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Abstract

We propose a granular framework that makes use of advanced statistical methods to ap-

proximate developments in economy-wide expected corporate earnings. In particular, we

evaluate the dynamic network structure of stock returns in the United States as a proxy for

the transmission of shocks through the economy and identify node positions (firms) whose

connectedness provides a signal for economic growth. The nowcasting exercise, with both

the in-sample and the out-of-sample consistent feature selection, highlights which firms are

contemporaneously exposed to aggregate downturns and provides a more complete narra-

tive than is usually provided by more aggregate data. The two-state model for predicting

periods of negative growth can remarkably well predict future states by using information

derived from the node-positions of manufacturing, transportation and financial (particularly

insurance) firms. The three-states model, which identifies high, low and negative growth,

successfully predicts economic regimes by making use of information from the financial,

insurance, and retail sectors.

JEL Classification: C45; C51; D85; E32; N1.

Keywords: real-time; turning point prediction; Granger-causality networks; early warning

signal.
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.

Non-technical summary

A real-time identification of recessions and economic “regimes” (i.e. phases of the busi-

ness cycle) proves difficult, but it is of great importance for policy-makers. We propose

a novel approach for identifying changes in economic regimes in real time. Our approach

utilises various measures of connectedness in a stock returns network as a proxy for the

transmission of shocks through the economy. We show that the dynamic network structure

contains forward-looking cyclical information and is a good predictor of booms and reces-

sions.

We emphasise the role of granular, firm-level information, and its connectedness to un-

veil aggregate shocks. When consumer and business spending softens in some part of the

economy, corporate earnings start to decline and businesses seek ways to cut costs. They

might downsize their workforce, put a freeze on hiring and delay investments. As these

factors become more widespread, unemployment rises, aggregate wages fall and demand

weakens further, tipping the economy into recession. Once demand for goods and services

increases again, earnings rise supporting higher stock prices. Although every recession is

different, there is a clear link between the state of the economy, corporate earnings and stock

price developments. Our dynamic stock network captures the connectedness of shocks to

expected corporate earnings and hence allows us to detect the propagation of shocks within

the economic system.

The main findings can be summarised as follows. The baseline binary state model can

predict upcoming recessions by using information from the node-positions of manufacturing,

transportation and financial, particularly insurance firms. The ternary state model (featur-

ing high, low growth, and recessions) successfully predicts economic regimes highlighting

the role of information stemming from the financial, the insurance, and the retail sectors.

Looking at the economic system as a whole, we highlight that during an expansion adverse

shocks to firms are mostly idiosyncratic, while during contractions shocks become more

widespread resulting in higher connectedness in certain parts of the network. Measures of

centrality efficiently summarise economy-wide developments and allow us to monitor the

state of the economy in real time.
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1 Introduction

A real-time identification of recessions and economic “regimes” (i.e. phases of the

business cycle) is of great importance for policy-makers. We propose a novel approach

for identifying changes in economic regimes in real time. Our approach utilises mea-

sures of connectedness in a stock network as a proxy for the transmission of shocks

through the economy and, hence, for widespread developments in corporate earnings.

We show that the dynamic network structure contains forward-looking cyclical infor-

mation, making it an optimal predictor of booms and recessions.

The identification of turning points or different phases of the business cycle in

real time has proven rather difficult, despite a large literature on the subject and an

ever increasing number of leading indicators. In this respect, the consensus in the

literature is that the set of relevant indicators for predicting shifts in business cycle

phases (e.g. recessions) changes over time. Therefore, indicators that are useful for

predicting one recession do not necessarily serve to predict other recessions as “every

cycle is different”. A general problem of forecasting economic regimes as shown by Ng

(2014) is that only a few indicators are actually useful and the effectiveness of these

indicators varies according to the forecast horizon. For example, financial variables

(e.g. term and corporate spreads) are appropriate for forecasting 6 to 12 months

ahead in view of their forward-looking nature.1

One important reason for the delay in identifying shifts in business cycle phases

is that the overall economy is normally reduced to a summation of its components

and micro-level shocks are therefore assumed to offset each other at the aggregate

level. By contrast, the approach adopted in this work emphasises the importance

of granularity and the role of economy-wide return connectedness. When consumer

and business spending softens in some parts of the economy, corporate earnings start

to decline and businesses seek ways to cut costs. They might downsize their work-

force, put a freeze on hiring and delay investments. As this situation becomes more

widespread, unemployment rises, aggregate wages fall and demand weakens further,

1 In our network approach, we focus on nowcasting. Investigating the forward-looking information content
in the derived network measures is left for future work.
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tipping the economy into recession. Although every recession is different, there is

a clear link between the state of the economy, corporate earnings and stock price

developments. Once demand for goods and services increases again, earnings rise

supporting higher stock prices. Translating the company information contained in

stock returns into a dynamic stock network allows us to proxy widespread devel-

opments in actual and expected corporate earnings and, hence, shock propagation

within the economic system. Considering that changes in stock market returns can

reflect both idiosyncratic and economy-wide shocks, we calculate pairwise Granger

causality within companies’ stock returns. A relation at a period t only exists if

the daily returns of a company over a 12-month horizon provide statistically sig-

nificant information for predicting the returns of another company and vice versa.

During an expansion adverse shocks to firms are mostly idiosyncratic, while during

contractions shocks become more widespread which results in higher connectedness in

the network. We can monitor economy-wide developments by calculating measures

of centrality that reflect increasing co-movement in the economy, thereby creating

a “fat” data-set of roughly 5,002 time-series. Given that pure financial shocks are

predominant in the network, we need to identify the characteristics of the dynamic

network that are more likely to reflect economy-wide propagation leading to booms

or recessions.

The work that is closest to ours is Heiberger (2018),2 but we extend it in several

ways. First, we construct the network on the basis of pairwise Granger-causalities

rather than correlations. Limiting links to statistically relevant causality focuses on

relationships that are economically relevant for shock transmission in the network,

while reducing noise. The point is to identify the stocks/nodes that react earlier

to shocks and play a role in their transmission (i.e. they are systemically relevant).

We show that relevant economy-wide developments are only imperfectly reflected in

the aggregate data, while firm-specific network characteristics are important early

indicators of the state of the US economy. Second, we innovate by letting different

algorithms such as support vector machines (SVM), naive Bayes (NB) and logistic

2 The author creates a dynamic correlation-based network for stock market returns in a 12-month rolling
window. it assumes a critical threshold of correlation of 0.7. The author’s approach requires an optimal
number of network features of around 2,200.
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regression (LR) compete.

We analyse two models. The first tries to identify two economic regimes: “re-

cession” (defined as negative growth in the quarter) and its complement. In the

second model, we try to perform the more challenging task of distinguishing between

three regimes: “negative growth” (defined as negative growth in the quarter), “low

growth” (defined as positive, but below high growth) and “high growth” (defined as

annualised growth higher than 3% in the quarter). Our findings suggest that our

network approach can help to detect changes in economic regimes in real-time, giving

policy-makers a tool to anticipate slowdowns and take measures against them. The

main findings can be summarised as follows: (i) Applying recursive feature elimina-

tion (RFE) on the entire sample, we are able to determine ex-post which firms were

exposed to economy-wide earnings shocks that turned into aggregate fluctuations,

while remaining resilient to others. Looking at the sectors where these firms operate,

a more complete narrative can be derived than is usually derived from more aggregate

data. The two-state model for predicting periods of negative growth can remarkably

well predict future states by using information from the node-positions of manufac-

turing, transportation and financial, particularly insurance firms. The ternary state

model successfully predicts economic regimes by making use of information from a few

node-positions from the financial and insurance sectors, as well as the retail sector.

(ii) Using features (variables) that are selected to be optimal until the fourth quarter

of 2006 (i.e. excluding the out-of-sample period), we validate our models in terms

of true out-of-sample performance to verify that the in-sample results are not solely

due to favorable feature selection. Unsurprisingly, the number of selected features

is higher than in the in-sample exercise. While the predictions of the binary state

model are weak, the ternary state captures the turning point of the great recession

and performs overall well, while creating some false positives in the negative growth

state in moments of weak growth momentum.

The rest of this paper proceeds as follows. Section 2 reviews differing approaches

and sets them into the context of this study. Section 3 discusses the methodology of

our approach. Section 4 illustrates the findings while Section 5 concludes.
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2 Related literature

A large amount of literature has investigated models and economic and financial in-

dicators that could be useful to predict or anticipate an economic downturn. The

real-time predictive power of such models, however, has often proved unsatisfactory.

In conventional frameworks, the inclusion of selected financial indicators has partially

captured the effect of the financial cycle on recessions. The high costs that are associ-

ated with systemic risk and financial crises led to an extensive literature investigating

the linkages between the financial sector and crises. Early warning models estimated

with conventional techniques include Alessi and Detken (2011), Rose and Spiegel

(2012), Gourinchas and Obstfeld (2012), Duca and Peltonen (2013) or Drehmann

and Juselius (2014). This macro approach (based on macro aggregates) is partially

successful, and has been able to identify some determinants of financial crises (e.g. the

credit to GDP ratio). However, the problem remains that variables that have been

found to be important, such as credit, are usually in the form of aggregates, which,

by their nature, miss the tails and off-mean events that may trigger a recession.

In an attempt to overcome this, Adrian et al. (2019) estimate the predictive US

GDP growth conditional distribution based on a synthetic index of financial condi-

tions. This index aggregates variables that cover financial risk, leverage and credit

quality. The analysis finds that the lower quantiles of GDP growth are more sensitive

to financial conditions than upper quantiles. This finding suggests an asymmetric and

non-linear relationship between financial and real variables. Plagborg-Møller et al.

(2020) find that financial variables have very limited predictive power for the distri-

bution of GDP growth at short horizons, especially, but not limited to, the tail risk.

This is due to the fact that moments other than the mean are estimated imprecisely

and information in monthly financial variables is highly correlated.

However, there are still several shortcomings of macro-based analysis. First, using

aggregate data averages out shocks. That is, aggregation in the data “averages out”

micro shocks because interactions are neglected in favour of averaging. Therefore,

a macro approach (using aggregate data) is only suitable for identifying aggregate
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shocks that result from macroeconomic policies. To the extent that systemic risk

is determined by the complex interactions of micro shocks, macro aggregates would

not be able to account for network effects. Second, aggregate data are usually not

available on a timely basis. In the United States, the Bureau of Economic Analysis

(BEA) releases the first estimate of the gross domestic product one month after the

end of the reference quarter. A second estimate is published two months after the end

of the reference quarter. And finally, a third estimate is released three months after

the end of the reference quarter. A breakdown of GDP by industry is available later,

with an average delay of 120 days.3 Third, there are substantial non-linearities that

standard regression models struggle to capture. Attempts to identify non-linearities

in economic processes mostly involve Markov switching models and multiple economic

regimes (for instance, Chauvet and Hamilton (2006) and Camacho et al. (2018)), or

the estimation of probit and logit regressions.

Recently, researchers have started to explore unconventional “big data” and/or

techniques such as machine learning methods to forecast the business cycle, obtain-

ing some promising results. For instance, Qi (2001) predicts US recessions with neural

network models and a set of leading financial and economic indicators, and Giusto

and Piger (2017) use Learning Vector Quantization (LVQ) to identify US business

cycle turning points in real time.

In this paper, we follow this strand of research and propose to evaluate network in-

formation generated from stock returns to proxy the propagation of economic shocks

that result in recessions. For example, Gabaix (2011) shows that idiosyncratic firm-

level shocks can explain a large part of aggregate movements and provide a micro-

foundation for aggregate shocks. In particular, the idiosyncratic movements of the

largest 100 firms in the United States appear to explain about one-third of variations

in output growth. Acemoglu et al. (2012) argue that in the presence of intersectoral

input and output linkages microeconomic idiosyncratic shocks may lead to aggregate

fluctuations. Næs et al. (2011) find that the liquidity in stock markets dries up prior

to a crisis in the real economy while Li (2017) has shown that micro uncertainty (as

3 See the official release schedule published by the BEA on https://www.bea.gov/news/schedule
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measured by the idiosyncratic component in stock prices), translates into macro un-

certainty via credit frictions in line with Bernanke et al. (1999). Ferreira (2018) shows

that financial skewness, measured by comparing cross-sectional upside and downside

risks of the distribution of stock market returns of financial firms, is a powerful pre-

dictor of business cycle fluctuations. Adam and Merkel (2019) present a model of the

business cycle with extrapolative belief formation in which price effects of technology

shocks are amplified such that large and persistent boom and bust cycles occur as

observed in stock prices.

Nonetheless, there are two main challenges when incorporating the information

provided by a network into fore- and nowcasting models: i) how to accommodate

a network structure in an econometric framework (i.e. selection of informative fea-

tures of the nodes in the network); and ii) whether and how to deal with the curse

of dimensionality and select what is relevant. Given that networks usually produce

a large amount of information (e.g. complex interactions between the groups that

form the network), standard econometric models would not be sufficient for this task

(for example, our baseline specification is described by approximately 5,002 time-

series), and would, therefore, go beyond what macroeconometricians define as big

data (see Giannone et al. (2018)). To deal with this “curse of dimensionality”, we use

machine learning techniques that perform variable selection, in particular RFE. In

addition, to evaluate the remaining information we use competing machine learning

methods: support vector machines, naive Bayes and a benchmark logistic regression.

We build our network on financial data. More precisely, we use stock returns

of listed companies in the Standard and Poor’s (S&P) 500 index. Financial data

have the advantage of being non-proprietary and available in real time. From an

economist’s point of view, there are two main reasons why quotations on financial

markets can help to explain the business cycle. First, financial markets process in-

formation efficiently, and quotations may be seen as informative summary statistics

about a variety of firm characteristics such as the current status of company funda-

mentals and future expected performance as judged by the markets. Second, financial

markets may additionally be the cause of sudden stops in the economy by turning
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small, idiosyncratic shocks into big aggregate shocks. Moreover, the presence of a

representative sample of insurers and banks covers financial and credit links. Most

importantly, stock prices are not subject to meaningful errors or revisions, which

makes them particularly useful for nowcasting and forecasting.

Notably, we recognise the difficulty of being robust to the “every cycle is different”

criticism. To achieve as much robustness as possible across different cycles, we exploit

different types of information. We compute our networks using rolling 12-months win-

dows for each quarter ending on first working day of the second month in the quarter.

Using those networks, we calculate node and aggregate network measures. Finally, we

obtain for each measure in each network one metric that we combine over time to ob-

tain one time-series. We combine the time-series for all measures in a matrix. Finally,

we let machine learning techniques discriminate between useful information and noise.

3 Data and methodology

In this section we explain how we can model the relationships among companies using

network theory. A network represents pair-wise relationships between nodes (firms

in our case). Depending on the different attributes and relationships within the net-

work, it will tell us relevant aggregate and sector-specific information about the way

companies interact in the economy over time. Thus, representing the economy as a

network has several potential advantages over looking at aggregate data (i.e. overall

stock market indices). We can use a wide range of information embedded in the

network, such as the key firm or sector in the economy, and, more importantly, we

can account for non-linearities in the relationship between economic players and the

economic cycle. The exact procedure is summarised in the following steps:

Steps of the methodology

1. We have 500 series of daily returns data for the period from the first quarter of

1980 to the first quarter of 2019.

2. For each quarter:
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(a) For each possible pair-wise relationship between stock returns:

i. Pick two firms’ daily returns series over a 12-month (rolling) window

ending on the first working day of the second month in the quarter (e.g.

1 February for the first quarter of the year).

ii. Test Granger causality of the two series using an heteroscedasticity and

autocorrelation consistent (HAC) regression and 1% significance level.

iii. If a Granger-causal relationship fill the network’s adjacency matrix

[500x(500-1)] with a 1 at the respective position, if not fill a 0.

(b) From the first quarter of 1982 to the first quarter 2019, we calculate the

proposed network measures and combine them along the time dimension to

track the evolution of these measures over time. In the feature matrix we

consider solely the contemporary observation, hence we do not account for

lagged values. We discard series that show too little variation over time.

3. We standardise all features to have a zero mean and a standard deviation of 1.

4. We use RFE in-sample to find contemporary highly correlated network metrics

and choose the combination that performs best assuming k-fold cross-validation

with k=54 if we treat the entire data as in-sample and k=3 in case we consider an

out-of-sample period. This unveils a reduced amount of features that have been

independently highly correlated with GDP growth rates in different sub-periods

in the past.

5. We train the logistic, SVM and naive Bayes classifiers on ranges of GDP growth

rates making use of the selected features.

6. We use the classification to nowcast economic “regimes” using stock network

data in the selected period.

3.1 Data

We build our explanatory variables using the daily stock return index (which accounts

for dividends and reinvestment within the underlying company). We obtain the data

4 3 in case of the ternary state model.
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from Datastream and include all companies listed in the S&P 500 in the third quarter

of 2018. The complete list of companies with identifiers can be found in Table A.3.3

in the Appendix. Table 1 illustrates the sectoral composition of the companies in the

selected sample of firms as in the third quarter of 2018.5 As we can see, out of the

500 companies in the sample, the biggest share comprises manufacturing companies

(191), the second biggest share comprise financial companies (97) and transportation

and services companies are tied for the third largest share (both with 71 companies).

Note that we obtain sector-specific information using the Standard Industrial Classi-

fication (SIC).6

Table 1 Sectoral composition of the listed companies in the S&P 500 index

Sector #Nr. of companies

Primary and construction 24
Manufacturing 191
Transportation 71
Wholesale 11
Retail 35
Finance 97
Services 71

Total 500

Notes: The table displays the sectoral composition of the S&P 500 index according to the Standard Industrial
Classification as described in Footnote 6.

The total time span is from 2 January 1980 to 31 March 2019. Following the

standard procedure in the literature, if there are no observations for the return of a

given company (e.g. a company did not exist in the 1980s) information about the

company is retained, but as we will see later on, no causality is assumed. Using the

constituents as at the third quarter of 2018 allows us to ignore changing compositions,

but requires us to acknowledge that the network is imbalanced in the 1980s as it is

gradually being compiled (see Figure A.16 in the Appendix). We obtained stock

returns for each company i and time t by computing the difference in the logarithm

of the return index at t and t− 1: rit = log(RIit)− log(RIit−1).

5 The choice constitutes a trade-off between keeping the number of companies limited, on the one hand,
and focusing on firms that are important at the present time, on the other hand. This results in imbalanced
data as companies that were included in the third quarter of 2018 might not have existed in the 1980s.

6 The sectors are: Primary and construction (0100-1799), manufacturing (2999-3999), wholesale (5000-
5199), transportation, electricity and gas (4000-4999), retail (5200-5999), financial, insurance and real-estate
(6000-6799), and services (7000-8999). The classification we propose can be applied in a more granular way.
This information is solely used in the statistical review of features.
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3.2 Pair-wise Granger-causality network

In order to build networks using firm stock returns, we compute pairwise Granger

causality tests among each of the companies. To illustrate how we construct the

Granger causality network, consider Figure 1 which shows how a network can repre-

sent the interactions of three different companies. It is assumed that the returns of

each company are available as a time series (top panel). In the left panel, the returns

of companies B and C co-move whereas neither of them co-move with the returns of

company A. These relationships are displayed as a network by connecting the nodes

of only company B and company C. Moreover, these connections are bi-directional,

in the sense that company B’s returns cause company C’s and vice versa. In the third

panel, however, we see that company A’s returns causes company B’s returns, since

they move earlier in the same direction, but the reverse is not true (i.e. company B’s

returns do not affect company A’s returns). For this reason, as we will see later on,

we will have asymmetric relationships among companies.

Figure 1 Construction of a Granger causality network
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Notes: The graph illustrates how the Granger causality stock network is constructed. If returns of company B help
to forecast returns of company C, and vice versa then a bi-directional edge is created between the two companies. If
returns of company A Granger-cause returns of company B, but not vice versa a one-directional edge is assumed.

To account for causal interactions between stock returns rather than simply co-

movements or correlation, we make use of Granger-causality networks. Granger-
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causality networks have gained prominence by outperforming other approaches in

displaying an extremely volatile degree of connectedness between financial institu-

tions in times of financial crisis (see Billio et al. (2012)).7 Moreover, by applying

them to a large and representative set of companies in the economy, it is also possible

to capture patterns of economic developments over the business cycle.

In order to calculate the Granger-causality networks, we follow Granger (1969),

Granger (1979) and Billio et al. (2012) and estimate linear Granger-causality networks

on stock return indexes over rolling windows with a 12 month horizon. We do so

in two steps: first, we estimate bivariate vector autoregressions (VAR) using the

Bayesian Information Criterion (BIC) to specify the lags to be chosen.8 Second,

we compute pairwise Granger-causality tests between the stock returns corrected for

heteroscedasticity and autocorrelation (HAC). If the hypothesis of no causality is

rejected, we assume a link between both stocks in the network. For both steps,

we consider a significance level of 1% and a rolling window size of 12 months, as

those parameters constitute a good choice for reflecting more persistent shocks. For

instance, a 12-month rolling window is not solely focused on the short term, but also

on somewhat more persistent shocks, which will be discussed in the next section.

Specifically, we represent each network in each periodtvia an adjacency matrix A
(t)
ij :

A
(t)
ij =

 1 if i Granger causes j

0 otherwise
(1)

where we impose A
(t)
ii ≡ 0. It is worth noting that the adjacency matrix, unlike cor-

relation matrices as in Heiberger (2018), is generally not symmetric, as variable i can

Granger-cause j without the opposite being true.

7 In many applications, Granger-causality networks outperform networks based on dynamic Bayesian
inference or simple correlation. In particular, if the data are not short they outperform dynamic Bayesian
networks as shown by Zou and Feng (2009). In contrast to Billio et al. (2012), we apply heteroscedasticity
and autocorrelation corrected Granger causality tests.

8 Assuming an informationally efficient financial market, short-term asset price changes should not be
related to other lagged variables and no return series would be expected to Granger-cause another. However,
the presence of value of risk constraints, costs of gathering and processing information, and institutional
restrictions creates Granger causalities among price changes in financial assets over time.
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3.3 Network topology

Nonetheless, there are many other rich attributes that we can extract from a network

beyond how compact or loose it is (as displayed in Figure 3). In this section we

describe aggregate and firm/sector-specific network measures that we use throughout

the analysis. We will rely on a number of centrality measures, which aim to identify

the most important vertices within a network.

• Dynamic causality index (economy and sectors)

DCI =
1

N(N − 1)

N∑
i6=j

N∑
j 6=i

Aij (2)

The dynamic causality index (DCI) is described by the number of causal re-

lationships over a given period divided by the number of total possible causal

relationships. The DCI describes the total number of Granger-causal relation-

ships in the system and hence is a measure of overall connectedness. We consider

the DCI of the whole network and of sector-specific sub-networks.

• Firm-specific or node-specific measures

In addition, we calculate various measures of node-level centrality which are

illustrated in Figure 2. Measures of centrality attempt to identify the most

important vertices within a network, e.g. the most influential firms or sectors.

As we will see, there are many different ways of doing so, such as using the

number of overall connections, connections within influential groups or flow

across the network. In our set up, we consider five broad categories (and many

more subcategories) of centrality which may characterise a network:

1. Degree centrality. Degree centrality is a basic metric of connectedness which

measures the exposure of a company to the entire economy. More formally,

it is the fraction of statistically significant Granger-causality relationships
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Figure 2 Actual network and node-level measures of centrality
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Notes: The graph illustrates the same network at a single periodtwith nodes ordered and pictured according to

different network measures. Higher nodes are assigned higher values.

among all N(N-1) pairs of N companies:

DGCi =
1

N(N − 1)

N∑
i=1

∑
j 6=i

(j → i). (3)

Subcategories of degree centrality include the in-degree and out-degree

measures. These measures account for all in-going and out-going relation-

ships respectively. A high in-degree measure identifies a receiver of shocks

whereas a high out-degree connectedness identifies those nodes that are ei-

ther originators of shocks or are exposed earlier to shocks in the network.

2. Closeness centrality. Closeness centrality defines node centrality in terms

of the shortest paths. The distance between nodes i and j is given by the

number of edges in the shortest path connecting them. A central node is

therefore close to all other nodes in the network in terms of the average

distance between this node and all others. Nodes with a high closeness

reach the rest of the network in just a few steps and are able to quickly

spread shocks through the network. Since our network is directed (i.e. there

are Granger-causality directions among firms), it is better to distinguish be-
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tween in-closeness and out-closeness centrality. In-closeness centrality mea-

sures the degree to which a node can be easily reached from other nodes

(i.e. using the shortest path). Out-closeness centrality measures the degree

to which a node can easily reach other nodes.

3. Betweenness centrality. Betweenness centrality is a measure related to

closeness centrality since it is also based on shortest paths. Nonetheless,

betweennes centrality does not require the network to be fully connected

but can be calculated over multiple unconnected components (groups of

nodes that are all connected to each other).

Bi =
∑
i6=j 6=k

σj,k(i)

σj,k
(4)

where σj,k is the path between j and k, and σj,k(i) is the number of paths a

node i lies on. Firms with high betweenness centrality serve as a bridge to

otherwise weakly connected nodes, and have a high influence over the flow

and contagion of shocks across parts of the network (e.g. between different

sectors). An example of firms that serve as bridges is banks or financial

institutions. They are connected to different firms in the economy as they

provide them with credit and therefore can easily spread negative shocks

throughout the whole economy.

4. PageRank centrality. PageRank is another centrality measure developed by

Google search in order to rank web pages according to how influential they

are. PageRank works by counting the number and quality of links to a page

to determine its importance. It does so by representing the network as a

Markov chain in which each node is a state. The adjacency matrix can be

transformed such that its elements represent the probability of transition

between a pair of nodes. This measure computes the probability of arriving

at the node i after a large number of steps following a random walk navi-

gation through the network. Therefore, nodes with a higher probability are

more central.
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5. Hubs and authorities centrality. Hubs and authorities centrality are mea-

sures that give high scores to nodes which are so-called ”hubs” or ”author-

ities”. A hub node is one that points to many authority nodes, and an

authority node is one that is pointed to by many hub nodes.9

3.4 Mapping stock networks to the business cycle

Figure 3 shows the average structure of the stock network during periods of reces-

sion and non-recession as defined by the US National Bureau of Economic Research

(NBER). The recession period chart displays all relationships that hold true in at

least five of the nine NBER recession periods, while the non-recession period chart

displays all other periods. It appears that the network displays a high degree of con-

nectedness during economic contractions, while during expansions shocks and, hence,

stock returns behave more idiosyncratically, leading to lower connectedness. This

information is summarised in the histogram in Figure 4.

Figure 3 Stylised network during phases of the business cycle

NBER Recession Periods
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Notes: The figures display averaged quarterly stock networks of the S&P 500 based on pairwise Granger causal
relationships from 2000:Q1 to 2019:Q1 on a 12 month rolling window bandwidth and a 5% significance level. 68
non-recession periods and 9 recession periods. The threshold for the averaging is 50% causalities per relation for the
non-recession and the recession periods. This means that at connection holds at least in 5 out of 9 periods for the
NBER recession case. As the network for the non-recession periods would display no connectedness at a threshold of
34 out of 68 periods, we can lower the threshold to 7 relations per 68 periods.

There is evidence that the financial system has increased in size and complex-

9 The easiest way to understand this is by using the example of building a network of journal articles
using citations. An article that is referenced by many other articles has a high authority score, and an article
that cites many authority articles has a high hub score.
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ity and its potential for causing economic disruption has correspondingly increased

(see, for example Zingales (2015)). The strong decoupling between money and credit

aggregates shows that the leverage of the financial sector has increased strongly in

recent decades. The transformations in financial intermediation are poised to have

far-reaching implications for real-financial interactions and ultimately for business cy-

cle dynamics. Not only has the size of the financial sector been steadily increasing in

comparison with the size of the real economy; but the influence of the sector has also

become proportionally greater as the result of increasing interdependence between

financial and non-financial firms. From the perspective of systemic risk, the financial

sector can be thought of as a network of connected institutions that may benefit from

having commercial relationships with each other but that can also translate micro

shocks (e.g. firm-specific shocks) into systemic shock and cause financial crises.

Figure 4 Normalised stable node-relations during phases of the business cycle
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Notes: The graph illustrates normalised quarterly connectedness from the first quarter of 2000 to the first quarter of
2019 on a 12-month rolling window bandwidth with a 5% significance level. Connectedness in specific nodes in NBER
recession periods are more persistent than in non-recession periods where connectedness might be more idiosyncratic.
A histogram using data since the first quarter of 1982 is available in Figure A.17 in the Appendix.

To nowcast the business cycle using the wide range of information embedded in

this network, we must convert network information into “useful” time series data.

We do so in two steps. First, we describe the network using a wide set of network

and node metrics. By observing the evolution of these measures over time, we can

easily convert them into time-series. In the second step, the vast number of network

measures has to be reduced. Our network is described by 5,002 time series, which

ECB Working Paper Series No 2494 / November 2020 18



contain a considerable amount of noise. We apply machine learning techniques as

standard econometrics cannot deal with such a sizeable dataset, owing to the “curse”

of dimensionality (see, for example, Giannone et al. (2018)). We first eliminate unin-

formative signals that have characteristics that do not change over time (constant or

semi-constant), then we allow for further statistical data selection making use of RFE.

Dimension reduction techniques help to isolate relationships that are highly cyclical

and that can be applied to predict recessions or periods of high and low growth.

Figure 5 Node-specific network measures vs GDP growth
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Notes: The graph illustrates various illustrative firm-specific stock network measures derived from daily returns
(dashed blue lines) and the annualised quarterly growth rate of the economy (dashed black-red line). The red bars
indicate periods of negative growth.

After the “translation”, and as illustrated in Figure 5, a set of best-performing

measures is used to predict the cycle. The business cycle data consist of seasonally ad-

justed quarterly real GDP growth figures (annualised rate) for the United States from

the FRED database.10 We consider both aggregate and disaggregate (firm-specific)

characteristics of the network and let the algorithm decide which are most helpful for

classification. During expansions we expect shocks to returns to be firm-specific and

less correlated across firms. Since the economy tends to be a shock absorber in normal

times, our network should appear less aggregated. However, during downturns shocks

might propagate across firms, thereby hitting the economy broadly and in a persistent

manner. While aggregate measures can hardly reflect these granular developments,
10 The series identifier in the Federal Reserve Economic Data (FRED) database is A191RL1Q225SBEA.
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we postulate that pooling node-specific patterns in the networks can capture those

dynamics well. Furthermore, economic downturns can be detected earlier in specific

firms and sectors.

Using the aforesaid metrics, we describe in this section the evolution of some

aspects of the network. In particular, we discuss measures of the behaviour of the

aggregate network and of single nodes or firms.

3.4.1 Aggregate measures

Figure 6 Real GDP growth rate vs dynamic causality index for the S&P 500
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Notes: The red bars indicate periods of negative GDP growth. The different series display dynamic causality indexes
for different rolling windows bandwidths (i.e. 3, 6, 12, 18 and 24 months) and at a significance level of 1%. The
dashed black line displays the seasonally adjusted annualised quarterly real GDP growth rate.

Figure 6 displays the dynamic aggregate behavior of the networks at the 1% confi-

dence level for different rolling window bandwidths. The red bars represent periods of

negative growth. Focusing on bust periods, it is possible to observe differences in the

dynamic causality indexes (DCI) for different bandwidths. The measure computed

with 24 months bandwidth seems to react early to big changes, but it is also very

persistent which is problematic in an environment of increased volatility of connect-

edness. On the other hand, the measure with the shortest bandwidth (3 months)
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misses the downturns. For this reason, we could expect dynamic causality indexes

using intermediate bandwidths (i.e. 6 and 12 months) to have higher explanatory

power. Besides peaking in periods with below zero growth (recessions) mostly, all

measures tend to also peak in boom periods. For example, all dynamic causality

indices peak in 1987:Q4 (when the stock market crashed), but this didn’t lead to a

slowdown in growth. The same happens for the peaks in 2000 and 2005. For this

reason, we argue that the DCI computed at the level of the whole network is too

noisy to predict economic activity.

3.4.2 Firm- or node-specific measures

The most granular way to display information from the network is to evaluate the

position of the individual nodes. Displaying connectedness at the node level over time

is a rather difficult exercise owing to noise. Moreovoer, to isolate cyclical connect-

edness, we need to look at network topologies over time. For illustrative purposes

Figure 7 displays the hubs centrality measure for MetLife, a large insurer, as well as

the authorities centrality measure for Loews, a conglomerate dealing with insurance,

pipeline transport, oil drilling and hotels. Furthermore, we show the PageRank mea-

sure for Northrop Grumman, which is an aerospace and defense technology company,

and the PageRank measure for Hasbro, the largest toy maker in the world. These

companies tend to have a central position in the stock network during recessions or

periods of negative growth (e.g. Great Recession).

3.5 Feature normalisation and recursive feature elimination

It is important to have some flexibility when choosing from the wide range of central-

ity measures; while all measures are intended to reveal important node characteristics,

some might be a better fit when trying to forecast business cycles at different hori-

zons. As we have seen, all the centrality measure try to identify the key company or

sector occupying pivotal structural positions within the network which might help us

understand business cycle dynamics.11 For this reason, it is of key importance to try

to reveal the centrality measures that are more informative on the business cycle. To

11 For a critical review on how centrality measures apply to social networks, see Landherr et al. (2010).
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Figure 7 Firm-specific network measures
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Notes: The black lines display firm-specific measures of centrality as outlined in the subtitles. The red bars indicate
periods of negative growth. The network measures are derived from a 12-month rolling window bandwidth and a 1%
level of significance.

do so, we employ a feature selection method to discard all uninformative measures in

the context of our nowcasting exercise.12

We summarise the network measures in the vector of explanatory variables X,

the so called feature matrix which comprises 5,002 features in total.13 In a first step,

we manually remove all features exhibiting too low variance. After eliminating un-

informative features, the X vector in our model contains about 4,104 features, each

providing 149 time observations from the first quarter of 1982 until the first quarter of

2019. We standardise the features to have a zero mean and a standard deviation of 1.

Then we let algorithms, so called dimension reduction techniques, decide which

features can improve predictive performance. In particular, we apply RFE as shown

by Guyon et al. (2002) with a k-fold cross-validation as in Yan and Zhang (2015).

12 Please note that we do not only discard less robust metrics, but also discard useful information that
would be helpful at different forecasting horizons.

13 Note that richer specifications might improve model performance. Among others Davig and Hall (2019)
including a rich lag structure in machine learning set-ups. This could be a promising avenue for future work
as predictive information might be available several quarters before, which are in the current nowcasting
setup only inadequately reflected. In alternative specifications, we have used a multitude of rolling window
sizes and significance levels of the same network. While this can clearly enhance model performance it
is computationally very costly. Therefore, we decided to discuss our findings based on reduced data-sets
with 5,002 features. This number stems from 500 companies times ten node-specific measures (betweenness,
degree, in-degree, out-degree, hubs, authorities, pagerank, closeness, in-closeness, out-closeness) and two
aggregate measures (dynamic causality index, cluster coefficient).
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RFE is a classical algorithm in machine learning used to select the most relevant set of

features (variables) in a model. Unlike dimension reduction methods (e.g. principal

components analysis), feature selection methods do not transform the features into

a lower dimension, but rather remove those features discovered by the model to be

of least importance. This step is very important because we are not imposing any

structure on our model (e.g. conditioning the behaviour of the dependent variable

into a set of variables that we have previously selected) but rather we are letting the

model choose for us the hidden or unknown behavior that produces higher accuracy

(that predicts GDP growth rates in our case). To achieve this, we first need to

remove all variables that are irrelevant, insignificant or unimportant to the model. In

particular. the algorithm removes weak features in each iteration until it has found

the optimal combination according to the F1 score.14 This method performs well for

our task as our features are (noisy) proxies of economy-wide shocks which require to

be evaluated in pools. The algorithm is designed to use at least five features. RFE

is an established and rigorous method for identifying relevant features before feeding

them into a machine learning algorithm which reduces the problem of overfitting (or

underfitting).15 To overcome the criticism of introducing information which was not

known in that period, in order to select signals that are deemed optimal today, apply

k-fold cross-validation to show that in each combination of sub-periods the measures

must be optimal.

3.5.1 Model specification

The vector Yk is given by (i) a binary model where negative annualised quarterly

GDP growth rates take the value 1, while all other periods take the value 0:

Yk =

 1 negative growth if QGDPk < 0

0 normal if QGDPk ≥ 0
(5)

14 The F1 score is defined as the harmonic mean of precision and recall. Precision is defined as the number
of true positives over the number of true positives plus the number of false positives. Recall is defined as
the number of true positives over the number of true positives plus the number of false negatives.

15 While our Yk can take the binary form (negative growth and its complement) or the ternary form (high,
low and negative growth periods). All cases will be defined in the next subsection.
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or (ii) high, low and negative growth (HLN) as specified in Equation 6 for low growth

where the rate is less than 0%, normal (between 0% and 3%), and high (more than

3%)16:

Yk =


2 high if QGDPk > 3.0

1 negative if QGDPk < 0

0 low if QGDPk ≤ 3.0 and QGDPk ≥ 0

(6)

We use data from the first quarter of 1982 to the fourth quarter of 2006 as training

data and nowcast, using contemporaneous information from the current quarter, on

an expanding window all periods from the first quarter 2007 to the first quarter of

2019.

3.5.2 The classifiers

In this subsection, we briefly describe the classifiers used in this study.

Naive Bayes

The naive Bayes (NB) classifier is a widespread method in machine learning ap-

plications.17 According to Bayes’ theorem:

P (Yk|X) =
P (Yk)P (X|Yk)

P (X)
(7)

with Yk representing the k-th class, in our case periods with below zero growth or

recession periods, while X=x1, ...., xn are n observed variables, which are our fea-

tures. Assuming that the explanatory variables are independent, P (Yk)P (X|Yk) can

be expressed as:

P (Yk)P (x1|Yk)...P (xn|Yk) = P (Yk)
∏

P (xi|Yk) (8)

The approach is called naive because the observations are assumed to be independent,

16 It is to be noted that we abstract from NBER recessions in this study as we are using non-standard data
at a higher frequency for which this definition would appear somewhat artificial with conventional setups.
We performed the RFE exercises with NBER data also and we identified a stronger impact on manufacturing
as compared with the negative growth periods case.

17 See Jordan and Mitchell (2015), Hagenau et al. (2013) and Heiberger (2018).
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while in reality they are not. However, the violation of this assumption would have

only minimal consequences for the predictive ability of this Bayesian approach, and

on the contrary could even contribute to improving it as shown by Rish et al. (2001).

From Equation 1 and 7, we can derive the decision rule on how to assign a class Ŷ

to a set of observations X with

Ŷ = argmaxk∈(1,..,k) P (Yk)
∏

P (xi|Yk) (9)

Davig and Hall (2019) showed that this simple technique can outperform logistic re-

gressions in recession forecasting. This is due to the fact that it converges faster to

its asymptotic error rate than, for example, logistic regression. This is an important

advantage in applications with a short data span.

Support vector machines

Support vector machine (SVM) analysis is a popular machine learning tool for

classification and regression, developed in 1992 by Boser et al. (1992). SVMs belong

to the family of generalised linear classifiers. They are a prediction tool that uses

machine learning theory to maximise predictive accuracy while automatically avoid-

ing over-fitting to the data. SVM can be defined as systems which use a hypothesis

space of linear functions in a high dimensional feature space, trained with a learning

algorithm from optimisation theory that implements a learning bias derived from sta-

tistical learning theory. In other words, classes are separated by hyperplanes where

the distance to the nearest elements of each class is the largest.

The main advantage of using SVM is that as non-parametric technique, it does not

require to assume certain conditions or parameters in the data (e.g. linear combina-

tions or lack of heteroscedasticity in our sample). SVM uses the principle of maximal

margin, meaning that we are not so concerned about the prediction as long as the

error term (ε) is less than a certain value. Put differently, maximal margin allows

SVM to be viewed as a convex optimisation problem. Moreover, the regression can

also be penalised using a cost parameter (as explained in more detail later), which

helps to avoid over-fitting. Nevertheless, a shortcoming of the SVM model is that it
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places observations above and below a classifying hyperplane and there is therefore

no direct probabilistic interpretation.18 It should be noted that we do not rely on

approximated probabilities, for this reason we calculate our test statistics and plot

the predicted outcome.

To keep things simple, we use a linear kernel function to map lower dimensional

data into a higher dimensional space: u′v, where u′ and v are the vectors representing

the inputs in the vector space. In addition, we set the cost of constraints violation to

0.5. This is the ’C’-constant of the regularisation term in the Lagrange formulation,

or in other words, the extent to which misclassifying is to be avoided in each training

example. For large values of C, the optimisation will choose a smaller-margin hyper-

plane of that hyperplane which does a better job.

Logistic regression

Logistic regression (LR) (see Equation 10) is commonly used to model the proba-

bility of a certain event and is a natural benchmark. Contrary to a linear regression,

a logistic regression is bounded between 0 and 1. It thus provides a probability score

that reflects the probability of the occurrence of an event.

P (Yk|X) = E(Yk|X) =
ez

1 + ez
=

eα+βiX

1 + eα+βiX
(10)

The nowcasting of GDP turning points with our approach faces two major dif-

ficulties. First, a major challenge is to identify the correct signals in a very noisy

environment. This step is managed by RFE. Given the shortness of the time-series

of macroeconomic data, this approach is often criticised for using information which

is not known in the past, e.g. cyclical node positions. However, by applying k-fold

cross-validation, the criticism of selecting the best model using information available

today but not known at the time is reduced, since the correct variables must also

be valid when applied to prior subsets of data. Moreover, in an additional exercise

we apply RFE in an out-of-sample consistent fashion.Second, given the availability of

highly qualitative signals, it is still difficult to detect events in real-time that propa-

gate slightly differently.

18Nevertheless, approximations of probabilities of outcomes exist, e.g. Platt (1999).
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4 Nowcasting US business cycles

The following subsections present the results (in-sample and out-of-sample) for the

binary and the ternary state model for nowcasting turning points in GDP.

4.1 In-sample feature selection and prediction

This subsection selects optimal features taking into account the whole sample includ-

ing the out-of-sample period and splitting it into k-folds.

4.1.1 Two-state model: detecting negative growth

In this subsection, we nowcast periods of negative growth as specified in Equation

5. We apply a battery of models such as SVM, NB and LR on RFE-selected data.

Figure 8 displays the outcome of an out-of-sample nowcasting exercise starting from

Figure 8 Real-time forecast, negative growth, three methods
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Note: The graph displays probabilities of negative growth periods as calculated in an expanding window. For
predictingt(from the first quarter of 2007 to the first quarter of 2019) we take into account network information until
t, while training data ranges from the first quarter of 1982 to period t-4. The red bars indicate historical periods of
negative growth. Features are selected with RFE until the first quarter of 2019 with five folds.

the first quarter of 2007 based on RFE feature selection over the entire sample until

the first quarter of 2019.19 We make use of RFE to select the most informative set

19 The features are selected by using a method that is well-known in machine learning: recursive feature
elimination, with k-fold cross-validation with k=5. The RFE algorithm divides the data into groups and
evaluates the performance of the model on subgroups of data, while predicting 1 out of k folds. The k-fold
cross-validation ensures that features would have also been regarded as optimal in different sub-periods
prior the first quarter of 2007. In addition, it also provides the optimal number of features with specific
properties dealing with the trade-off of adding information, while reducing noise, information redundancy,
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of features for a given matrix of features X and a response variable Y . The SVM

algorithm captures the turning points and other periods very well, while the naive

Bayes produces few false positives and the logistic regression does not capture the

initial period of the contraction during the financial crisis. Parts of the remaining

inaccuracies stem from the fact that the data-set is large, containing 4,100 features,

and from the standardisation of features, which make it hard for naive Bayes and

logistic regression to process the information correctly.

Figure 9 Properties most informative features, negative growth
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Notes: The graph displays the properties of the 16 features with the highest explanatory power for predicting periods
with negative growth. Each subplot is to be interpreted independently. They summarise information on the type of
measure and to which sectors the features relate to.

The conditional probabilities P (Ykt|Xit) are ranked by their explanatory power.

In the case of negative growth periods, the algorithm favours 16 features (see Figure

A.19 in the Appendix). In an ex-post evaluation, we summarise the properties of the

selected features for the real-time forecast (nowcast) model. Figure 9 at the top shows

the properties of the selected measures. The features used for prediction are mostly

selected from among the hubs, in-degree and PageRank metrics. All these measures

emphasise the high importance of centrality and they assign a high weight to pivotal

companies in the economy, whose returns are linked directly or indirectly to many

and overfitting. Using RFE in each period would add noise and make it harder to capture turning points,
while at the same time it is also less computationally efficient.
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and influential companies and which hence provide early signals for economy-wide

developments. The algorithm selects features from the finance and manufacturing

sectors.

Table A.3 in the Appendix displays the individual properties of the features such

as the measure, significance and bandwidth levels, the company and the sector it

belongs to. For example, one of the selected features is associated with MetLife,

one of the largest global providers of insurance, annuities and employee benefit pro-

grammes. This is very intuitive as insurers like MetLife are exposed to economy-wide

developments owing to their shareholdings in a wide variety of companies. Similarly,

with regard to services, Akamai Technologies is one of the largest content delivery

network (CDN), cyber-security and cloud service providers, which are exposed to

cyclical demand. On the manufacturing side, we select Dentsply Sirona, one of the

world’s largest dental equipment makers and dental consumables producers, and Am-

gen, a multinational bio-pharmaceutical company. Both are part of the health-care

sector, which is very sensitive to developments in economic activity. The selection of

hubs, PageRank and authorities measures as being more informative for predicting

negative growth periods suggests that developments in returns of these companies

influence the returns of many other companies that are not necessarily connected to

each other.20

4.1.2 Three-state model: high, low and negative growth

In this subsection, we extend the model to a ternary outcome as specified by Equa-

tion 6. The RFE algorithm proposes six features to be optimal. Figure 10 reveals the

properties of the selected features. There is a strong emphasis on companies related

to finance, which includes banks and insurers. With respect to the measures, the

algorithm again favours hubs, PageRank and authorities measures.

20 Additional analysis reveals that with varying significance levels cyclicality might be better approximated
by different measures of centrality, while the node-position of an company remains unaltered. For example
MetLife out-degree is regarded as cyclical by this algorithm at a significance level of 1% with the feature
being standardised, while at 5% with the feature being normalised the algorithm detects cyclical information
in the hubs measure associated with this company. The latter case is illustrated in Figure 7.
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Figure 10 Properties most informative features, high, low and negative growth
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Notes: The graph displays the properties of the six selected features with the highest explanatory power for predicting
periods with HLN growth. Each subplot is to be interpreted independently. They summarise information on the type
of measure and to which sectors the features relate to.

Figure 11 displays the predicted probabilities for two of the three states. All three

algorithms perform well despite the fact that there are a few false positives in the

high growth probability case. Furthermore, logistic regressions have a harder time

to interpret the data, providing elevated estimates in the post-crisis period. Surpris-

ingly, the naive Bayes model captures the turning points well and produces few false

positives.

Table A.5 in the Appendix displays the details of the selected features. As in the

negative growth model, the MetLife hubs measure is selected. The Unum Group is

another insurer, SVB Financial is a commercial bank that has specialised in lending

to high-tech companies and UnitedHealth Group offers health care products and

insurance services. UDR is a publicly traded real estate investment trust that invests

in apartments, while Home Depot is the largest home improvement retailer in the

United States.
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Figure 11 High, low and negative growth probability, real-time forecast, three methods
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Notes: The graph displays probabilities of high and negative growth periods as calculated in an expanding window.
For predictingt(from the first quarter of 2007 to the first quarter of 2019) we take into account network information
until t, while the training data range is from the first quarter of 1982 to period t-4. The red bars indicate historical
periods of negative growth and the green bars indicate high growth (above 3%). For the SVM model, we plot the
predicted outcome. Features are selected with RFE until the first quarter of 2019 with three folds.

4.2 Out-of-sample consistent feature selection and prediction

Although k-fold cross-validation requires features to be optimal in subsets of the entire

time span - including sub-periods that occur only before the start of the nowcasting

exercise - we acknowledge the criticism of potentially working with information that

would not have been known at this time. Therefore, in this exercise we only em-

ploy features that would have been regarded as optimal based solely on information

that was available up the fourth quarter of 2006 and we conduct the out-of-sample

nowcasting exercise starting in the first quarter of 2007.

4.2.1 Two-state model: detecting negative growth

Figure 12 displays the outcome of a nowcasting exercise starting from the first quarter

of 2007 with features being selected before the fourth quarter of 2006. Apparently, this

version of the binary model would not immediately capture the onset of the Great Re-

cession, but would otherwise perform relatively well. Therefore, we can assume that

the selected features have been stable in their provision of signals regarding economic

growth. As expected, the overall performance of the measures is worse relative to the

performance of the complete sample RFE based binary model. Figure 13 summarises

the properties of the 32 features selected as illustrated in Table A.4 in the Appendix.
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Features from the manufacturing industry (including pharmaceutical companies and

durable goods manufacturing companies) and features from the transportation, retail

and financial sectors are chosen. The features selected from the manufacturing sec-

tor are mostly measures of degree centrality, while the features selected from retail,

transportation and financial firms are chosen from the PageRank measure.

Figure 12 Real-time forecast, negative growth, three methods
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Note: The graph displays probabilities of negative growth periods as calculated in an expanding window. For
predictingt(from the first quarter of 2007 to the first quarter of 2019) we take into account network information until
t, while the training data range is from the first quarter of 1982 to period t-2. Features are selected with RFE until
the fourth quarter of 2006. The red bars indicate historical periods of negative growth. Features are selected with
RFE until the fourth quarter of 2006 with three folds.

4.2.2 Three-state model: high, low and negative growth

Figure 14 displays the predicted probabilities for two of the three states at the out-of-

sample horizon, employing features that are optimal until the fourth quarter of 2006.

We observe a significant loss in efficiency, although the turning point of the financial

crisis is still nowcasted. We find many false positives for the negative growth state,

however, they correspond to very low (although non-negative) growth. The same

holds true for cases of positive growth.

Figure 15 summarises the properties of the 12 features selected as illustrated in

Table A.6 in the Appendix. Most features relate to the manufacturing, retail and

services sectors, while the network measures are broad-based with the PageRank
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Figure 13 Properties most informative features, negative growth
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Notes: The graph displays the properties of the 32 features with the highest explanatory power for predicting periods
of negative growth. Each subplot is to be interpreted independently. They summarise information on the type of
measure and to which sectors the features relate to.

Figure 14 High, low and negative growth probability, real-time forecast, three methods
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Notes: The graph displays probabilities of high and negative growth periods as calculated in an expanding window.
For predictingt(from the first quarter of 2007 to the first quarter of 2019) we take into account network information
until t, while the training data ranges from the first quarter of 1982 to period t-2. The red bars indicate historical
periods of negative growth and the green bars indicate high growth (above 3%). For the SVM model, we plot the
predicted outcome. Features are selected with RFE until the fourth quarter of 2006 with three folds.

measure again being predominant. The home improvement retailer Home Depot is

once again among the selected features.
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Figure 15 Properties most informative features, high, low and negative growth
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Notes: The graph displays the properties of the 12 features with the highest explanatory power for predicting periods
with HLN growth. Each subplot is to be interpreted independently. They summarise information on the type of
measure and to which sectors the features relate to.

4.3 Algorithm performance comparison

In this subsection, we evaluate the performance of the different algorithms in an out-

of-sample nowcast exercise. As correct probabilities for the SVM classification do not

exist, we use the predicted outcome which restricts somewhat comparability with the

other algorithms.

We apply four different metrics: i) the average precision score that summarises a

precision-recall curve as the weighted mean of precision achieved at each threshold

(this is done by using the increase in recall from the previous threshold as a weight);

ii) the area under the receiver operator curve (AUROC): the higher the area, the

better the model is at separating classes; iii) the mean squared error (MSE), which

is a risk metric that corresponds to the value of the squared (quadratic) error or loss

(it is always non-negative, and values closer to zero are better); and iv) the accuracy

score, which is the fraction of correct predictions.

Table 2 illustrates the performance of the different algorithms for the two models

where (i) RFE was conducted on the entire sample and (ii) where RFE was run on

the data up to the fourth quarter 2006. Overall, case (ii) - the true out-of-sample
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Table 2 Real-time forecast, model evaluation.

Metric/Algorithm Negative growth HLN growth
in-sample RFE out-of-sample RFE in-sample RFE out-of-sample RFE

Average Precision Score
SVM 1.00∗ 0.41∗ 0.57∗ 0.44∗

NB 0.90 0.33 0.56 0.50
LR 0.98 0.42 0.76 0.55

AUROC
SVM 1.00∗ 0.76∗ 0.77∗ 0.66∗

NB 0.97 0.62 0.65 0.69
LR 0.99 0.76 0.83 0.68

Mean Squared Error
SVM 0.00 0.26 0.72 0.98
NB 0.09 0.21 1.04 1.43
LR 0.02 0.19 0.91 0.85

Accuracy Score
SVM 1.00 0.74 0.66 0.53
NB 0.91 0.78 0.60 0.47
LR 0.98 0.81 0.47 0.53

Notes: The average precision score and the AUROC are derived based on predicted probabilities. We decide to keep
the predicted outcome for the SVM model and not to provide approximate probabilities. The measures affected are
indicated with an asterisk ∗. The mean squared error and the accuracy score are based on the predicted outcomes,
which preserves full comparability between the measures for all algorithms.

exercise - displays a weaker performance. For case (i), in the negative growth case,

SVM outperforms the naive Bayes and the logistic regression. As expected the logistic

regression behaves very similarly to SVM, but might have some problems with the

standardisation. Visual inspection reveals that both algorithms are very efficient, but

SVM captures the turning points. In the ternary state model, the SVM algorithm and

the logistic regression capture the negative growth periods, in particular the turning

points very well. However, they also produce false positives which mostly relate to

periods of a weaker growth momentum. In particular, the logistic regression displays

a high persistency in probabilities of false positives in the negative growth probability

case. On the other hand, the naive Bayes does not produce as many false positives,

but also misses some true positives. For case (ii), in the negative growth model the

logistic regression performs better in all measures, while SVM is slightly worse relative

to the AUROC and the average precision score. In the three-states model, the logistic

regression and the naive Bayes model have a much higher average precision score and

a slightly higher AUROC than SVM. Overall, the results show that SVMs perform

best in in-sample analysis, since this method is prone to overfitting. But in true

out-of-sample forecasting, logistic regression and naive Bayes outperform SVM.
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5 Concluding remarks

Employing machine learning methods, we exploit the forward-looking behaviour of

financial market information to identify the current state of the economy. We con-

struct a dynamic network based on pairwise Granger causalities of stock returns of

the constituents of the Standard & Poors 500 index. By calculating the topology of

the network we create a “fat” data-set of 5,002 time-series, which we evaluate with

machine learning methods. Once cyclical patterns in the network are identified, dif-

ferent classifiers (naive Bayes, support vector machines and logistic regression) are

used to predict different economic regimes in real time (e.g. expansions and reces-

sions).

The advantages of the proposed method are the following: (i) the network struc-

ture is able to capture the non-linear nature of shock propagation in the economy; (ii)

the network contains many relationships in the economy, including some that might

not have received attention before; (iii) pooling node-level information provides a

mechanism that is more robust to the “every cycle is different” criticism; and (iv) the

advantage of using financial data is that they are forward looking, non-proprietary

and provided in real-time. Most importantly, they are not subject to larger revisions

and reflect market expectations about economic fundamentals as well as the short-

term outlook, which makes them ideal for nowcasting and forecasting.

We innovate upon existing approaches by: (i) employing pairwise Granger-causality

networks as opposed to mere correlations, thereby taking into account directionality

and statistical significance; (ii) allowing for many measures of centrality at the aggre-

gate and node-level, but finally selecting fewer features than in comparable studies,

potentially reducing the problem of overfitting; (iii) comparing different algorithms;

and (iv) performing an exercise in which we compare the in-sample and out-of-sample

stability of features.

We analyse two models. The first tries to identify two economic regimes: “reces-

sion” (defined as negative growth in the quarter) and its complement. In the second

model, we try to perform the more challenging task of distinguishing between three
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regimes: “low growth” (defined as negative growth in the quarter), “low growth”

(defined as non-negative, but lower than high growth) and “high growth” (defined

as annualised growth of 3% in the quarter). Our findings suggest that our network

approach can help to detect changes in economic regimes in real-time giving policy-

makers a tool to anticipate slowdowns and take measures against them. The main

findings can be summarised as follows: (i) Applying RFE on the entire sample, we are

able to determine ex-post which firms were exposed to earnings shocks that turned

into aggregate fluctuations. Looking at the sectors where these firms operate, a more

complete narrative can be derived than is the usually derived from more aggregate

data. The two-state model for predicting periods of negative growth can predict

future states remarkably well by using information from the node-positions of manu-

facturing firms, transportation firms and financial firms, particularly insurance firms.

The ternary state model successfully predicts economic regimes by making use of

information from the financial sector, the insurance subsector, and the retail sector.

(ii) Using features that are selected to be optimal until the fourth quarter of 2006

(i.e. excluding the out-of-sample period), we validate our models in terms of true

out-of-sample nowcasting performance and verify that the in-sample results are not

solely due to favorable feature selection. While the predictions of the binary state

model are weaker, the ternary state model captures the turning point of the great

recession and performs well overall, despite producing some false positives for the

negative growth state in periods of weak growth.

There are many ways to improve upon and extend the current framework. Stock

market returns networks provide timely signals and implicitly include forward-looking

information. However, they provide a somewhat narrow view of economic develop-

ments. Including features that could better capture the financial cycle21 or a different

measurement of spillovers, such as transfer entropy or directed volatility spillovers, as

proposed by Diebold and Yılmaz (2014), might deliver stronger signals. Furthermore,

robustness exercises have shown that different rolling window bandwidths of 3 to 18

months could be promising variants to use. As computational efficiency and feature

21 Lang et al. (1996) find a negative relationship between high leverage and future firm growth. Berger
and Udell (1998) show that for small firms different capital structures are optimal at different points in the
cycle.

ECB Working Paper Series No 2494 / November 2020 37



engineering is vital in this setup, a clear taxonomy of dimension reduction techniques

could further improve the models’ performance.
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A Additional results

A.1 Data

Figure A.16 Data coverage
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Notes: The graph displays the amount of NaN series per total amount of companies.

Figure A.17 Normalised stable node-relations during phases of the business cycle
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Notes: The graph illustrates normalised quarterly connectedness from 1982:Q1 to 2019:Q1 on a 12 month
rolling window bandwidth and a 5% significance level. Connectedness in specific nodes in NBER recession
periods are more persistent than in non-recession periods, where connectedness might be more idiosyncratic.
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A.2 Negative growth periods

A.2.1 In-sample RFE

Figure A.18 Optimal number of features (RFE)
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Table A.3 Selected features United States, negative growth

Company Sector Measure Significance Window
ABBOTT LABORATORIES Manufacturing Betweenness 1% 12m
EXELON Transportation Degree Centrality 1% 12m
METLIFE Finance, Insurance and Real Estate Out-degree 1% 12m
BECTON DICKINSON Manufacturing In-degree 1% 12m
AKAMAI TECHS. Services In-degree 1% 12m
DENTSPLY SIRONA Manufacturing In-degree 1% 12m
METLIFE Finance, Insurance and Real Estate Hubs 1% 12m
HUMANA Finance, Insurance and Real Estate Hubs 1% 12m
STATE STREET Finance, Insurance and Real Estate Hubs 1% 12m
DOLLAR TREE Retail Hubs 1% 12m
KIMCO REALTY Finance, Insurance and Real Estate Hubs 1% 12m
EXELON Transportation Pagerank 1% 12m
WELLTOWER Finance, Insurance and Real Estate Pagerank 1% 12m
AKAMAI TECHS. Services Pagerank 1% 12m
UDR Finance, Insurance and Real Estate Out-closeness 1% 12m
LOEWS Finance, Insurance and Real Estate Authorities 1% 12m
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A.2.2 Out-of-sample consistent RFE

Figure A.19 Optimal number of features (RFE)
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Table A.4 Selected features, negative growth

Company Sector Measure Significance Window
PFIZER Manufacturing Betweenness 1% 12m
ABBOTT LABORATORIES Manufacturing Betweenness 1% 12m
HP Manufacturing Degree Centrality 1% 12m
DOLLAR TREE Retail Degree Centrality 1% 12m
PEPSICO Manufacturing Out-degree 1% 12m
NIKE B Manufacturing Out-degree 1% 12m
STATE STREET Finance, Insurance and Real Estate Out-degree 1% 12m
DOLLAR TREE Retail Out-degree 1% 12m
NEWMONT GOLDCORP Primary & Construction Out-degree 1% 12m
PROCTER & GAMBLE Manufacturing In-degree 1% 12m
CVS HEALTH Retail In-degree 1% 12m
CERNER Services In-degree 1% 12m
DENTSPLY SIRONA Manufacturing In-degree 1% 12m
NISOURCE Transportation In-degree 1% 12m
STATE STREET Finance, Insurance and Real Estate Hubs 1% 12m
DOLLAR TREE Retail Hubs 1% 12m
CVS HEALTH Retail Pagerank 1% 12m
TJX Retail Pagerank 1% 12m
DUKE ENERGY Transportation Pagerank 1% 12m
NORTHROP GRUMMAN Manufacturing Pagerank 1% 12m
COGNIZANT TECH.SLTN.A Services Pagerank 1% 12m
EXELON Transportation Pagerank 1% 12m
SYSCO Wholesale Pagerank 1% 12m
ONEOK Transportation Pagerank 1% 12m
EQUITY RESD.TST.PROPS. SHBI Finance, Insurance and Real Estate Pagerank 1% 12m
WELLTOWER Finance, Insurance and Real Estate Pagerank 1% 12m
EVERSOURCE ENERGY Transportation Pagerank 1% 12m
HASBRO Manufacturing Pagerank 1% 12m
EXPEDITOR INTL.OF WASH. Transportation Pagerank 1% 12m
TORCHMARK Finance, Insurance and Real Estate Pagerank 1% 12m
H&R BLOCK Services Pagerank 1% 12m
MCCORMICK & COMPANY NV. Manufacturing Authorities 1% 12m
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A.3 High, low and negative growth periods

A.3.1 In-sample RFE

Figure A.20 Optimal number of features (RFE)
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Table A.5 Features, high, low and negative growth periods

Company Sector Measure Significance Window
METLIFE Finance, Insurance and Real Estate Hubs 1% 12m
HOME DEPOT Retail Pagerank 1% 12m
UNUM GROUP Finance, Insurance and Real Estate Pagerank 1% 12m
UDR Finance, Insurance and Real Estate Out-closeness 1% 12m
UNITEDHEALTH GROUP Finance, Insurance and Real Estate Authorities 1% 12m
SVB FINANCIAL GROUP Finance, Insurance and Real Estate Authorities 1% 12m
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A.3.2 Out-of-sample consistent RFE

Figure A.21 Optimal number of features (RFE)
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Table A.6 Features, high, low and negative growth periods

Company Sector Measure Significance Window
CINTAS Services Betweenness 1% 12m
METTLER TOLEDO INTL. Manufacturing Betweenness 1% 12m
JEFFERIES FINANCIAL GROUP Manufacturing Degree Centrality 1% 12m
ECOLAB Manufacturing Out-degree 1% 12m
HOME DEPOT Retail Pagerank 1% 12m
STANLEY BLACK & DECKER Manufacturing Pagerank 1% 12m
HESS Manufacturing Pagerank 1% 12m
PINNACLE WEST CAP. Transportation Pagerank 1% 12m
ACTIVISION BLIZZARD Services Out-closeness 1% 12m
EQUIFAX Services In-closeness 1% 12m
TEXAS INSTRUMENTS Manufacturing Authorities 1% 12m
KROGER Retail Authorities 1% 12m
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A.3.3 Included S&P 500 companies

MNEMONIC NAME MNEMONIC NAME
@AAPL APPLE U:MS MORGAN STANLEY
@AMZN AMAZON.COM U:SLB SCHLUMBERGER
@MSFT MICROSOFT U:UPS UNITED PARCEL SER.’B’
@FB FACEBOOK CLASS A U:CVS CVS HEALTH
U:JPM JP MORGAN CHASE & CO. U:NEE NEXTERA ENERGY
U:JNJ JOHNSON & JOHNSON U:BLK BLACKROCK
U:XOM EXXON MOBIL @SBUX STARBUCKS
@GOOGL ALPHABET A @CHTR CHARTER COMMS.CL.A
U:BAC BANK OF AMERICA U:DHR DANAHER
U:WMT WALMART @KHC KRAFT HEINZ
U:WFC WELLS FARGO & CO @WBA WALGREENS BOOTS ALLIANCE
U:V VISA ’A’ U:ANTM ANTHEM
U:PFE PFIZER U:BDX BECTON DICKINSON
U:UNH UNITEDHEALTH GROUP @BIIB BIOGEN
U:T AT&T U:SCHW CHARLES SCHWAB
U:HD HOME DEPOT U:EOG EOG RES.
U:CVX CHEVRON @ADP AUTOMATIC DATA PROC.
U:MA MASTERCARD U:TJX TJX
@CSCO CISCO SYSTEMS U:AET AETNA
U:VZ VERIZON COMMUNICATIONS U:AGN ALLERGAN
@INTC INTEL U:AMT AMERICAN TOWER
U:BA BOEING U:FDX FEDEX
U:PG PROCTER & GAMBLE @MDLZ MONDELEZ INTERNATIONAL CL.A
U:KO COCA COLA U:PNC PNC FINL.SVS.GP.
U:C CITIGROUP U:CB CHUBB
U:ORCL ORACLE U:SYK STRYKER
U:MRK MERCK & COMPANY @ATVI ACTIVISION BLIZZARD
@CMCSA COMCAST A @CELG CELGENE
U:DIS WALT DISNEY @CSX CSX
@PEP PEPSICO @ISRG INTUITIVE SURGICAL
@NFLX NETFLIX U:OXY OCCIDENTAL PTL.
@NVDA NVIDIA U:CL COLGATE-PALM.
U:DWDP DOWDUPONT U:GD GENERAL DYNAMICS
U:IBM INTERNATIONAL BUS.MCHS. @CME CME GROUP
U:ABBV ABBVIE U:RTN RAYTHEON ’B’
@AMGN AMGEN U:DUK DUKE ENERGY
@ADBE ADOBE (NAS) U:SPGI S&P GLOBAL
U:MDT MEDTRONIC U:SPG SIMON PROPERTY GROUP
U:MMM 3M @INTU INTUIT
U:MCD MCDONALDS @MU MICRON TECHNOLOGY
U:PM PHILIP MORRIS INTL. U:BK BANK OF NEW YORK MELLON
U:HON HONEYWELL INTL. U:BSX BOSTON SCIENTIFIC
U:ABT ABBOTT LABORATORIES @ESRX EXPRESS SCRIPTS HOLDING
U:UNP UNION PACIFIC U:GM GENERAL MOTORS
U:ACN ACCENTURE CLASS A @ILMN ILLUMINA
U:MO ALTRIA GROUP U:NOC NORTHROP GRUMMAN
U:CRM SALESFORCE.COM U:PSX PHILLIPS 67
U:UTX UNITED TECHNOLOGIES U:CI CIGNA
U:LLY ELI LILLY U:EMR EMERSON ELECTRIC
U:NKE NIKE ’B’ U:NSC NORFOLK SOUTHERN
U:GE GENERAL ELECTRIC U:AIG AMERICAN INTL.GP.
@QCOM QUALCOMM U:DE DEERE
@PYPL PAYPAL HOLDINGS U:ITW ILLINOIS TOOL WORKS
@TXN TEXAS INSTRUMENTS U:MET METLIFE
U:BMY BRISTOL MYERS SQUIBB U:PH PARKER-HANNIFIN
@AVGO BROADCOM U:PRU PRUDENTIAL FINL.
@COST COSTCO WHOLESALE @FOXA FOX A
@GILD GILEAD SCIENCES U:VLO VALERO ENERGY
U:TMO THERMO FISHER SCIENTIFIC U:COF CAPITAL ONE FINL.
U:AXP AMERICAN EXPRESS U:CCI CROWN CASTLE INTL.
U:LMT LOCKHEED MARTIN @MAR MARRIOTT INTL.’A’
U:CAT CATERPILLAR U:PX PRAXAIR
U:GS GOLDMAN SACHS GP. @CTSH COGNIZANT TECH.SLTN.’A’
U:LOW LOWE’S COMPANIES U:D DOMINION ENERGY
@BKNG BOOKING HOLDINGS U:ECL ECOLAB
U:USB US BANCORP U:HCA HCA HEALTHCARE
U:COP CONOCOPHILLIPS U:HUM HUMANA
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MNEMONIC NAME MNEMONIC NAME
U:SO SOUTHERN U:DG DOLLAR GENERAL
U:TGT TARGET U:GIS GENERAL MILLS
@VRTX VERTEX PHARMS. U:MCK MCKESSON
U:ICE INTERCONTINENTAL EX. @ORLY O REILLY AUTOMOTIVE
U:MMC MARSH & MCLENNAN U:OKE ONEOK
U:PLD PROLOGIS U:PPG PPG INDUSTRIES
U:SHW SHERWIN-WILLIAMS U:RCL ROYAL CARIBBEAN CRUISES
U:ZTS ZOETIS U:YUM YUM! BRANDS
U:BAX BAXTER INTL. @ALXN ALEXION PHARMS.
U:EXC EXELON U:AVB AVALONBAY COMMNS.
U:F FORD MOTOR U:DXC DXC TECHNOLOGY
U:HPQ HP U:EQR EQUITY RESD.TST.PROPS. SHBI
@REGN REGENERON PHARMS. U:HPE HEWLETT PACKARD ENTER.
@AMAT APPLIED MATS. U:HLT HILTON WORLDWIDE HDG.
U:BBT BB&T U:IQV IQVIA HOLDINGS
U:DAL DELTA AIR LINES U:KR KROGER
U:KMB KIMBERLY-CLARK @LRCX LAM RESEARCH
U:KMI KINDER MORGAN @PAYX PAYCHEX
U:LYB LYONDELLBASELL INDS.CL.A U:PEG PUB.SER.ENTER.GP.
U:PGR PROGRESSIVE OHIO @TROW T ROWE PRICE GROUP
U:AON AON CLASS A U:ZBH ZIMMER BIOMET HDG.
U:ETN EATON U:APTV APTIV
U:IR INGERSOLL-RAND U:BBY BEST BUY
U:SYY SYSCO U:CTL CENTURYLINK
U:WM WASTE MANAGEMENT U:ED CONSOLIDATED EDISON
U:AFL AFLAC U:CMI CUMMINS
U:APD AIR PRDS.& CHEMS. U:DLR DIGITAL REALTY TST.
@ADI ANALOG DEVICES U:FCX FREEPORT-MCMORAN
U:CCL CARNIVAL U:K KELLOGG
U:STZ CONSTELLATION BRANDS ’A’ U:MTB M&T BANK
@EA ELECTRONIC ARTS @NTRS NORTHERN TRUST
@EQIX EQUINIX REIT @PCAR PACCAR
U:FIS FIDELITY NAT.INFO.SVS. U:PCG PG&E
U:HAL HALLIBURTON U:RHT RED HAT
U:MPC MARATHON PETROLEUM U:RSG REPUBLIC SVS.’A’
@ROST ROSS STORES U:ROK ROCKWELL AUTOMATION
U:LUV SOUTHWEST AIRLINES U:SWK STANLEY BLACK & DECKER
U:VFC V F U:SYF SYNCHRONY FINANCIAL
U:ALL ALLSTATE U:TWTR TWITTER
U:AEP AMER.ELEC.PWR. @UAL UNITED CONTINENTAL HOLDINGS
@ADSK AUTODESK U:WELL WELLTOWER
@EBAY EBAY U:WY WEYERHAEUSER
@FISV FISERV @XEL XCEL ENERGY
U:PSA PUBLIC STORAGE U:A AGILENT TECHS.
U:STT STATE STREET @CTAS CINTAS
U:TRV TRAVELERS COS. U:EIX EDISON INTL.
U:APC ANADARKO PETROLEUM U:IP INTERNATIONAL PAPER
U:EL ESTEE LAUDER COS.’A’ U:MSCI MSCI
U:JCI JOHNSON CONTROLS INTL. @NDAQ NASDAQ
@MNST MONSTER BEVERAGE @NTAP NETAPP
U:MCO MOODY’S U:COL ROCKWELL COLLINS
U:SRE SEMPRA EN. @AAL AMERICAN AIRLINES GROUP
U:STI SUNTRUST BANKS U:AMP AMERIPRISE FINL.
U:TEL TE CONNECTIVITY U:AZO AUTOZONE
U:WMB WILLIAMS @CERN CERNER
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