄x+1
,

where v̄x is the average sample variance of the predictors (equal to 1 in our case, given our

standardization of the x's). We then place the following independent priors on q and R2:

q ∼ Beta (a, b)

R2 ∼ Beta (A,B) .

The marginal prior for q is a Beta distribution, with support [0, 1], and shape coe�cients a

and b. In our empirical applications, we will work with a = b = 1, which corresponds to a

uniform prior. We will also experiment with prior densities that assign probability only to

models with low values of q and a limited number of regressors. Turning to γ2, it is di�cult

to elicit a prior directly on this hyperparameter. The function R2
(
γ2, q

)
, instead, has the

intuitive interpretation of the share of the expected sample variance of yt due to the x′tβ

term relative to the error. We model this ratio as a Beta distribution with shape coe�cients

A and B, and base our inference on the uninformative case with A = B = 1. The appeal

of this hyperprior is that it can be used for models of possibly very di�erent size, because

it has the interpretation of a prior on the R2 of the regression. Another attractive feature

is that it implies a negative prior correlation between q and γ2, and is thus agnostic about

whether to deal with the curse of dimensionality using sparsity or shrinkage. We will return

to this point in section 4, when discussing our posterior results. They are obtained using

the Markov Chain Monte Carlo algorithm for posterior evaluation detailed in appendix A.

2.1. Simulation evidence. Our Bayesian inferential approach relies on the exploration of

the posterior distribution, which e�ciently summarizes all available information about the

unknown model parameters, given the observed data. Nevertheless, before moving to our

empirical applications, it is interesting to conduct some Monte Carlo simulations to verify

that our posterior can indeed recover the true degree of sparsity in controlled experiments.

We begin with a set of baseline simulations that obey the distributional assumptions

of our model. More precisely, we generate arti�cial data according to (2.1), with l = 0,

k = 100 and a sample size of 200. Following Belloni et al. (2011b), the predictors are drawn

from a Gaussian distribution with a Toeplitz correlation matrix with corr (xit, xjt) = ρ|i−j|,
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where we set ρ = 0.75. We �x k− s regression coe�cients to zero, and draw the remaining

s from a standard Normal distribution, experimenting with values of s equal to 5, 10 and

100. The error term is also i.i.d. Gaussian, with variance calibrated to obtain a ratio

between explained and total variance of 5, 25, and 50 percent, which is the range of degrees

of predictability that characterizes the empirical applications presented in the next section.

For each of these 9 designs (three values of s interacted with three degrees of predictability),

we simulate 100 datasets, standardize the data, and compute the posterior of the probability

of inclusion.

Figure 2.1 presents a kernel approximation of the distribution of the posterior mode of

q across simulations. The starred dot indicates the true fraction of non-zero coe�cients

in each simulation design. When the degree of predictability is low, the distribution of

posterior modes peaks at zero, consistent with the intuitive idea that it is di�cult to detect

the number of relevant regressors when their collective predictive power is very limited. If

anything, a researcher would likely overstate the degree of sparsity in this case. With non-

negligible predictability, however, these distributions are much more tightly concentrated

around the truth, even (or, perhaps, especially) when the true data-generating process

(DGP) is dense.

For comparison, �gure 2.1 also reports the degree of sparsity estimated using a standard

sparse modeling approach. More speci�cally, the red dots (spread along the y-axis for

visibility) display the fraction of relevant predictors selected in each simulation by a lasso

regression, using the asymptotically optimal value of the penalty parameter proposed by

Bickel et al. (2009).3 Notice that these lasso-based estimates of the fraction of non-zero

coe�cients are reasonably accurate only when the degree of predictability is high and the

true q is low. Instead, when the DGP has a higher number of active regressors, such as

100, lasso tends to vastly over-estimate the degree of sparsity. Intuitively, as the true DGP

becomes denser, its predictive content gets spread over a higher number of predictors, and

many individual coe�cients become small. The lasso procedure sets these coe�cients to

3Precisely, we report the fraction of non-zero coe�cients resulting from the minimization of the pe-

nalized least square objective 1
2T

∑T
t=1 (yt − β′xt)2

+ λ
∑k
i=1 |βi|. The penalization parameter is set as

λ = c
√

σ2

T
Φ−1

(
1− ζ

2k

)
, where Φ(·) is the the standard normal distribution function, 1− ζ is a con�dence

level and c is an arbitrary constant. Following Belloni et al. (2011a), we set ζ = 0.05 and c = 1.1. The
variance of the residuals σ2 is set at the true value, which is known in our controlled experiment.
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Figure 2.1. Baseline simulations with Gaussian and homoskedastic errors,
and with non-zero coe�cients drawn from a Gaussian distribution: Kernel
approximation of the distribution of the posterior mode of q across simu-
lations (solid line); fraction of non-zero coe�cients estimated in each sim-
ulation by a lasso regression, with penalty parameter based on the asymp-
totically optimal criterion proposed by Bickel et al. (2009) and the tuning
constants recommended by Belloni et al. (2011a) (dots); and fraction of
non-zero coe�cients in each simulation design (starred dot).

zero, despite the fact that the collective predictive power of the associated predictors is non-

negligible. On the contrary, our model can �exibly adapt to a denser DGP by increasing

the degree of shrinkage. This strategy prevents over�tting by forcing parameter estimates

to be small, without pushing them all the way to zero.

Our next set of simulations deviates from the homoskedasticity and Gaussianity assump-

tions, to provide a more challenging testing ground for our model. More speci�cally, we

now modify the previous baseline simulations along the following three dimensions: (i) we
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draw the s non-zero regression coe�cients from a uniform distribution with mean zero and

variance one, instead of a Normal; (ii) we draw the error terms from a Student-t distri-

bution with 3 degrees of freedom, instead of a Normal; (iii) we assume that these errors

are heteroskedastic, instead of i.i.d., by letting the variance of εt depend on the regressors

according to σ2 · exp
(
α x′tδ/

√∑T
t=1 (x′tδ)

2 /T

)
. In this expression, δ is a k × 1 parame-

ter vector of zero (in the same positions of the zero elements of β) and non-zero elements

(drawn from a standard Normal distribution). As before, σ2 is chosen to yield the desired

level of predictability. We set the parameter α to 4 to obtain a pronounced degree of

hetroskedasticity, with the variance of log (var (ε)) equal to 4.

Figure 2.2 presents the outcome of this second simulation exercise, showing that the

model is able to detect the true level of sparsity as well as in the baseline case, even in

this considerably more challenging environment. In appendix B we show similarly suc-

cessful recovery patterns for some additional simulation designs in which the errors are

heteroskedastic and non-Gaussian, and the regression coe�cients are drawn from a Laplace

or mixtures of Gaussian distributions, instead of a uniform.

These results are comforting, as they show that our model is able to detect the true

level of sparsity even if its parametric assumptions are substantially di�erent from those of

the DGP. What type of extreme assumptions about the DGP could then undermine the

performance of the method? We explore this question in our last two sets of simulations,

which are designed to �test the boundaries� of our model. Given the focus of this paper, we

are particularly interested in uncovering situations in which the true DGP is sparse, but

the posterior mode of q is likely to erroneously point towards density.

For this reason, our next experiment analyzes the case in which the true DGP is not

exactly sparse, but only approximately so, in the sense of Belloni et al. (2011a). Speci�cally,

we repeat the baseline simulations of �gure 2.1 with s = 5. However, instead of setting

the remaining k − s regression coe�cients to zero, we draw them from a standard Normal

distribution, and then re-scale them so that the combined e�ect of the corresponding k− s

regressors on the response variable has a variance equal to σ2 s
T . As evident from the �rst

row of �gure 2.3, the model is still able to detect the true level of sparsity quite well, even

though sparsity is now contaminated by noise.

Our �nal experiment captures situations in which a few active predictors are highly

correlated with many inactive ones. In these cases, a linear combination of the latter might
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Figure 2.2. Simulations with non-Gaussian and heteroskedastic errors, and
with non-zero coe�cients drawn from a uniform distribution: Kernel approx-
imation of the distribution of the posterior mode of q across simulations
(solid line); fraction of non-zero coe�cients estimated in each simulation
by a lasso regression, with penalty parameter based on the asymptotically
optimal criterion proposed by Bickel et al. (2009) and the tuning constants
recommended by Belloni et al. (2011a) (dots); and fraction of non-zero co-
e�cients in each simulation design (starred dot).

be able to proxy for the former, and our posterior analysis might then point towards density,

even if the DGP is sparse. Unfortunately, implementing this intuition in a simulation is

not as simple as assuming a very high correlation among all the predictors, for example

corr (xit, xjt) = 0.9 for i 6= j, instead of the Toeplitz correlation matrix of our baseline

simulations. The reason is that a widespread high correlation among all regressors also

increases the extent to which the inactive regressors are collinear with each other, making
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Figure 2.3. Simulations with approximate sparsity (�rst row) and a factor
structure for the predictors (second, third and fourth rows): Kernel approx-
imation of the distribution of the posterior mode of q across simulations
(solid line); fraction of non-zero coe�cients estimated in each simulation
by a lasso regression, with penalty parameter based on the asymptotically
optimal criterion proposed by Bickel et al. (2009) and the tuning constants
recommended by Belloni et al. (2011a) (dots); and fraction of non-zero co-
e�cients in each simulation design (starred dot).

it harder for them to span the space of the true regressors.4 Hence, we need a more �exible

framework that allows us to boost the correlation between the active and the inactive

predictors, while keeping the correlation among the inactive predictors at low values. This

4In fact, when we simulate arti�cial data with corr (xit, xjt) = 0.9 for i 6= j, instead of the Toeplitz
correlation matrix, the model continues to perform very well.
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is accomplished by generating the regressors using the factor structure

xact = ft + vt

xint = Λft + wt,

where xact are the s active predictors, xint are the k− s inactive ones, and xt =
[
xac
′

t xin
′

t

]′
.

In these expressions, ft is an s-dimensional vector of common factors and Λ is a (k − s)× s

matrix of loadings, all drawn from standard Gaussian distributions. The errors vt and wt

are also Normal. We calibrate the variance of wt so that the common factors explain 50

percent of the variance of xint , on average. As for the variance of vt, we experiment with σ2
v

equal to 1, 0.053, and 0, which imply that the ratio between the variance of the common

factors and that of xact is 50, 95 or 100 percent. After generating the x's as just described,

the rest of the simulation is identical to the baseline.

The second, third and fourth row of �gure 2.3 present the outcome of this last set of

simulations. When σ2
v is high and xact are imperfect proxies of the common factors (as

imperfect as xint ), the model is still able to recover the true degree of sparsity. The perfor-

mance of the model starts to deteriorate only when σ2
v is very low or zero, corresponding

to the admittedly extreme circumstance in which the variables xact are almost or exactly

equal to the common factors. In this case, everything continues to work well if the degree of

predictability is 50 percent. If it is equal to 25 percent, however, the posterior distribution

often peaks around high values of q, suggesting that in many simulations a linear combi-

nation of all inactive predictors can span the space of the true ones. This said, we argue

that it is unclear whether this result signals a failure of the model to detect the true level

of sparsity, given that these last simulations are exactly designed so that a dense model is

a good approximation of the sparse one.

3. Economic Applications

We estimate the previous model on six popular �big datasets� that have been used for

predictive analyses in macroeconomics, �nance and microeconomics. In our macroeconomic

applications, we investigate the predictability of economic activity in the US (macro 1) and

the determinants of economic growth in a cross-section of countries (macro 2). In �nance,

we study the predictability of the US equity premium (�nance 1) and the factors that

explain the cross-sectional variation in expected US stock returns (�nance 2). Finally, in
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Dependent variable Possible predictors Sample

Macro 1 Monthly growth rate of

US industrial

production

130 lagged macroeconomic

indicators

659 monthly time-series

observations, from

February 1960 to

December 2014

Macro 2 Average growth rate of

GDP over the sample

1960-1985

60 socio-economic, institutional

and geographical

characteristics, measured at

pre-1960s value

90 cross-sectional country

observations

Finance 1 US equity premium

(S&P 500)

16 lagged �nancial and

macroeconomic indicators

68 annual time-series

observations, from 1948 to

2015

Finance 2 Stock returns of US

�rms

144 dummies classifying stock

as very low, low, high or very

high in terms of 36 lagged

characteristics

1400k panel observations

for an average of 2250

stocks over a span of 624

months, from January

1963 to May 2014

Micro 1 Per-capita crime

(murder) rates

E�ective abortion rate and 284

controls including possible

covariate of crime and their

transformations

576 panel observations for

48 US states over a span

of 144 months, from 1986

to 1997

Micro 2 Number of pro-plainti�

eminent domain

decisions in a speci�c

circuit and in a speci�c

year

Characteristics of judicial

panels capturing aspects

related to gender, race, religion,

political a�liation, education

and professional history of the

judges, together with some

interactions among the latter,

for a total of 138 regressors

312 panel observations for

12 circuits over a span of

26 years, from 1979 to

2004

Table 1. Description of the datasets.

our microeconomic applications, we investigate the e�ects of legalized abortion on crime

in a cross-section of US states (micro 1) and the determinants of rulings in the matter of

government takings of private property in US judicial circuits (micro 2). Many of these

applications are true �classics� in their respective literatures. Moreover, they collectively

exhibit substantial variety, spanning time-series, cross-section and panel data, di�erent

numbers of predictors and predictors-to-observations ratios. Table 1 summarizes the data

used in the analysis. A more detailed description is provided in the next subsections.
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3.1. Macro 1: Macroeconomic forecasting using many predictors. In this appli-

cation, we study the importance of large information to forecast US economic activity, an

issue investigated by a large body of time-series research in the last decade. We use a

popular large dataset originally developed for macroeconomic predictions with principal

components by Stock and Watson (2002a,b), and extensively used to assess the forecasting

performance of alternative big-data methodologies. The variable to predict is the monthly

growth rate of US industrial production, and the dataset consists of 130 possible predictors,

including various monthly macroeconomic indicators, such as measures of output, income,

consumption, orders, surveys, labor market variables, house prices, consumer and producer

prices, money, credit and asset prices. The constant term is always included as a regres-

sor. The sample ranges from February 1960 to December 2014, and all the data have been

transformed to obtain stationarity, as in the work of Stock and Watson. The version of

the dataset that we use is available at FRED-MD, and is regularly updated through the

Federal Reserve Economic Data (FRED), a database maintained by the Research division

of the Federal Reserve Bank of St. Louis (McCracken and Ng, 2016).

3.2. Macro 2: The determinants of economic growth in a cross-section of coun-

tries. The seminal paper by Barro (1991) initiated a debate on the cross-country determi-

nants of long-term economic growth. Since then, the literature has proposed a wide range

of possible predictors of long-term growth, most of which have been collected in the dataset

constructed by Barro and Lee (1994). As in Belloni et al. (2011a), we use this dataset

to explain the average growth rate of GDP between 1960 and 1985 across countries. The

database includes data for 90 countries and 60 potential predictors, corresponding to the

pre-1960 value of several measures of socio-economic, institutional and geographical char-

acteristics. The constant term and the logarithm of a country's GDP in 1960 are always

included as regressors in the model.5

3.3. Finance 1: Equity premium prediction. Following a large body of empirical work,

in our �rst �nance application we study the predictability of US aggregate stock returns,

using the database described in Welch and Goyal (2008). More speci�cally, the dependent

variable is the US equity premium, de�ned as the di�erence between the return on the S&P

500 index and the 1-month Treasury bill rate. As possible predictors, the dataset includes

5We have downloaded the dataset from the replication material of Belloni et al. (2011a), who consider
exactly the same application.
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sixteen lagged variables deemed as relevant in previous studies, such as stock characteristics

(the dividend-price ratio, the dividend yield, the earning-price ratio, the dividend-payout

ratio, the stock variance, the book-to-market ratio for the Dow Jones Industrial Average,

the net equity expansion and the percent equity issuing), interest rate related measures (the

Treasury bill, the long-term yield, the long-term return, the term spread, the default-yield

spread and the defaults-return spread) and some macroeconomic indicators (in�ation and

the investment-to-capital ratio). The constant term is always included as a regressor. The

data are annual, and the sample ranges from 1948 to 2015.6

3.4. Finance 2: Explaining the cross section of expected returns. Despite the

simple characterization of equity returns provided by the workhorse CAPM model, the

empirical �nance literature has discovered many factors that can explain the cross-section

of expected asset returns. The recent survey of Harvey et al. (2016) identi�es about 300 of

these factors. Following this tradition, in this application we study the predictability of the

cross-section of US stock returns, based on the dataset of Freyberger et al. (2017).7 Our

dependent variable is the monthly stock return of �rms incorporated in the US and trading

on NYSE, Amex and Nasdaq, from January 1963 to May 2014, which results in about

1,400k observations. The set of potential regressors are constructed using (the lagged value

of) 36 �rm and stock characteristics, such as market capitalization, the return on assets

and equity, the book-to-market ratio, the price-dividend ratio, etc. Inspired by the �exible

nonparametric approach of Freyberger et al. (2017), for each of these characteristics we

create four dummy variables that take the value of one if the �rm belongs to the �rst,

second, fourth or �fth quintile of the distribution within each month, respectively.8 This

results in 144 possible regressors, plus a constant term (always included as a regressor).

3.5. Micro 1: Understanding the decline in crime rates in US states in the 1990s.

Using US state-level data, Donohue and Levitt (2001) �nd a strong relationship between

the legalization of abortion following the Roe vs Wade trial in 1973, and the subsequent

decrease in crime rates. Their dependent variable is the change in log per-capita murder

rates between 1986 and 1997 across US states. This variable is regressed on a measure of the

6We use an updated version of the database downloaded from the webpage of Amit Goyal.
7We thank Joachim Freyberger, Andreas Neuhierl and Michael Weber for sharing the database used in their
paper.
8For collinearity reasons, we exclude the dummy variable that is equal to one if the �rm belongs to the
third quintile.
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e�ective abortion rate (which is always included as a predictor, along with 12 month dummy

variables) and a set of controls. The latter capture other possible factors contributing to the

behavior of crime rates, such as the number of police o�cers per 1000 residents, the number

of prisoners per 1000 residents, personal income per capita, the unemployment rate, the

level of public assistance payments to families with dependent children, beer consumption

per capita, and a variable capturing the shall-issue concealed carry laws. In addition,

as in Belloni et al. (2014), we expand the set of original controls of Donohue and Levitt

(2001), by including these variables in levels, in di�erences, in squared-di�erences, their

cross-products, their initial conditions and their interaction with linear and squared time

trends. This extended database includes 284 variables, each with 576 observations relating

to 48 states for 12 years.9

3.6. Micro 2: The determinants of government takings of private property in

US judicial circuits. Chen and Yeh (2012) investigate the economic impact of eminent

domain, i.e. the right of the US government to expropriate private property for public use.

To address the possible endogeneity problem, they propose to instrument judicial decisions

on eminent domain using the characteristics of randomly assigned appellate courts judges.

We follow Belloni et al. (2012) and estimate the �rst stage of this instrumental-variable

model, by regressing the number of pro-plainti� appellate decisions in takings law rulings

from 1979 to 2004 across circuits on a set of characteristics of the judicial panels such as

gender, race, religion, political a�liation, education and professional history of the judges.

As in Belloni et al. (2012), we augment the original set of instruments with many interaction

variables, resulting into 138 possible regressors. As in their work, the regression always

includes the constant term, a set of year and circuit dummy variables, and circuit-speci�c

time trends. The sample size (circuit/year units) consists of 312 observations.10

4. Exploring the Posterior

In this section, we discuss some properties of the posterior distribution of our model,

estimated using the six datasets illustrated in the previous section. The results we report

are based on a uniform prior on q and R2, i.e. the probability of inclusion and the share

9We downloaded the data from the replication material of Belloni et al. (2014), who consider exactly the
same application.
10We have downloaded the dataset from the replication material of Belloni et al. (2012), who consider
exactly the same application.
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of the expected sample variance of yt explained by the predictors. We will also explore the

implications of priors concentrated on low values of q.

4.1. Positive correlation between probability of inclusion and degree of shrink-

age. Our inference method allows us to characterize the joint distribution of the hyperpa-

rameters q and γ2, i.e. the probability of inclusion and the prior variance of the coe�cients

of the included predictors. The left panels of �gures 4.1 and 4.2 summarize the shape of

the prior of these two hyperparameters in our six empirical applications, with lighter areas

corresponding to higher density regions.11 We present the joint density of q and log (γ),

instead of q and γ2, to interpret the horizontal axis more easily in terms of percent devia-

tions. As we noted in section 2, our �at prior on q and R2 implies a negative correlation

between q and log(γ), re�ecting the sensible prior belief that sparsity and shrinkage are

substitutes when it comes to deal with the curse of dimensionality.

The right panels of �gures 4.1 and 4.2 show the posteriors of q and log (γ). These

densities are typically much more concentrated than the corresponding prior, exhibiting an

even sharper negative correlation: the lower (higher) the probability of including a predictor

and the overall model size, the higher (lower) the prior variance of the coe�cients of the

predictors included in the model. In other words, larger-scale models need more shrinkage

to �t the data well, while models with a low degree of shrinkage require the selection of

fewer explanatory variables.

While this result should not be particularly surprising, its important implication is that

variable selection techniques that do not explicitly allow for shrinkage might arti�cially

recover sparse model representations simply as a device to reduce estimation error. Our

�ndings indicate that these extreme strategies might perhaps be appropriate only for our

micro-1 application, given that its posterior in �gure 4.2 is tightly concentrated around

extremely low values of q. More generally, however, our results suggest that the best

predictive models are those that optimally combine probability of inclusion and shrinkage.

4.2. Probability of inclusion and degree of sparsity. What is then the appropri-

ate probability of inclusion, considering that models with di�erent sizes require di�erent

shrinkage? To answer this question, �gure 4.3 plots the marginal posterior of q, obtained by

integrating out γ2 from the joint posterior distribution of �gures 4.1 and 4.2. Notice that

11The darkness of these plots is also adjusted to correctly capture the scale of the prior relative to the
corresponding posterior.
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Figure 4.1. Joint prior and posterior densities of q and log (γ) in the
macro-1, macro-2 and �nance-1 applications (best viewed in color).

the densities in �gure 4.3 behave quite di�erently across applications. For example, the

�nance-1 data seem to contain little information about model size, since the posterior of q

peaks at 1, but deviates little from its uniform prior. The macro-2 and micro-2 applications

more strongly favor dense models with the full set of predictors. At the opposite extreme,

micro 1 is the only application in which the posterior density is concentrated on very low

values of q, suggesting that the model is likely sparse. Macro 1 and �nance 2, instead,

represent intermediate cases, in which the posterior of q is nicely shaped and peaks at an

interior point of the [0, 1] interval.

4.3. Model uncertainty and patterns of sparsity. The previous subsection has pre-

sented evidence about the share of relevant predictors, i.e. the degree of sparsity in our
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Figure 4.2. Joint prior and posterior densities of q and log (γ) in the
�nance-2, micro-1 and micro-2 applications (best viewed in color).

six applications. Given these results, we now ask whether the identity of these relevant

predictors�i.e. the pattern of sparsity�is well identi�ed, especially in macro 1, �nance 2

and micro 1, for which the posterior of q does not peak at 1. We will see that this is the

case only in our micro-1 application. For macro 1 and �nance 2, instead, there is a lot of

uncertainty about the identity of the relevant predictors.

To illustrate this point, �gure 4.4 plots the posterior probabilities of inclusion of each

predictor. In the �heat maps� of this �gure, each vertical stripe corresponds to a possible

predictor, and darker shades denote higher probabilities of inclusion. Notice that the prob-

ability of inclusion of a single regressor might deviate considerably from q, although the
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Figure 4.3. Posterior density of q.

average probability of inclusion across regressors should be consistent with the posterior of

q.

The most straightforward subplot to interpret is the one corresponding to the micro-1

application. This is a model with a clear pattern of sparsity, in which the 39th regressor

(income squared) is selected 65 percent of the times. The 46th regressor is also sometimes

selected, about 10 percent of the times, although this is more di�cult to see from the plot.

All other predictors are included in the model much more rarely.

The important message of �gure 4.4, however, is that the remaining �ve applications do

not exhibit a distinct pattern of sparsity, in the sense that none of the predictors appear to

be systematically excluded. This �nding was probably expected for macro 2, �nance 1 and

micro 2, since the posterior of q peaks around very high values in these three applications.
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Figure 4.4. Heat map of the probabilities of inclusion of each predictor
(best viewed in color).

The absence of clear sparsity patterns, however, should be more surprising when the pos-

terior of q has most of its mass on lower values. For example, let us consider the case of

macro 1, in which the best �tting models are those with q around 0.23, according to �gure

4.3. This value of q, however, does not necessarily imply that the most accurate model

includes 30 speci�c predictors (23 percent of the 130 possible regressors) and excludes all

the others. If this were the case, the �rst panel of �gure 4.4 would show many near-white

stripes corresponding to the predictors that are systematically excluded. Instead, there

seems to be a lot of uncertainty about whether certain predictors should be included in

the model, which results into their selection only in a subset of the posterior draws. These
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�ndings may also re�ect a substantial degree of collinearity among many predictors that

carry similar information, hence complicating the task of structure discovery.

In sum, according to our results, model uncertainty is pervasive and the best predic-

tion is obtained as a weighted average of several models with di�erent sets of regressors.

These �ndings, in turn, rationalize the empirical success of model averaging techniques and,

more generally, ensemble machine learning methods such as boosting, bagging and random

forests. Examples of applications of these tools to various �elds of economics include Wright

(2009), Faust et al. (2013), Fernandez et al. (2001), Sala-I-Martin et al. (2004), Cremers

(2002), Avramov (2002), Inoue and Kilian (2008), Bai and Ng (2009), Rapach and Strauss

(2010), Ng (2014), Jin et al. (2014), Varian (2014), Wager and Athey (2018) and Athey

et al. (2019), among others.

How can we reconcile these results with the large literature on sparse signal detection,

which is also gaining popularity in economics? The short answer is that, to guarantee the

recoverability of the �true� model, this literature typically needs to rule out a priori the

possibility that such true model is high-dimensional, even when the number of possible pre-

dictors is large. This is achieved by either adopting explicit priors favoring low-dimensional

models (e.g. Castillo et al., 2015), or formal assumptions that the size of the true model is

small relative to k (e.g. Bickel et al., 2009 and the subsequent related literature on penal-

ized regressions). Intuitively, detecting the relevant predictors might become easier when

only considering models with a few of them, for a given sample size.

To verify this intuition, �gure 4.5 visualizes the probability of inclusion of each predictor,

conditional on all possible values of q. The horizontal line denotes the posterior mode of q

in each application.12 Observe that high-density values of q�values close to the mode�are

mostly associated with non-white regions in the heat map (except for micro 1), con�rming

the main takeaway of �gure 4.4 about the absence of clear sparsity patterns. When q is

very low, instead, some regressors are excluded more systematically and others emerge as

relatively more important. Figure 4.5 makes clear that a researcher with a dogmatic prior

that q must be low would arti�cially detect somewhat clearer patterns of sparsity. It is

important to remark, however, that even in these circumstances model uncertainty does

not completely vanish. Moreover, even a relatively small degree of model uncertainty can

12These heat maps are truncated in �nance 2 and micro 1 because the posterior of q is very concentrated
in these applications, and there are essentially no posterior draws of q below or above those thresholds.
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Figure 4.5. Heat map of the probabilities of inclusion of each predictor,
conditional on q. The horizontal line denotes the posterior mode of q (best
viewed in color).

have sizable consequences when models are low-dimensional, since they do not overlap as

much as large models and thus may contain useful idiosyncratic information. As we will see

in the next section, ignoring this uncertainty can be costly in terms of predictive accuracy.

5. Implications for Out-of-Sample Predictive Accuracy

The results of the previous section show that (i) the posterior of q does not generally

concentrate on low values, and (ii) model uncertainty is substantial. One implication of

these �ndings is that sparsity-based methods�yielding low-dimensional models without
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uncertainty on the identity of the predictors�are likely to lead to predictive losses. In this

section, we document that this is indeed the case. We begin by showing that constraining

the model space to only include small models is generally costly in terms of predictive ability.

We then demonstrate that going one step further and also ignoring model uncertainty can

be even more detrimental.

5.1. Predictive accuracy and model size. For a �rst pass at understanding whether

low-dimensional models entail predictive losses, notice that the posterior of model size can

be directly interpreted as a measure of out-of-sample predictive accuracy. To see this, let

s denote the size of the model, i.e. the number of active predictors. Our �at prior on q

implies a �at prior on s, and its posterior is thus proportional to the likelihood,

(5.1) p (s|y) ∝ p (y|s) =
T∏
t=1

p
(
yt|yt−1, s

)
,

where the equality follows from the usual decomposition of a joint density into the product

of marginal and conditional densities, and we are omitting the regressors u and x from the

conditioning sets to streamline the notation. Expression (5.1) makes clear that the posterior

of s is proportional to a product of predictive scores. As a consequence, the values of s with

higher posterior density are also those associated with better out-of-sample predictions.

Figure 5.1 quanti�es the variation in predictive accuracy across models with di�erent

s, by plotting the function log p (y|s)− log p (y|s∗) in our six economic applications (solid

line). This expression corresponds to the log-predictive score of a model with s predictors,

relative to the model with s∗ predictors, where s∗ denotes the posterior mode of s. For

instance, in our macro-1 application, values close to the actual realizations of y are more

likely according to a model with s ≈ 30 relative to those with very low or high s. As

for macro 2, the best predictive model is the dense one with s = k, and the top-right

panel of �gure 5.1 summarizes the deterioration in the log-predictive score when s declines.

The dense model is also marginally preferred for �nance 1, but �gure 5.1 makes clear that

predictive accuracy varies little across model sizes for this application, due to the very low

degree of predictability and the limited number of observations. The remaining panels in

�gure 5.1 can be interpreted in a similar way. The overall conclusion is that, with the

exception of micro 1, small models with a handful of predictors are associated with lower

predictive accuracy.
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Figure 5.1. Log-predictive score relative to the best �tting model. The six
panels are plotted using the same y-axis scale for comparability. In �nance
2, there are no posterior draws with less than 10 predictors, so the lines
corresponding to SS-bma-5 and SS-bma-10 extend to the right till the size
of the smallest models visited by the MCMC algorithm.

Although theoretically elegant, measuring relative predictive accuracy using the poste-

rior of s is not fully satisfactory, because this measure can only be used to rank models

with di�erent �xed values of s. For example, it does not allow the evaluation of the relative

predictive accuracy of a model where the researcher conducts inference on s in real time,

or of models with speci�c sets of regressors. To broaden the scope of the analysis, we also

conduct a fully-�edged out-of-sample forecasting exercise, whose implementation details

are described in appendix C. In this exercise, we re-estimate the model on many training
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samples, obtained as subsets of the full sample. We then evaluate the predictive perfor-

mance of our model on many corresponding test samples, comparing it to that obtained by

restricting the model space in a variety of informative ways.

The horizontal lines in �gure 5.1 represent the resulting log-predictive scores of four

versions of the model: SS-bma, which is our full model that combines all the possible

individual models, weighted by their posterior probability (dashed line);13 SS-bma-5 and

SS-bma-10, which restrict the model space to the combinations of individual models with

up to �ve and ten predictors respectively, weighted by their relative posterior probability

(dotted and dashed-dotted lines); and SS-k, which is the dense model with all the predictors,

i.e. the ridge regression (the bold dot). For comparability with the posterior of s, these

new results are also reported in deviation from log p (y|s∗). What is remarkable is that

these �real� out-of-sample forecasting results are very much aligned with those based on

the posterior of s, not only qualitatively, but also in terms of relative magnitudes. In sum,

high-posterior values of s are typically associated with superior out-of-sample predictive

performance, not only according to the theoretical insight of equation (5.1), but also in

practice.

Roughly speaking, di�erences in log-predictive scores across models can be due to dif-

ferences in point forecasts and/or in the dispersion of the predictive density. To determine

whether the accuracy of point and density forecasts are aligned with each other, �gure

5.2 plots the mean squared forecast errors of SS-bma-5, SS-bma-10 and SS-k (relative to

SS-bma) against their average log-predictive scores (also relative to SS-bma) for our six

applications. Observe that there is a clear negative correlation between these two objects,

suggesting that models with better density forecasts also have lower mean squared forecast

errors. The exception to this rule is micro 2, in which the average log-predictive score of the

dense model is high because its density forecasts are more spread out when point forecasts

are less accurate.

5.2. Predictive accuracy and model uncertainty. In the previous subsection we have

documented that small models have lower predictive accuracy, except for the case of micro

1, and that this feature is well captured by the posterior density of s. In this subsection

we show that the performance of small models deteriorates even further if we ignore model

13SS-bma is an abbreviation of a Bayesian model averaging (bma) strategy, with posterior weights obtained
using our spike-and-slab (SS) prior.
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Figure 5.2. Relationship between the mean squared forecast errors and
the average log-predictive scores of of SS-bma-5, SS-bma-10 and SS-k, in
deviations from SS-bma (best viewed in color).

uncertainty and focus on individual low-dimensional models. Figures 5.3 and 5.4 compare

the average log-predictive score and the mean squared forecast error of SS-bma, SS-bma-5

and SS-bma-10 to those of the single best models with up to �ve and ten predictors. The

latter, which we denote by SS-5 and SS-10, are selected as the models with the highest

posterior probability in the set of those with up to �ve and ten predictors.

The upper part of each panel shows that these modal models typically perform worse

than the bma strategies. Put di�erently, in the presence of model uncertainty, a model com-

bination approach is superior to picking individual sparse models, even if these individual

models perform well in sample.

The superior predictive performance of model averaging is not an artifact of the way

our Bayesian procedure identi�es the best individual low-dimensional models, based on

posterior weights. We substantiate this point in the lower part of each panel, which presents

the predictive performance of individual low-dimensional models selected with a variety

of alternative methods used in the literature to approximate the solution of regressions

with L0 penalty. These methods include many variants of single-best-replacement, lasso

and post-lasso techniques, with a �xed number of predictors, and with selection based
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Figure 5.3. Out-of-sample average log predictive scores of di�erent models
(best viewed in color).

on asymptotic criteria and cross validation.14 There are only a few cases in which these

approaches marginally improve over the modeling averaging strategy. Therefore, by and

large, these results reinforce the point that individual sparse models are typically associated

with predictive losses.

As a �nal exercise, table 2 compares the predictive accuracy of the SS-bma strategy to

that of the �ex-post� best model in each application. We select such model as the one with

the highest out-of-sample average log predictive score or lowest mean squared forecast error

14See appendix C for references and details.
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Figure 5.4. Out-of-sample mean squared prediction error of di�erent mod-
els (best viewed in color).

among those visited by the MCMC algorithm in the full-sample estimation.15 Notice that

this ex-post best model is an unfeasible benchmark, since we can identify it only with the

bene�t of hindsight. Nevertheless, this comparison is informative because its performance

constitutes an upper bound for the out-of-sample predictive accuracy of the forecasting

procedures involving feasible model selection or model averaging steps. The table shows that

the SS-bma strategy is relatively close to this unfeasible upper bound, especially in terms of

average log predictive scores measuring the quality of density predictions. However, the gaps

in forecasting performance reported in table 2 should be interpreted with caution, because

15Ideally, we should search over all possible models, but this set is too large for the problem to be manage-
able. Therefore, we limit the search to models with positive posterior probability, which is likely to include
the models with the best predictive accuracy.
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Macro 1 Macro 2 Finance 1 Finance 2 Micro 1 Micro 2

100 · (ALPSbest −ALPSSS-bma) 7.13 9.71 8.09 0.02 1.42 12.16

100 · (MSFESS-bma/MSFEbest − 1) 25.24 29.35 15.95 0.03 4.65 45.30

Table 2. Comparison between the predictive accuracy of SS-bma and the
ex-post best model. ALPS and MSFE denote the average log predictive
score and the mean squared forecast error, respectively.

they also measure the extent to which the ex-post best model su�ers from over�tting. This

is the case because the latter is selected only ex-post, based on its performance on all test

samples of our forecasting exercise, and it is not a model that would be chosen in �real

time,� i.e. given the information in any single training sample. As such, the selection of

the ex-post best model is akin to maximizing in-sample�as opposed to out-of-sample��t

over the model space.

6. Concluding Remarks

In economics, there is no theoretical argument suggesting that predictive models should

in general include only a handful of predictors. As a consequence, the use of low-dimensional

model representations can be justi�ed only when supported by strong statistical evidence.

In this paper, we evaluate this evidence by studying a variety of predictive problems in

macroeconomics, microeconomics and �nance. Our main �nding is that the empirical sup-

port for low-dimensional models is generally weak. Even when it appears stronger, economic

data are not informative enough to uniquely identify the relevant predictors when a large

pool of variables is available to the researcher. Put di�erently, predictive model uncertainty

seems too pervasive to be treated as statistically negligible. The right approach to scienti�c

reporting is thus to assess and fully convey this uncertainty, rather than understating it

through the use of dogmatic (prior) assumptions favoring low dimensional models.
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Appendix A. Algorithm for Posterior Inference

To estimate the model, it is useful to rewrite it using a set of latent variables z =

[z1, ..., zk]
′ that are equal to 1 when the corresponding regressor is included in the model

and its coe�cient is non-zero. Let us de�ne Y = [y1, ..., yT ]′, U = [u1, ..., uT ]′ and X =

[x1, ..., xT ]′, where T is the number of observations. The posterior of the unknown objects

of the model is given by

p
(
φ, β, σ2, R2, z, q|Y, U,X

)
∝ p

(
Y |U,X, φ, β, σ2, R2, z, q

)
· p
(
φ, β, σ2, R2, z, q

)
∝ p

(
Y |U,X, φ, β, σ2

)
· p
(
β|σ2, R2, z, q

)
· p
(
z|q, σ2, R2

)
· p (q) · p

(
σ2
)
· p
(
R2
)

∝
(

1

2πσ2

)T
2

e−
1

2σ2 (Y−Uφ−Xβ)′(Y−Uφ−Xβ)

·
k∏
i=1

[(
1

2πσ2γ2

) 1
2

e
− β2

i
2σ2γ2

]zi
[δ (βi)]

1−zi

·
k∏
i=1

qzi (1− q)1−zi

·qa−1 (1− q)b−1

·
(

1

σ2

)
·
(
R2
)A−1 (

1−R2
)B−1

,

where γ2 = 1
k v̄x q

· R2

1−R2 , and δ (·) is the Dirac-delta function.

We can sample from the posterior of
(
φ, β, σ2, R2, z, q

)
using a Gibbs sampling algorithm

with blocks (i)
(
R2, q

)
, (ii) φ, and (iii)

(
z, β, σ2

)
.

• The conditional posterior of R2 and q is given by

p
(
R2, q|Y,U,X, φ, β, σ2, z

)
∝

[
e−

1
2σ2

k v̄x q (1−R2)
R2 β′diag(z)β

]
·

·qs(z)+
s(z)

2
+a−1 (1− q)k−s(z)+b−1 ·

(
R2
)A−1− s(z)

2
(
1−R2

) s(z)
2

+B−1
,

where s (z) ≡
∑k

i=1 zi. We can sample from this distribution by discretizing the

[0, 1] support of R2 and q. More speci�cally, for both R2 and q we de�ne a grid

with increments of 0.01, and �ner increments of 0.001 near the boundaries of the

support.
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• The conditional posterior of φ is given by

p
(
φ|Y, U,X, z, β,R2, q, σ

)
∝ e−

1
2σ2 (Y−Uφ−Xβ)′(Y−Uφ−Xβ),

which implies

φ|Y, U,X, z, β, γ, q, σ ∼ N
((
U ′U

)−1
U ′ (Y −Xβ) , σ2

(
U ′U

)−1
)
.

• To draw from the posterior of z, β, σ2|Y,U,X, φ,R2, q, we �rst draw from p
(
z|Y,U,X, φ,R2, q

)
,

and then from p
(
β, σ2|Y, U,X, φ,R2, q, z

)
. To draw from the posterior of z|Y,U,X, φ,R2, q,

observe that

p
(
z|Y,U,X, φ,R2, q

)
=

∫
p
(
z, β, σ2|Y, U,X, φ,R2, q

)
d
(
β, σ2

)
∝ qs(z) (1− q)k−s(z)

(
1

2πγ2

) s(z)
2
∫ (

1

σ2

)T+s(z)
2

+1

e
− 1

2σ2

[
(Y−Uφ−X̃β̃)

′
(Y−Uφ−X̃β̃)+β̃′β̃/γ2

]
d
(
β̃, σ2

)
∝ qs(z) (1− q)k−s(z)

(
1

2πγ2

) s(z)
2

(2π)
s(z)

2
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2
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1

σ2

)T
2
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e
− 1

2σ2

[
Ỹ ′Ỹ− ˆ̃

β′W̃ ˆ̃
β
]
dσ2

∝ qs(z) (1− q)k−s(z)
(

1

γ2

) s(z)
2
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2
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Ỹ ′Ỹ − ˆ̃

β′W̃
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2

]−T
2

Γ

(
T

2

)
,

where β̃ is the vector of the non-zero coe�cients (i.e. those corresponding to zi = 1),

X̃ are the corresponding regressors,
ˆ̃
β = W̃−1X̃ ′Ỹ , W̃ =

(
X̃ ′X̃ + Iτ(z)/γ

2
)
, and

Ỹ = Y −Uφ. Therefore, to draw from the posterior of z|Y,U,X, φ,R2, q, we can use

a Gibbs sampler that allows to draw from the distribution of zi|Y,U,X, φ,R2, q, z−i.

Finally, to draw from the posterior of β, σ2|Y, U,X, φ,R2, q, z, observe that

σ2|Y, U,X, φ,R2, q, z ∼ IG

T
2
,
Ỹ ′Ỹ − ˆ̃

β′
(
X̃ ′X̃ + Is(z)/γ

2
)

ˆ̃
β

2


and

β̃|Y,U,X, φ, σ2, R2, q, z ∼ N
(

ˆ̃
β, σ2

(
X̃ ′X̃ + Is(z)/γ

2
)−1

)
,

and the other βi's are equal to 0.
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Appendix B. Additional Simulations

This appendix expands the simulation evidence of section 2.1, by considering alternative

designs in which the regression coe�cients are drawn from a Laplace distribution or from

mixtures of Gaussian distributions with a bimodal shape. These simulations are otherwise

identical to the second set of simulations described in section 2.1 and �gure 2.2, i.e. they

include non-Gaussian and heteroskedastic disturbances.

Figure B.1 considers the case in which the non-zero regression coe�cients are drawn from

a Laplace distribution with mean zero and variance equal to one. Relative to a Gaussian,

the Laplace density has more mass around zero and in the tails. Figure B.2 analyzes instead

the outcome of simulations with non-zero coe�cients drawn from a mixture of two Gaussian

distributions. The �rst component of the mixture is a Gaussian with mean equal to −2/
√

5

and variance 1/5. The second mixture component is equal to the �rst, but its mean is 2/
√

5.

The mixture weights are equal to 1/2. The resulting mixture distribution has mean zero

and variance equal to one, and it is bimodal. Finally, �gure B.3 studies the case in which

the non-zero regression coe�cients are drawn from a mixture of Gaussian distributions with

positive mean. This mixture is similar to the one just described, except for the fact that

the means of the two components are 0 and 4/
√

5, so that the overall mean and variance of

the distribution are 2/
√

5 and 1. Figures B.1, B.2 and B.3 show that the model continues

to detect the true level of sparsity quite well, and its performance is thus not particularly

sensitive to the exact distribution of the non-zero regression coe�cients.

Appendix C. Details of the Out-of-Sample Prediction Exercise

The out-of-sample prediction exercise is designed as a standard forecasting exercise for

applications with time-series data, as a cross-validation exercise for applications with cross-

sectional data, and a combination of the two for applications with panel data. The details

are as follows:

• Macro 1. We estimate the model on data from 1960:2 to 1974:12, evaluating its

one-month-ahead forecasting accuracy over the subsequent year of the sample, from

1975:1 to 1975:12. We repeat this exercise 44 times, by adding each time one year

of data to the training sample and shifting the evaluation sample by one year.16

16The time series dimension of the smallest training sample is approximately 25 percent of the full time
series dimension. We followed this approximate rule in all applications.
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Figure B.1. Simulations with non-Gaussian and heteroskedastic errors,
and with non-zero coe�cients drawn from a Laplace distribution: Kernel ap-
proximation of the distribution of the posterior mode of q across simulations
(solid line); fraction of non-zero coe�cients estimated in each simulation by
a lasso regression, with penalty parameter based on the asymptotically op-
timal criterion proposed by Bickel et al. (2009) and the tuning constants
recommended by Belloni et al. (2011a) (dots); and fraction of non-zero co-
e�cients in each simulation design (starred dot).

• Macro 2. We estimate the model on a randomly selected sample of 50 percent

of the countries, evaluating prediction accuracy on the remaining 50 percent of the

observations. We repeat this exercise 100 times.

• Finance 1. We estimate the model on data from 1948 to 1964, evaluating the

accuracy of the forecast of the 1965 observation. We repeat this exercise 51 times,

by adding each time one yearly observation to the training sample and shifting the

evaluation sample by one year.
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Figure B.2. Simulations with non-Gaussian and heteroskedastic errors,
and with non-zero coe�cients drawn from a zero-mean mixture of Gaus-
sians: Kernel approximation of the distribution of the posterior mode of q
across simulations (solid line); fraction of non-zero coe�cients estimated in
each simulation by a lasso regression, with penalty parameter based on the
asymptotically optimal criterion proposed by Bickel et al. (2009) and the
tuning constants recommended by Belloni et al. (2011a) (dots); and fraction
of non-zero coe�cients in each simulation design (starred dot).

• Finance 2. We estimate the model on data from 1963:1 to 1974:12, evaluating the

one-month-ahead forecasting accuracy of all the stock returns over the subsequent

year, from 1975:1 to 1975:12. We repeat this exercise 40 times, by adding each time

one year of data to the training sample and shifting the evaluation sample by one

year.

• Micro 1. We estimate the model using all the data for a randomly selected sample

of 50 percent of the states (group 1), and data from 1986 to 1989 for the remaining
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Figure B.3. Simulations with non-Gaussian and heteroskedastic errors,
and with non-zero coe�cients drawn from a positive-mean mixture of Gaus-
sians: Kernel approximation of the distribution of the posterior mode of q
across simulations (solid line); fraction of non-zero coe�cients estimated in
each simulation by a lasso regression, with penalty parameter based on the
asymptotically optimal criterion proposed by Bickel et al. (2009) and the
tuning constants recommended by Belloni et al. (2011a) (dots); and fraction
of non-zero coe�cients in each simulation design (starred dot).

50 percent of the states (group 2). This �mixed� strategy to form a training sample

is necessary because the model involves a full set of year dummies. We evaluate the

accuracy of the model predictions for the second group of states in year 1990. We

repeat this procedure 8 times (including the random split of the states into group 1

and 2), by adding each time one year of data for group 2 and shifting the evaluation

sample by one year. Finally, we repeat the whole exercise 13 times, for a total of

104 training and test samples.
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• Micro 2. We estimate the model using all the data for a randomly selected sample

of 50 percent of the circuits (group 1), and data from 1979 to 1984 for the remaining

50 percent of the circuits (group 2). This �mixed� strategy to form a training sample

is necessary because the model involves a full set of year and circuit dummies. We

evaluate the accuracy of the model predictions for the second group of circuits in

year 1985. We repeat this procedure 20 times (including the random split of the

circuits into group 1 and 2), by adding each time one year of data for group 2 and

shifting the evaluation sample by one year. Finally, we repeat the whole exercise 5

times, for a total of 100 training and test samples.

The measures of forecasting accuracy reported in the main text are computed by averaging

the log-predictive scores and the squared forecast errors over the elements of a test sample,

and across all test samples.

We evaluate the prediction accuracy of the following baseline and restricted versions

of our model: SS-bma, which is our full model that combines all the possible individual

models, weighted by their posterior probability; SS-bma-5 and SS-bma-10, which restrict

the model space to the combinations of individual models with up to �ve and ten predictors

respectively, weighted by their relative posterior probability; and SS-k, which is the dense

model including all the predictors. The predictive density of yT+1 implied by these models

is a mixture of Gaussian densities with means u′T+1φ
(j) + x′T+1β

(j) and variances σ2(j),

where φ(j), β(j) and σ2(j), j = 1, ...,M , are draws from their posterior distribution. The

predictive score is computed as the value of this density at the actual realization of yT+1.

We use the mean of the predictive density as the point forecast for the computation of the

mean squared forecast error (with the exception of micro 2, for which we use the mode of the

density evaluated at the three possible values of the response variable in this application).

To select the �best� individual models for each training sample, we employ three di�erent

sparse modeling strategies:

• Spike-and-slab (SS). Within our spike-and-slab framework, we select SS-5 and

SS-10 as the individual models with the highest posterior probability in the set of

those with up to �ve and ten predictors. To robustify the procedure, instead of

simply counting the number of times an individual model is visited by the MCMC

algorithm, we numerically compute the posterior model probability of all models
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that are visited at least once, and pick the model with the highest.17 The pre-

dictive density of yT+1 implied by these models is a mixture of Gaussian densities

with means u′T+1φ
(j) + x′T+1β

(j) and variances σ2(j), where φ(j), β(j) and σ2(j),

j = 1, ...,M , are draws from their posterior distribution. We use the mean of the

predictive density as the point forecast for the computation of the mean squared

forecast error.

• Lasso (L) and Post-lasso (PL). As an alternative way to identify good-�tting

individual small models, we also consider the popular lasso method (Tibshirani,

1996). We consider the following variants of this methodology. (i) L-5 and L-10:

lasso with a �xed number of �ve and ten predictors; (ii) L-asy: lasso with a penalty

parameter based on the asymptotic criterion proposed by Bickel et al. (2009), im-

plemented using the iterative procedure and the tuning constants recommended by

Belloni et al. (2011a) (notice that this criterion is designed for valid inference, not

necessarily best prediction); (iii) L-cv2, L-cv5 and L-cv10: lasso with selection of

the number of predictors based on 2-, 5- and 10-fold cross validation.18 It is well

known that constructing the full predictive density implied by lasso is challenging,

and there is no agreement in the literature about how to tackle this problem (Hastie

et al., 2015). For this reason, we use two alternative rough approximations of the

density of yT+1.

The �rst method consists of treating the lasso parameter estimates as known, and

assuming Gaussian errors and a �at prior on their variance. Under these assump-

tions, the density of yT+1 is a non-centered Student-t distribution, with mean

u′T+1φ̂L + x′T+1β̂L, scale
√
r̂L/(T − 2) and degrees of freedom T − 2, where φ̂L,

β̂L and r̂L are the lasso estimates of φ, β and the sum of squared residuals. As

before, we use the mean of the predictive density (u′T+1φ̂L + x′T+1β̂L) as the point

forecast for the computation of the mean squared forecast error (with the exception

of micro 2, for which we use the mode of the density evaluated at the three possible

values of the response variable in this application).

17If models with less than 5 or 10 predictors receive less than 0.05 percent of the total posterior weight, we
consider progressively larger models until we reach this lower bound. The only application where this is an
issue is �nance 2, where small models are essentially never visited.
18We approximate the lasso estimates with �ve and ten predictors with the �fth and tenth step of the least-
angle regression (LARS) algorithm. Similarly, for the case of cross-validation, we search over the possible
number of steps in the LARS algorithm as opposed to the values of the penalty, to improve speed.
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An alternative method to construct the predictive density is based on post-selection

inference. It consists of running a simple ordinary least squares regression of the

response variable on the regressors selected by lasso (Belloni and Chernozhukov,

2013). This �post-lasso� procedure reduces the bias of the lasso estimator and may

better approximate the solution of the best subset selection problem (Beale et al.,

1967 and Hocking and Leslie, 1967). With Gaussian errors and a �at prior on the

second-stage regression, the implied predictive density of yT+1 is a non-centered

Student-t distribution, with mean u′T+1φ̂PL + x′T+1β̂PL, scale√(
[u′T+1, x

′
T+1] ([U,X]′[U,X])−1 [u′T+1, x

′
T+1]′ + 1

)
r̂PL/(T − l − n− 2) and degrees

of freedom T − l − n − 2, where φ̂PL, β̂PL and r̂PL are the ordinary least squares

estimates of φ, β and the sum of squared residuals in the second-stage regression,

and n is the dimension of the vector β̂PL. This post-selection approach allows us to

incorporate parameter uncertainty in the predictive density, although the parame-

ter estimates in the second stage are of course di�erent from the lasso estimates. It

is important to stress that this strategy is appropriate only under the stringent as-

sumptions guaranteeing that model selection does not impact the asymptotic distri-

bution of the parameters estimated in the post-selection step (Bhulmann and van de

Geer, 2011; see also Leeb and Potscher, 2005, 2008a,b for a thorough discussion of

the fragility of this approach, and Chernozhukov et al., 2015 for a comprehensive

review of these topics). In the �gures of the paper, we denote the log-predictive

scores implied by this method as PL-5, PL-10, PL-asy, PL-cv2, PL-cv5 and PL-

cv10, depending on the lasso variant used in the selection stage. For completeness,

we also report the mean squared forecast error based on post-lasso, using the mean

of the predictive density (u′T+1φ̂PL+x′T+1β̂PL) as the point forecast (with the usual

exception of micro 2).

• Single best replacement (SBR). This class of methods (also known as forward

stepwise) is a fast and scalable approximation of the solution of the best subset

selection problem, and thus provides yet another way to choose good-�tting sparse

individual models. We use the SBR computation algorithm of Soussen et al. (2011)

and Polson and Sun (2019), and consider the following variants of this method. (i)

SBR-5 and SBR-10: SBR with a �xed number of �ve and ten predictors; (ii) SBR-

cv2, SBR-cv5 and SBR-cv10: SBR with selection of the number of predictors based
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on 2-, 5- and 10-fold cross validation. The predictive density and point forecast of

yT+1 implied by these models are constructed as in the post-lasso case.
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