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Abstract

We study the macroeconomic consequences of financial shocks and increase in

economic risk using a quantile vector autoregression. Financial shocks have a

negative, but asymmetric impact on the real economy: they substantially in-

crease growth at risk, but have limited impact on upside potential. The impact

of financial shocks is explained away after controlling for economic risk (mea-

sured by the interquantile range). The effects are economically relevant. Bad

economic environment, characterized by negative real and financial shocks,

has a highly skewed impact on business cycle fluctuations, leading to a peak

reduction of monthly industrial production by more than 2%. In comparison,

positive real and financial shocks in a good economic environment have limited

effect on upside potential of the economy.

Keywords: Risk; uncertainty; financial conditions; quantile regression.

JEL classification: C32, C53, E32, E44.
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Non-technical summary

Changes in the state of the financial system can provide powerful signals about

risks to future growth. At the same time, economic uncertainty plays a key

role in business cycle fluctuations. In this paper, we study the macroeconomic

consequences of financial shocks and heightened economic uncertainty using a

quantile vector autoregression (QVAR) model. This framework allows us to

model the quantile forecast of an endogenous variable as a function of lags of

all the endogenous variables.

We estimate the QVAR model on US data for industrial production and

an indicator of financial stress. The results indicate that financial shocks have

a negative but asymmetric impact on the real economy: specifically, they have

a disproportionately larger effect on the left tail of the industrial production

distribution, as compared to the right tail.

A byproduct of the QVAR is the simultaneous estimation of many quan-

tiles. It is well known from the statistical and risk management literature

that interquantile ranges are a robust proxy for volatility, which in turn is

frequently used as a proxy for uncertainty. In our macro QVAR model of the

US economy, we find that the industrial production 5-95% interquantile range

is highly correlated with our indicator of financial stress. It makes therefore

sense to ask whether the interquantile range helps explaining the risks to future

growth.

We answer this question by augmenting our QVAR model with the indus-

trial production interquantile range. We find that controlling for the interquan-

tile range reduces by half the impact of the financial indicator and weakens

substantially its asymmetric impact on industrial production. The asymmetric
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impact is absorbed by the interquantile range itself. In other words, an impor-

tant channel through which financial conditions have an asymmetric impact

on the real economy is by increasing economic uncertainty.

One possible narrative consistent with these findings is that worsening fi-

nancial conditions lead to a contraction in the supply of credit and to an

increase in the downside risk to growth, but have little effect on its upside

potential. This, in turn, leads to an increase in economic uncertainty, mak-

ing firms even more cautious in responding to business conditions, ultimately

leading to lower investment and an even more pronounced downside risk to

the economy.

We show that these effects are economically relevant by analysing how the

system reacts in a good versus a bad environment. Specifically, we compute the

forecast of the US industrial production under a scenario in which the system

is hit by a sequence of negative real and financial shocks (bad environment),

and compare its performance to positive real and financial shocks (good envi-

ronment). Consistently with the theory, the bad environment is characterized

by a much more pronounced downturn, relative to the expansion associated

with the good environment.
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1 Introduction

There is increasing empirical evidence that macroeconomic risk is bad for

growth (Bloom, 2014). At the same time, there are strong theoretical and em-

pirical arguments to think that a deterioration of financial conditions have also

a negative impact on the economy (Gilchrist and Zakrajsek, 2012). More re-

cently, empirical evidence is mounting that shocks to financial conditions have

a disproportional impact on the downside risks to the economy, as compared

to upside potential (Adrian, Boyarchenko and Giannone, 2019, Chavleishvili

and Manganelli, 2019, Carriero, Clark and Marcellino, 2020). This paper

makes two main contributions. First, it shows how to endogenously embed

macroeconomic risk in a quantile vector autoregressive model. Second, it finds

that – once controlling for it – it is macroeconomic risk, rather than financial

conditions, that has an asymmetric impact on the real economy.

We work with the quantile vector autoregressive (QVAR) model recently

introduced by Chavleishvili and Manganelli (2019). The QVAR allows one to

model the quantile forecast of an endogenous variable as a function of lags

of all the endogenous variables. We consider a bivariate QVAR model with

US industrial production and excess bond premium. We identify the model

by assuming that the financial variable can simultaneously react to the real

variable, but the real variable can react only with a lag to shocks in the financial

variable.

We first show that the excess bond premium has a strong asymmetric effect

on the distribution of the US industrial production: an increase in the excess

bond premium has a disproportionately larger effect on the left tail and little

effect on the right tail of the forecast distribution of industrial production.
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This result is in line with the recent findings of Adrian et al. (2019) and

qualifies those of Gilchrist and Zakrajsek (2012), who show that the excess

bond premium has a negative impact on the mean of US GDP.

One advantage of QVAR is the simultaneous estimation of many quantiles.

It is well known from the statistical and risk management literature that in-

terquantile ranges are a robust proxy for volatility (Taylor, 2005). Volatility,

in turn, is frequently used as a proxy for uncertainty (Bloom, 2014).1 When

applied to our macro QVAR model of the US economy, we find that the in-

dustrial production 5-95% interquantile range is highly correlated with the

excess bond premium. We can therefore ask the question: what is the rela-

tive importance of financial conditions and economic risk in affecting the US

economy?

We answer this question by augmenting our QVAR model with the in-

terquantile range. The new model combines the economic intuition of the

ARCH-M model of Engle, Lilien and Robbins (1987) with the econometric

framework of the VAR for VaR of White, Kim and Manganelli (2015), which

in turn is the multivariate extension of the CAViaR model of Engle and Man-

ganelli (2004). We find that augmenting the QVAR model with the industrial

production interquantile range reduces by half the impact of the excess bond

premium. It also drives away the asymmetric impact of the excess bond pre-

mium on the forecast distribution of the industrial production, as this role is

replaced by the interquantile range itself.

Our findings speak to the literature on uncertainty, financial conditions
1Most of the literature refers to uncertainty, rather than risk. Here we follow the con-

vention from the decision theory literature, which defines uncertainty as a situation where
the randomness cannot be quantified by probabilities. Volatilities and similar estimates of
dispersion, on the other hand, are measures of risk, because they can be derived from the
underlying probability distribution.
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and growth at risk. The literature has shown that an increase in excess bond

premium leads to a contraction in the supply of credit and to an increase in the

downside risk to growth, but has little effect on its upside potential. The ensu-

ing increase in economic risk makes firms even more cautious in responding to

business conditions, ultimately leading to lower investment and an even more

pronounced downside risk to the economy. We provide evidence that this

financial-economic risk channel is not only statistically significant, but also

economically important. We measure how the system reacts in a good versus

a bad environment (Bekaert and Engstrom, 2017). We compute the forecast

of the US industrial production under a scenario in which the system is hit

by a sequence of negative real and financial shocks (bad environment), and

compare its performance to a situation where the system is hit by symmetric

positive real and financial shocks (good environment). The bad environment

is characterized by a much more pronounced downturn, with a maximum con-

traction of monthly industrial production of more than 2%. This compares

with an expansion of slightly more than 1% under the good environment.

The rest of the paper is structured as follows. Section 2 reviews the QVAR

model and introduces the augmented QVAR with the interquantile range.

Section 3 reports the statistical findings for the model of the US economy,

while section 4 shows that our findings are also economically relevant. Section

5 concludes.

2 Econometric framework

We start by providing a concise exposition of the quantile vector autoregressive

(QVAR) model of Chavleishvili and Manganelli (2019). We next show how the
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QVAR model can be modified to allow for differential impact of positive and

negative shocks. We conclude this section with a brief explanation of how to

estimate and conduct inference with QVAR.

2.1 Quantile vector autoregression

We observe a series of random variables {Ỹt : t = 1, · · · , T}, where Ỹt ∈ Rn

is an n-vector with ith element denote by Ỹit for i ∈ {1, · · · , n} and n ∈ N.

We consider p distinct quantiles, 0 < θ1 < · · · < θp < 1, for p ∈ N. Define

the vector stacking p times the dependent variables Ỹt, Yt ≡ [ιp ⊗ Ỹt], where

ιp is a p-vector of ones, and the vector of structural quantile residuals εt ≡

[εθ1
1t , · · · , εθ1

nt, · · · , ε
θp

1t , · · · , ε
θp

nt]′. The structural quantile vector autoregressive

model of order 1 is defined as:

Yt+1 = ω + A0Yt+1 + A1Yt + εt+1 (1)

P (εθj

i,t+1 < 0|Ωit) = θj, for i = 1, · · · , n, j = 1, · · · , p (2)

where Ω1t ≡ {Ỹt, Ỹt−1, · · · } and Ωit ≡ {Ỹi−1,t+1,Ωi−1,t} for i ∈ {2, · · · , n}, de-

note the recursive information set. The matrices A0 and A1 are block diagonal,

and recursive identification is achieved by imposing that the diagonal blocks

of A0 are lower triangular matrices with zeros along the main diagonal.

Notice that, because of the way the recursive information set is defined,

the quantile of each element of the vector Yt+1 at time t is a random variable,

as, except for the first element, it depends on the contemporaneous shocks of

the other variables. The trick to quantile forecasting is to recursively take the

quantile of each of these quantiles (we refer to Chavleishvili and Manganelli,

2019, for a more elaborate exposition). Define Sjt+1 the n×np matrix selecting
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specific quantile shocks from the vector εt+1, so that:

Sjt+1εt+1 ≡ [ε
θ

j1
t+1

1,t+1, · · · , ε
θjn

t+1
n,t+1]′ (3)

for jit+1 ∈ {1, · · · , p} and i ∈ {1, · · · , n}. We assume that the quantile shocks

identified by the matrix Sjt+1 are set to zero. In words, the Sjt+1 matrix is

choosing a specific scenario, by imposing which quantile realization is occurring

at time t+ 1 for each of the endogenous variables.

Under this scenario, by (1)-(2), the quantile forecast of Ỹt+1 is:

ˆ̃Yt+1|Sjt+1 = Cjt+1(ω + A1Yt) (4)

where Cjt+1 ≡ (In − Sjt+1A0S̄)−1Sjt+1 and S̄ is the pn× n duplication matrix

such that Yt+1 = S̄Sjt+1Yt+1.

Given any arbitrary sequence {Sjt+h
}Hh=1, it is possible to iterate the system

(4) forward to obtain the forecast of the dependent variables Ỹt+H at any future

point H.

2.2 A macro VAR for VaR

The QVAR framework introduced above can be modified to estimate how in-

creased volatility in one of the endogenous variables affects the distribution

of the endogenous variables themselves. According to Bloom (2014), growth

volatility affects growth itself. Growth dispersion is typically measured by

volatility, but can be also measured by the interquantile distance (see Pearson

and Tukey, 1965, and, for recent applications, Taylor, 2005). These consider-
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ations motivate the following econometric specification.

Yt+1 = qt+1 + εt+1, P (εθj

i,t+1 < 0|Ωit) = θj, for i = 1, · · · , n, j = 1, · · · , p

(5)

where

qt+1 = ω + A0Yt+1 + A1Yt + A2qt (6)

that is, we assume that the random variables are driven not only by the ob-

servables Yt+1 and Yt, but also by some linear combination of past quantiles.

Careful choice of the matrix A2 allows us to test the theories about the impact

of increased economic dispersion. For instance, by choosing the matrix so that

it selects the difference between the 95% and 5% quantiles, this specification

can be used to test the impact of dispersion. This modeling idea is similar

to the ARCH-M model of Engle, Lilien and Robbins (1987), where expected

returns are modeled as a function of conditional volatility.

System (6) fits the VAR for VaR framework of White et al. (2015), so that

the associated inference apparatus can be readily applied. One feature of this

system, common to the GARCH, CAViaR and VAR for VaR models, is that

the quantiles must be computed recursively, for a given initial condition.

Forecasts, conditional on the shocks identified by the matrix Sjt+1 can be
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obtained in a similar fashion to the standard QVAR:

ˆ̃Yt+1|Sjt+1 = Sjt+1Yt+1

= Sjt+1(ω + A0Yt+1 + A1Yt + A2qt)

= Sjt+1A0Yt+1 + Sjt+1(ω + A1Yt + A2qt)

= Sjt+1A0S̄Sjt+1Yt+1 + Sjt+1(ω + A1Yt + A2qt)

= (In − Sjt+1A0S̄Sjt+1)−1Sjt+1(ω + A1Yt + A2qt)

This system can be updated recursively as system (4) for any given se-

quence {Sjt+h
}Hh=1, by simply noting that:

q̂t+h = ω + A0Ŷt+h + A1Ŷt+h−1 + A2q̂t+h−1

for h = 2, · · · , H and where we have dropped the dependence of the forecasts

on {Sjt+h
}Hh=1 for notational convenience.

2.3 Estimation

Inference for the VAR for VaR model (6) can be obtained using the framework

developed by White et al. (2015). Let qt(β) ≡ ω +A0Yt +A1Yt−1 +A2qt−1(β)

and qjit(β) the jth quantile of the ith variable of the vector qt(β), where we have

made explicit the dependence on β, the vector containing all the unknown pa-

rameters in ω, A0, A1, and A2. Define the quasi-maximum likelihood estimator

β̂ as the solution of the optimization problem:

β̂ = arg min
β
T−1

T∑
t=1


n∑
i=1

p∑
j=1

ρj
(
Ỹit − qjit(β)

) , (7)
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where ρj (u) ≡ u(θj − I(u < 0)) is the standard check function of quantile

regressions.

Under the assumptions of theorems 1 and 2 of White et al. (2015), β̂ is con-

sistent and asymptotically normally distributed. The asymptotic distribution

is:
√
T (β̂ − β∗) d−→ N(0, Q−1V Q−1) (8)

where

Q ≡
n∑
i=1

p∑
j=1

E[f jit(0)∇qjit(β∗)∇′q
j
it(β∗)]

V ≡ E[ηtη′t]

ηt ≡
n∑
i=1

p∑
j=1
∇qjit(β∗)ψj(ε

θj

it )

j(εθj

it ) ≡ θj − I(εθj

it ≤ 0)

ε
θj

it ≡ Ỹit − qjit(β∗)

and f jit(0) is the conditional density function of εθj

it evaluated at 0. The asymp-

totic variance-covariance matrix can be consistently estimated as suggested in

theorems 3 and 4 of White et al. (2015), or using bootstrap based methods in

the spirit of Buchinsky (1995).

Equation (7) is minimised using the fminsearch optimisation function in

Matlab, which is based on the Nelder-Mead simplex algorithm. The estima-

tion is done using as starting values in the optimisation routine the QVAR

estimates and initialising the remaining parameters at zero. The different

equations of the QVAR model are estimated independently from each other

by regression quantiles, as introduced by Koenker and Bassett (1978). The
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relevant objective function, in this case, is minimised using the interior point

(Frisch-Newton) algorithm. The Matlab package is available at Roger Koenker

website: www.econ.uiuc.edu/∼roger/research/rq/rq.html

3 The impact of excess bond premium and its

interaction with economic risk

We start our analysis by estimating a simple structural QVAR(1) model. Let

Y1t and Y2t denote the US industrial production and excess bond premium,

respectively. The dataset consists of the following two US monthly variables

covering the period from January 1973 to June 2016: the log-difference of

industrial production and the excess bond premium. The latter is the compo-

nent of the Gilchrist and Zakrajsek (2012) corporate bond credit spread index

that is left after the component due to default risk is removed. It is interpreted

as a measure of the spread between yields on private versus public debt that

is due to financial market frictions.

We estimate the following model:

Y1,t+1 = ωθ1 + aθ11Y1t + aθ12Y2t + εθ1,t+1 (9)

Y2,t+1 = ωθ2 + aθ01Y1,t+1 + aθ21Y1t + aθ22Y2t + εθ2,t+1 (10)

The estimates of the cross equation regression quantile coefficients are re-

ported in figure 1. Each dot corresponds to a different quantile estimate, whose

probability can be read on the horizontal axis. The dashed lines represent the

90% confidence intervals, while the straight red line gives the OLS estimate of

the corresponding VAR model.

ECB Working Paper Series No 2470 / September 2020 12



Figure 1: Regression quantile coefficients of the QVAR system 9-10
Note: The figure reports the cross equation regression quantile coefficients associated with
the system 9-10, from 5% to 95% confidence levels, together with 90% confidence bands.
The straight red line is the corresponding OLS coefficient.
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The results show that there is little impact of real variables in the finan-

cial equation (10), as can be seen in the middle and bottom charts of the

figure. However, the coefficient aθ12 which measures the impact of the excess

bond premium on the industrial production, exhibits a negative, statistically

significant effect. More precisely, an increase in the excess bond premium has

a disproportionately larger effect on the left tail of the distribution of indus-

trial production, but no effect on its right tail. These findings are in line with

those of Adrian et al. (2019) and Chavleishvili and Manganelli (2019). They

also qualify those of Gilchrist and Zakrajsek (2012), showing that the excess

bond premium has a negative impact on the central and left part of industrial

production, but limited impact on the upside potential (the coefficient of the

excess bond premium is not significantly different from zero at the 95% quan-

tile). The intuition about the asymmetric impact of the excess bond premium

is further illustrated in figure 2, which reports the one month ahead forecasts

for the 5% and 95% quantile of the industrial production conditional on the

excess bond premium. It is evident from the plot that the excess bond pre-

mium does not help predicting the upside potential of the U.S. economy, while

it affects substantially its downside risks.

There is a substantial literature arguing that economic risk has a nega-

tive impact on the economy, as it induces agents to postpone investment and

consumption in durable goods (see, for instance, Bloom, 2014). One proxy

for economic risk is volatility, which in turn can be proxied by the interquan-

tile range. In figure 3, we report the difference between the 95% and 5%

quantiles together with the excess bond premium. The two series are highly

correlated and they tend to spike during recessions. In fact, this is not sur-

prising, in the light of the estimated coefficients reported in figure 1, since
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Figure 2: Conditional forecast of industrial production

Note: The figure reports the one month ahead forecast of the 5% and 95% quantiles of
industrial production, conditional on the excess bond premium.

q0.95
1t − q0.05

1t = ω0.95
1 − ω0.05

1 + (a0.95
11 − a0.05

11 )Y1,t−1 + (a0.95
12 − a0.05

12 )Y2,t−1. There-

fore, as long as a0.95
12 6= a0.05

12 (and the top panel of figure 1 shows that this is

the case) the interquantile range is correlated with the excess bond premium.

This finding is also consistent with the empirical evidence provided by Bekaert

and Engstrom (2017), who show that the conditional variance of consumption

growth peaks around the time of economic recessions.

It makes sense therefore to ask whether the interquantile range helps ex-

plaining the rate of growth of industrial production. To answer this question,

we estimate the following restricted VAR for VaR:

Y1,t+1 = ωθ1 + aθ11Y1t + aθ12Y2t + aθ3(q0.95
1t − q0.05

1t ) + εθ1,t+1 (11)

Y2,t+1 = ωθ2 + aθ01Y1,t+1 + aθ21Y1t + aθ22Y2t + εθ2,t+1 (12)

Including the lag quantiles is a parsimonious form of controlling for an infinite
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Figure 3: Interquantile range and the excess bond premium
Note: The figure reports the difference between the 95% and 5% quantiles forecasts of
industrial production, together with the excess bond premium.
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number of lagged dependent variables, very much like in ARMA or GARCH

models. Figure 4 reports the regression quantile estimates of the coefficients a12

and a3. A comparison with the top panel of figure 1 reveals that controlling for

the interquantile range reduces by half the impact of the excess bond premium

and weakens substantially its significance and asymmetric impact on the real

variable. In particular, the impact on the left tail of industrial production is

no longer significant. The asymmetric impact is absorbed by the interquantile

range itself, as can be seen from the bottom panel of figure 4. These results

further qualify the findings of Gilchrist and Zakrajsek (2012) and Adrian et

al. (2019). The financial condition index by itself has little impact on the

distribution of the real variable. It is the effect that it has through the impact

on economic risk that matters the most.

One possible narrative consistent with these findings and those of the liter-

ature on credit spreads, economic risk and growth at risk, is that an increase in

the excess bond premium, by potentially contracting the supply of credit, leads

to an increase in the downside risks to growth, but has no effect on its upside

potential. This, in turn, leads to an increase in economic risk (uncertainty,

in the jargon of this literature), making firms more cautious in responding to

business conditions, ultimately creating an even more pronounced downside

risk to the economy.

These findings point to the importance of an economic uncertainty channel

in the non-linear relationship between financial conditions and the conditional

distribution of industrial production growth, suggesting that macroeconomic

models with financial sector should allow for non-linear equilibrium relation-

ships. Examples of non-linear DSGE models with financial frictions in the

supply for credit include Brunnermeier and Sannikov (2014) and He and Kr-
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ishnamurthy (2012). However, these models do not consider an economic

uncertainty channel.

4 Bad environment - good environment anal-

ysis

The quantile VAR model allows us to quantify over time the asymmetric effects

of positive and negative shocks to the economic and financial system. This

section shows that the results of the previous section are not only statistically

significant, but also economically meaningful.

We compute the quantile forecasts of the model described in section 2.2,

associated with the scenarios reported in table 1. Recall from section 2.2 that

scenarios are identified by a sequence of matrices {Sjt+h
}Hh=1, which denote

future quantile realizations of the endogenous variables. The good environment

is characterized by a sequence of right tail realizations for the real variable

and of left tail realizations for the financial variable. More precisely table

1 assumes that in the good environment the economy is hit by a sequence

of three consecutive 90% quantile realizations for the industrial production

and three consecutive 10% realizations of the excess bond premium. This

corresponds to a quarter of extremely good economic outcomes and compressed

risk premia. The bad environment is defined symmetrically, as a sequence of

three consecutive 10% and 90% quantile realizations of industrial production

and excess bond premia, that is, bad economic outcomes and high risk premia.

From the fourth month onward, we assume that the economy follows its median

evolution. Of course, other (more or less severe) scenarios could be considered,
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Figure 4: Regression quantile coefficients of equation 11
Note: The figure reports the regression quantile coefficients associated with equation (9),
from 5% to 95% confidence levels, together with 90% confidence bands.
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Figure 5: Forecasting US industrial production
Note: The figure reports the forecast of the US industrial production under three alternative
scenarios: the good and bad scenarios described in table 1, as well as the median scenario.

but this one suffices to provide the empirical evidence of the asymmetric impact

of bad and good environments.

Table 1: Alternative scenarios
Good Environment Bad Environment

t+1 {90%, 10%} {10%, 90%}
t+2 {90%, 10%} {10%, 90%}
t+3 {90%, 10%} {10%, 90%}
t+4 {50%, 50%} {50%, 50%}
. . . . . . . . .

Note: The table contains the sequence of quantile realizations associated with the alter-
native scenarios. For each couple, the first and second probabilities refer to the industrial
production and excess bond premium quantile realizations, respectively.

The results are reported in figure 5. The scenarios are applied one year

before the end of our sample. The figure reports the forecast of industrial pro-

duction associated with the two scenarios, together with the median forecast.
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The blue line in the middle represents the median forecasting path. It

is similar to the mean forecast one would obtain with a standard VAR. The

system is quickly reverting to its long run median forecast, which is around

0.2%. The lower red line is the forecast associated with a sequence of bad en-

vironment quantile realizations. This bad environment produces a significant

and persistent downturn of the economy. The peak monthly contraction ex-

ceeds -2% and is reached after three months. The forecast associated with the

symmetric sequence of good environment quantile realizations is given by the

top green line. It is characterized by a much less pronounced and persistent

expansion, as it is converging to the long run median forecast faster. The peak

effect is also reached after three months, but at a lower level of slightly more

than 1%.

These findings are consistent with those of Bekaert and Engstrom (2017),

whose underlying theoretical framework predicts that an increase in financial

risks leads to a negatively skewed distribution for the real variables. They

extend the model of Campbell and Cochrane (1999) by assuming a stochastic

process for macro variables that follows a time varying non-normal distribu-

tion. They refer to this as a bad environoment-good environment process, a

terminology that we have borrowed for the description of our scenarios. In

each period, consumption growth is hit by two types of shocks, characterized

by positive and negative skewness. In their model, there are good times, in

which the shocks drawn from the positively skewed distribution dominate, and

bad times, when the negatively skewed shocks dominate and the recession risks

are higher. They estimate the process using the univariate model proposed in

Bekaert, Engstrom and Ermolov (2015), a GARCH model augmented with two

gamma-distributed shocks that together imply a conditional shock distribu-
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tion with time-varying heteroscedasticity, skewness and kurtosis. Our quantile

VAR represents a semi-parametric alternative modeling approach, which can

be easily extended to structural VAR analysis, as illustrated in this section.

5 Conclusion

We have estimated a quantile vector autoregressive model for the US economy

with industrial production and excess bond premium as endogenous variables.

Financial conditions have an asymmetric effect on the real economy, via the

impact they have on economic risk. We measure economic risk as the in-

terquantile range. Worsening financial conditions increase overall economic

risk, which in turn increases growth at risk.

Our quantile VAR framework could potentially help policymakers design

policy actions to respond in a timely manner to threats to financial stability

indicated by changes in financial conditions. Policymakers would be able to

specify bad outcomes in terms of their risk tolerance and undertake appropri-

ate actions based on the information provided by financial conditions. The

evidence provided in this paper highlights how asymmetric macro-financial

feedback effects can be properly taken into account.
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