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Abstract

This paper studies the implications of perceived default risk
for aggregate output and productivity. Using a model of credit
contracts with moral hazard, we show that a firm’s probability
of default is a sufficient statistic for capital allocation. The the-
oretical framework suggests an aggregate measure of the impact
of credit market frictions based on firm-level probabilities of de-
fault which can be applied using data on firm-level employment
and default risk. We obtain direct estimates of firm-level default
probabilities using Standard and Poor’s PD Model to capture the
expectations that lenders were forming based on their historical
information sets. We implement the method on the UK, an econ-
omy that was strongly exposed to the global financial crisis and
where we can match default probabilities to administrative data
on the population of 1.5 million firms per year. As expected,
we find a strong correlation between default risk and a firm’s fu-
ture performance. We estimate that credit frictions (i) cause an
output loss of around 28% per year on average; (ii) are much
larger for firms with under 250 employees and (iii) that losses are
overwhelmingly due to a lower overall capital stock rather than
a misallocation of credit across firms with heterogeneous produc-
tivity. Further, we find that these losses accounted for over half
of the productivity fall between 2008 and 2009, and persisted for
smaller (although not larger) firms.

Key words: productivity, default risk, credit frictions, mis-
allocation

JEL classification: D24, E32, L11, 047
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Non-technical summary

Since the 2008-2009 global financial crisis, there has been a renewed interest in how frictions
in credit markets affect economic efficiency, either through an increased cost of capital for
firms or through a misallocation of capital away from its most productive uses. The recovery
from the crisis has been very sluggish and many European countries have experienced
unprecedented slow productivity growth. The UK is no exception. Had the UK followed its
three-decade trend prior to the global financial crisis of 2008-2009, productivity (GDP per hour

worked) would have been almost a quarter higher in 2020.

Many studies have argued that imperfections in credit markets play an important role in
depressing investment and productivity. A recent micro literature uses pre-crisis bank-firm
relations to show that firms with a closer relationship with distressed banks suffered relatively
more severely in terms of employment during the crisis (e.g. Chodorow-Reich, 2014 for the
US and Bentolila et al., 2018 for Spain). Franklin et al. (2015) show that UK firms that had a
relationship with a distressed bank suffered more in terms of labour productivity, wages and
the capital intensity of production. Using data on Germany, Huber (2018) suggests important
general equilibrium effects, beyond the firms that were directly affected by a lending cut. These
micro studies offer strong causal support to the view that financial constraints matter for firm
performance. However, they cannot assess the magnitude of the aggregate output losses from

credit frictions. This is where our paper fills a gap in the literature.

To investigate the impact of credit frictions on aggregate output, we develop a model of credit
contracts with moral hazard which shows that a firm’s probability of default is a sufficient
statistic for the credit frictions it faces. We embed this framework in a model with
heterogeneous firms and derive empirical implications for the aggregate economy. Most
existing models do not feature equilibrium default even though it is a crucial factor in
determining the cost of capital or whether firms can get a loan at all. Our theoretical model
shows that a suitably weighted default probability across all firms is key to calibrating the
output loss from credit frictions. Importantly, our model enables us to estimate output losses

using data solely on firm-level employment and default probabilities.

To estimate default probabilities, we use Standard & Poor’s PD Model algorithm and CreditPro
data. First, we use PD Model to compute a credit risk score for the near population of UK firms

for the period 2005-2013 using accounting data from Bureau Van Dijk’s Orbis. We then map
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these risk scores into historical probabilities of default using CreditPro data. Finally, we match
this dataset with administrative panel data on firm-level employment. The bottom line is that
credit frictions appear to depress output by about 28% per year on average over our sample
period — a surprisingly large effect for a financially developed country like the UK. The output
losses due to credit frictions among SMEs are greater than for large firms — at 33% compared

to 20% respectively. This is consistent with the idea that SMEs face tougher credit constraints.

Our method enables us to decompose the aggregate output loss into two parts. The first
component is a “scale effect” which estimates the impact of credit frictions on output through
its effect on the aggregate stock of capital, while holding the joint distribution of frictions and
productivity constant. The second component is a “Total Factor Productivity effect” or
“misallocation effect”, which estimates the impact of credit frictions on output holding the
aggregate capital stock fixed. Using this decomposition, we find that the main cause of lower
productivity is that investment is held back, and this lower capital intensity reduces output per
worker. The contribution of misallocation, i.e. productive firms getting “too little” capital, only
accounts for a tiny proportion of the losses. On average, scale effects account for about 93%

of the overall output losses.

In the time series, there was a sharp deterioration in financial conditions in 2008-2009 causing
a 4.8% fall in productivity, which had still not been made up by the end of our sample period.
The actual fall in productivity in these years was 9.3%, so this implies that credit frictions
accounted for about half of the loss in productivity in the crisis years. The deterioration in credit
frictions was larger and more persistent for SMEs. In 2008 the effect of such frictions was a
30% output loss for SMEs and 19% for large firms, but in 2009 the size of the effect had risen
to 34% and 21% respectively. Moreover, by the end of the sample period losses had returned
to 19% for large firms, but remained high (at 35%) for SMEs. This is consistent with evidence
from Armstrong et al. (2013) that financial constraints persisted for UK SMEs post crisis.

Obviously, our results still leave ample room for non-financial factors such as weak demand in
explaining sluggish productivity growth, but they highlight the fact that credit frictions matter
quantitatively as well as qualitatively. Policies that help to improve the functioning of credit

markets, especially for SMEs, should remain high on the policy agenda.
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1 Introduction

The period following the global financial crisis of 2008-09 heightened aware-
ness of the role of credit frictions in affecting economic efficiency, either due
to a higher cost of capital and/or capital being misallocated away from its
most productive uses. This paper develops a novel approach to assessing how
default risk affects the economy. It combines a simple theoretical model of
credit contracts, where the firm’s default risk is a sufficient statistic for credit
frictions, with a direct estimate of a firm’s default risk using a tool actually
used by lenders developed and sold by Standard and Poor’s. 'We use this to
look at the heterogeneous impact of assessed default at the firm level, as well
as the aggregate implications of default risk by constructing a theoretically-
derived measure of output losses due to default risk.

We apply the framework to the UK where we have access to rich admin-
istrative panel data that we can match to firm-level probabilities of default
(PD). Specifically, we obtain estimates of historical firm-level probabilities of
default using Standard and Poor’s PD Model and CreditPro. The PD Model
is a tool which is widely used for firm-level credit scoring in financial markets
and therefore reflects access to credit by firms. Similar to many other credit
scoring tools, it uses a combination of financial accounts data, industry, and
macroeconomic factors to assess the credit risk of a company. We use near-
population data on private and publicly listed companies (from Bureau Van
Dijk’s Orbis database) to construct a firm-specific time-varying estimate of
default probabilities. This information is merged with an administrative data
set containing the population of UK firms (the IDBR, Inter-Departmental
Business Register).

Our basic method requires only information on employment and default
probabilities, which is a distinct advantage over other approaches since firm
population datasets such as the U.S. Longitudinal Business Database contain
only basic information on firms (like employment) and not investment or
value added. Our baseline results use the firm population, but we also exploit
richer data from the Annual Business Inquiry and Annual Business Survey
(ABI/ABS), which are stratified random samples across the whole of the UK
private sector with measures of value added, intermediate inputs and capital
expenditures.! We show that even after controlling for firm fixed effects, a

'In the U.S., data on value added and investment is not generally available outside the
manufacturing sector. Even in the manufacturing sector, Census data has intermediate
goods inputs, but not intermediate service inputs.
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firm’s probability of default is related to measures of performance such as
size, capital investment and value added.

Our baseline macro results based on a sample of around 1.5 million firms
each year from the IDBR suggest that credit frictions caused on average
a 28% annual loss of GDP between 2005 and 2013 when compared to the
frictionless benchmark, defined as a world without default risk. Exploiting
firm-level heterogeneity, we show that credit frictions play a much larger role
in depressing output and labor productivity among small and medium sized
enterprises (SMEs). This is consistent with SMEs being more dependent on
bank financing and facing tighter credit constraints than larger firms.

We then decompose aggregate credit frictions into two parts (i) a “scale
effect” which estimates the impact of credit frictions on output through its
effect on the aggregate stock of capital and labor inputs, while holding the
joint distribution of frictions and productivity constant; and (ii) a “TFP
effect” which estimates the impact of credit frictions on output holding the
aggregate capital stock and labor input fixed. This decomposition allows
us to relate our findings to the misallocation literature on TFP losses from
firm-level distortions. We find that the level of output losses and their change
over time are mainly driven by scale effects rather than misallocation. We
compare our method with the now standard approach which estimates the
marginal revenue product of capital from value added to capital ratios (e.g.
Hsieh and Klenow, 2009; Gopinath et al, 2017). The standard approach to
factor market distortions generates losses that are over twice as large as the
ones we identify based solely on our model of credit frictions. This may be
because standard methods pick up a wider range of distortions, but it may
also be because measurement errors in capital (and value added) are being
erroneously attributed to misallocation.?

Our application is more than a “proof of concept”; it is an ideal case in
which to study the impact of financial frictions. The financial sector is a
relatively large part of the UK economy, but there are long-standing concerns
that it does not serve the domestic non-financial sector well (e.g. Kay, 2012;
Besley and Van Reenen, 2013). This came into sharp relief following the fi-
nancial crisis, and GDP per hour worked only recovered to its pre-crisis levels
in 2017.2> We show that credit frictions based on the default probability mea-

2See Rotemberg and White (2017); Bils, Klenow and Ruane (2017) and de Loecker and
Collard-Wexler (2016) for recent evidence on the huge amount of capital mismeasuremt
in micro data.

3In 2017 the UK'’s official fiscal watchdog, the Office of Budget Responsibility (2017)
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sures were particularly acute at the height of the financial crisis, accounting
for over half of the productivity fall between 2008 and 2009. Furthermore, al-
though conditions reverted to pre-crisis levels for large firms, credit frictions
persisted for small firms and still accounted for around 20% of the difference
between actual productivity and its pre-crisis trend by the end of 2013.
The remainder of the paper is organized as follows. In the next section,
we discuss some related literature. Section 3 presents a conceptual frame-
work which models credit market imperfections as endogenous default risk,
i.e. endogenous repayment probabilities. We show how default risk induces
heterogeneity in the price of capital across firms, establishing a link between
a firm’s repayment probability and the level of its capital stock. We embed
this framework in a model with heterogeneous firms and derive empirical
implications at the firm-level and for the aggregate economy. In particular,
we construct an aggregate measure of credit market frictions which we de-
compose into a scale and a TFP component. Section 4 discusses our data
and measurement issues. Section 5 presents our core results. We validate the
use of repayment probabilities by looking at their correlations with a range
of firm outcomes and then apply the theory to measure the effects of credit
frictions on aggregate output, and decompose these effects into a scale and
a TFP component. Section 6 discusses several additional results looking at
heterogeneity across firm size classes and sectors; comparing our method to
the standard approach; incorporating labor market frictions as well as other
robustness tests. Section 7 offers some concluding thoughts. Online Appen-
dix A gives further details of the data, Appendix B contains more technical
econometric details and Appendix C details productivity trends.

2 Related Literature

Our contribution relates to a large and growing literature on the aggregate
consequences of firm-level distortions which shows how firm-specific distor-
tions to output or input prices can lead to sizable decreases in aggregate
output and measured TFP by distorting the allocation of inputs (and hence
the size of firms).? Few contributions in the literature have direct measures

downgraded its assumptions on underlying productivity growth citing the impact of the
financial crisis.

*In addition to Hsieh and Klenow (2009, 2014), see among others Asker et al (2014),
Foster, Haltiwanger and Krizan (2002), Restuccia and Rogerson (2008), Bartelsman, Halti-
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of the distortions that can result from a range of factors, including policy-
induced frictions such as labor market regulation or preferential interest rates
to state-owned firms. Hence, it is difficult to relate the empirical findings to
specific mechanisms.’

There is a large theoretical literature on credit market distortions due to
adverse selection, moral hazard or costly enforcement. The classic paper by
Stiglitz and Weiss (1981) focused on adverse selection as the main distortion
where a lender cannot observe the riskiness of a borrower. Credit is priced for
the average default risk with some borrowers consequently limited in what
they can borrow. The dominant approach in the macro-economic literature
on credit market distortions focuses on frictions due to ex-post moral hazard
where the lender has limited capacity to enforce repayment. This is used,
for example, by Buera and Shin (2013) and Midrigan and Xu (2014). These
models do not have any default in equilibrium. In contrast, Bernanke and
Gertler (1989) and Cooley and Quadrini (2001) use a model where the fi-
nancial friction is created by auditing costs which make it costly for lenders
to observe firm-level shocks. The approach taken here follows models of
moral hazard in the credit market such as Innes (1990), Holmstrom and
Tirole (1997) and Besley et al (2012) where unobserved effort implies that
increased indebtedness reduces the prospect of loan repayment. All these
theoretical approaches share in common a role for collateral in increasing the
efficiency of the credit market. Hence a negative shock to asset prices will
tend to lead to tighter financial market conditions.

By trying to isolate the distortions from credit frictions, our paper is
related to recent contributions that have examined the role of financial con-
straints.® In those papers, financial constraints have an impact on capital
accumulation and the allocation of capital across firms. However, the domi-
nant paradigm used to model such frictions does not allow for default which
is our key empirical measure. The quantitative assessment of output losses
varies across papers but the overall conclusion appears to be that although

wanger and Scarpetta (2013), Gopinath et al (2017). Disney et al (2003) look at UK
manufacturing. For a GE treatment in the time series dimension see Baqaee and Fahri
(2017).

®The approach taken here is similar to that of Besley and Mueller (2018) who study
the output losses due to weak law enforcement.

0For example, Jeong and Townsend (2007), Amaral and Quintin (2010), Buera and Shin
(2013), Caselli and Gennaioli (2013), Midrigan and Xu (2014), Moll (2014) and Catherine
et al (2018).
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financial constraints induce misallocation, the magnitude is not large (see
Hopenhayn, 2014, for a review). Our finding that the losses from credit fric-
tions are not primarily due to misallocation across heterogeneous firms is
consistent with this literature.

Although we have a model of credit market frictions that incorporates de-
fault directly, our approach has less rich dynamics than some of these papers.
It has parallels with Gilchrist, Sim, and Zakrajsek (2013) where distortions
are embodied in firm-specific borrowing costs. The authors measure these
for a subset of large U.S. manufacturing firms using the interest rate spreads
on their outstanding publicly-traded debt. While borrowing costs are also
firm-specific in our analysis, it is the firm’s probability of default which is key
as capital allocation adjusts to equate the marginal product of capital to a
risk-adjusted cost of lending to a particular firm. In addition, our measure of
credit frictions can be estimated for the entire economy, including firms that
do not issue publicly-traded debt. An advantage of our approach is that it
can be implemented with only basic information on firm size and PDs, which
makes it parsimonious and scalable in a wide number of environments where
data is limited.

Our paper is also related to the large literature that focuses on the macro-
economic effects of financial crises (e.g. Reinhart and Rogoff, 2011). How-
ever, many authors remain skeptical about the role of financial mechanisms in
explaining persistently low productivity after the Great Recession (e.g. Byrne
et al, 2016; Brynjolfsson et al, 2017). Several recent micro-studies examine
the role of the Great Recession in depressing productivity. Garcia-Macia
(2017), de Ridder (2017), Garicano and Steinwender (2016) and Aghion et al
(2012, 2014) stress the role played by the cut-back in productivity-enhancing
investments (such as R&D). Some papers analyze the employment and in-
vestment effects of credit shocks using firm-level bank-lender relations, such
as pre-crisis connections with Lehman Brothers in the U.S. (Chodorow-Reich,
2014), Commerzbank in Germany (Huber, 2018) and Lloyds/RBS in the UK
(Anderson, Riley and Young, 2019).” We discuss how these reduced-form
approaches can be combined with our more theory-based approach in the
conclusions.

"See also Acharya et al (2015), Amiti and Weinstein (2018), Bentolila et al (2018),
Greenstone et al (2014) and Manaresi and Pierri (2019). Kwaja and Mian (2008) show
that the performnance of firms in Pakistan suffers if they are connected to a bank subject
to exogenous negative liquidity shocks (caused by nuclear testing). Like us, they find the
predominant harm is to smaller firms.
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More broadly, our paper relates to the vast literature on financial con-
straints and investment. Like these contributions, we find evidence of im-
portant financial frictions. Several papers seem to show causal impacts -
Lamont (1997) finds that reductions in oil prices lead non-oil subsidiaries of
oil companies to reduce capital expenditures. Rauh (2006) exploits nonlinear
funding rules for defined benefit pension plans and Chaney et al (2012) and
Gan (2007) use variation in housing price shocks to show that financial collat-
eral shocks increase investment.® However, as is the case with the firm-bank
relationship literature, it is difficult to translate these reduced-form effects
into a quantitative macro-economic assessment of output loss. This is what
our paper attempts to do. A drawback of our approach is that it does not
directly isolate the impact of a financial shock (although we do discuss how
one could do that in the context of our approach). Rather, our methodology
quantifies how the output effect of any shock (financial, demand or otherwise)
is magnified in an economy subject to credit frictions relative to a benchmark
economy where such frictions are absent.

3 Conceptual Framework

The simple model that we develop is based on Besley et al (2012), and is used
to show that endogenously-determined default probabilties are a sufficient
statistic for firm-level credit market frictions. In the framework, lenders offer
loans to heterogenous firms whose balance sheets affect access to collateral.

3.1 Basics

Firms Firms produce using labor and capital and vary in their productiv-
ity, 6, with production function:

Y =0 (L' K*)" (1)

8Bond and Van Reenen (2007) surveyed the early empirical literature. Since then there
have been important contributions by inter alia Banerjee and Duflo (2014), Benmelech et
al (2008), Benmelech et al (2019), Faulkender and Petersen (2012), Lemmon and Roberts
(2010), Zia (2008) and Zwick and Mahon (2017).
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with 0 < n < 1. The variable 6 could capture productivity in the con-
ventional way but we can also think of firm-specific demand shocks being
captured by variation in 6.1 Given a wage of w, the associated conditional
profit function is:

—(1—a)n

1 w 1-(1—a)n an
(0, w, K) = [1 — (1 —a)y|6=a=m) {—} k=) (2
(0,0, K) = [1 = (1 — )] ey @)
with profit net of depreciation being denoted as:
(0, w,0,K)=T1(0,w,K) — 0K (3)

where § € (0,1) is the depreciation rate.

Firms also have assets A which can be pledged as collateral as well as
being used productively. Let ¢ € [0, 1] denote whether the firm produces
successfully and hence is able to repay any loan it has received. Since loans
are committed before uncertainty is realized, this is also the repayment prob-
ability. The probability of default is (1—¢). We suppose that the firm forfeits
its assets A in the event of default. The repayment probability depends on
costly managerial effort where the cost function ¢ (¢) is increasing and con-
Vex.

Banks Banks offer loans to a firm tailored to its productivity and assets.
We assume that the choice of actions affecting ¢ are not contractible and
hence that there is a potential moral hazard problem. A credit contract is a
pair {B, R} comprising the amount borrowed, B, and an amount to repay,
R. Hence (R — B)/B is the interest rate. Since assets can also be used
productively, a firm’s capital stock is K = A + B. Lenders can access funds
from depositors or the interbank market at rate p < 1. A bank’s expected
profit if it lends to a firm with assets A and repayment probability ¢ is:

¢[R—pB] = (1-0)[B(1+p) - A (4)

9This is essentially a Lucas (1978) span of control model where the source of decreasing
returns is on the production side and is linked to limits to managerial time. Hopenhayn
(2014) and Hsieh and Klenow (2009) show that this is equivalent to a model with monop-
olistic competition where

=1—- -
K 9

and ¢ is the elasticity of demand.
10For example, different idiosyncratic quality levels as in Foster, Haltiwanger and Syver-
son (2008).
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Hence with probability ¢, the bank is repaid and receives R while with prob-
ability (1 — ¢) the bank seizes the firm’s collateral.!

3.2 Lending Contracts

Each firm faces an outside option U (6, A) which reflects what is available
to the firm in the market place. Many lending relationships are relationship
specific and hence there could be a premium from staying with an existing
lender which we think of as a “switching cost” which limits competition in
the market. We will suppose that initially each firm is “assigned” to a lender
who offers terms relative to a fixed outside option. Below, we discuss how
the outside option can be made endogenous. The timing is as follows:

1. Nature assigns each firm to a bank.
Banks offer credit contracts { B, R} given an outside option U (0, A).
The firm chooses ¢.

Default occurs with probability (1 — ¢), in which case the firm loses A.

AR ol

If there is no default, firms make labor hiring decisions, produce, and
repay their loans.

We solve the model backwards. For simplicity, we focus on the case where

the outside option of the firm always binds.!?

Optimal ¢ (stage 3) The optimal effort (repayment probability) maxi-
mizes the expected profits of the firm given any credit contract { R, B} that
they are offered, i.e.

¢ (0,w,0,A+B)— R —(1-¢)A—c(9). (5)
The first order condition for optimal effort implies:
C,(¢):ﬂ(9,w,57K)—R+A. (6)

Throughout we will assume interior solutions. The optimal repayment rate
is increasing in profit and assets but decreasing in the interest payment.

Tt would be straightforward, at the cost of greater notational complexity, to allow for
only some assets in a firm’s balance sheet to be used as collateral.
12See Besley et al (2012) for an exploration of the case where this is not true.
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Optimal Contracts (stage 2) The optimal credit contract solves
Mazp gy¢ [R = pB] = (1 = ¢) [B (1 + p) — 4] (7)
subject to the participation constraint (outside option)
¢[m(0,w,0,A+ B) = Rl = (1-9¢) A—c(¢) 2 U(4,0) (8)

and equation (6) for optimal effort. The optimal allocation of capital, as-
suming that the participation constraint is binding and an interior solution
with B (A, 0) > 0, solves:!3

d+p

7 (5, 0, (A, 9))

Ty <0,w,A +B (A,H)) - (11)

where gES(A, 0) is the repayment probability of a firm with assets A and pro-
ductivity  with the optimum credit contract and

. A 1
T (5’ p’¢(A’9)) - . (1+0) (1-6(A.9)) <1 (12)
(5+p)3(A,0)

denotes the capital market distortion which raises the cost of capital above
(0 + p). Note that 7 (5,/), oA, 9)) is increasing in ¢(A4,0), i.e., a higher

13To derive this, note that the binding outside option and equation (6) imply that
¢c’ (¢) —c(¢) =U (A, 0)+ A

which implicitly defines ¢ (4,60) = g (U (A,0) + A) where g () is an increasing function
since ¢ (+) is convex. Substituting this into the participation constraint implies that the
repayment rate is given by

(1—9(A4,0)A+c(p(A,0) +U(A,0)

R=7n(0,w,6,A+ B)— - (9)
?(A,0)
Plugging this into the bank’s profit function delivers an expression in B:
. 1— ¢ (A,0)A+c(d(A,0)+U (A0 5
H(A,0) 7(0,w,6,4+p) - L—2AAT0A6) +U(40) —pB>+<1—¢><A—<1+p>B>
¢ (A,0)
(10)

The result follows by maximizing (10) with respect to B.

ECB Working Paper Series No 2425 / June 2020 13



repayment probability implies that the capital market distortion is lower.
Moreover, (12) illustrates how an empirical measure of ¢(A, 0) is a sufficient
statistic for credit market frictions, all else equal.

Equation (11) is the core equation for the allocation of capital and pro-
vides a direct link between estimates of firm-level repayment probabilities
and factor allocations. It says that the firm’s marginal product of capital is
set equal to the risk-adjusted sum of the depreciation rate and the lender’s
cost of funds.!*

To get a feel for what equation (12) implies quantitatively, suppose that
a firm has a 90% repayment probability and that p = 6 = 0.05 so that
the marginal product of capital in the absence of default would be 10%.
With an optimal credit contract, the marginal product of capital would be
approximately 22%, which is around double the riskless case. Even with
a repayment probability of 95%, the marginal product of capital would be
around 16%.

The Outside Option Closing the model requires us to determine the
outside option U (A,#) endogenously. To do this, we adopt a simple ap-
proach which permits us to think about how market conditions can matter.
Specifically, we postulate a switching cost, x, incurred if a firm moves to
an alternative bank. So if £ = 0, switching is costless. Let P (A,0:U) be
the maximized level of the bank’s profit with an outside option U, and

define U (A,0) from P (A, 6.0 (A, 9)) = 0, as the value of the outside op-

tion which generates zero profits for an alternative bank. This defines the
best possible terms that another bank would be willing to offer in order to
attract a firm. We then suppose that the equilibrium outside option will be

A

U(,A) = U(A,0) — k, ie., the firm earns a discount on its best outside

14To make this explicit, use equation (12) to rewrite the right hand side of equation (11)
as
d+p+p(A0)

where p(A,0) = (1 + p) [155?,&(;%’)0 )} is an endogenously-determined firm-specific credit
spread similar to Gilchrist, Sim, and Zakrajsek (2013), which is decreasing in the repay-
ment probability.

15This is given by:

7 (A, 0:0) :Igzg%((f(g(U—l-A)) [g(U+A)+T(0,w,A+ B)]|+ A—pB)
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option equal to the switching cost. If there is greater reluctance by lenders
to take on new clients, modeled as an increase in the switching cost, it will
reduce U (A, 6). This lowers the firm’s profit. However, it also has a “real”
effect in our second best model since worsening the outside option reduces
the repayment probability and hence reduces the amount of capital that any
borrower is allocated.

3.3 Firm-Level Implications

Let N; be the population of firms active at date ¢ with characteristics {6,, Ant}ff;l.
The production function of firm n at time ¢ is:

Yot = Ot (L;;aKroft)n (13)

Credit frictions are modeled as firm-specific capital input prices, determined
by each firm’s repayment probability. Although our focus is on credit fric-
tions, we allow for the possibility of labor market frictions modeled as firm-
specific labor input prices. Since output prices are normalized to 1, we can
write the firm’s profit as

Wt P + )
Ynt - (T_L) Lnt - ( TK ) Knt (14)

nt nt

where w; is the wage and (p+0) is the cost of capital, both of which are com-

mon to all firms, and {7%,, 75} are firm-specific factors affecting labor and

capital input prices. Equation (12) implies that 75 = 7 ((5, 0.0 (Ant, Gnt)>,
i.e. a firm n faces a price of capital which depends upon its repayment prob-
ability. In general, lower values of 7%, or 7 represent more distorted factor
markets.'6

Deriving optimal factor demands, the output level of firm n at date ¢ with
distortions {7%,, 75} is

Yo = Hﬁgb(wt, p+ 5)7nt (15)
where -
Tot = (Tﬁt) 1=n (Tfft)ﬁ (16)

16 Allowing a more general set of distortions in this way will allow us to compare the
results to the literature on misallocation.
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summarizes firm-specific distortions in labor and capital markets, and ¢ (wy, p + 6) =
(1—a)n an

(A-—a)n) t=n [ an \17
wy p+46 :

The frictionless case is defined as a world where all firms face the same
input prices; in other words 75, = 75 =1 for all firms n = 1,..., N. In this
benchmark case, the output of a firm is determined solely by its fundamental
productivity 6,,;, the technological parameters «, 7 and 9, and the frictionless
factor prices {wy, p}.

3.4 Aggregate Implications

Aggregate Losses from Factor Market Frictions Summing across
firms, aggregate output is:

N N 1
n=1 n=1

where
N
O, = Z Wnt Tt (18)
n=1

is a weighted average of firm-level factor market distortions, with productivity
a o
“weights” wyy = 057/ SN 017,

n=1"nt
Suppose that p is determined in global capital markets while the aggregate
wage, w;, is determined endogenously. With an exogenously fixed labor

endowment L, the equilibrium real wage solves

(1 = a)mb(wn, p+ ) (zi; o ) o

wy = 7 (19)

which depends on aggregate distortions through ©,.

This framework allows us to derive a counter-factual level of output, f/t,
associated with a chosen reference level of distortions {?’fft, f’flt} and an as-
sociated “reference efficiency level” ©,. A special case is the frictionless
benchmark where 75 = 7 (0,p,1) = 7% = 1 for all firms at each ¢. In this
benchmark, there is no credit market default and labor markets equalize the
marginal product of labor across firms. However, other reference levels are
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possible, e.g. the outcome prior to a financial crisis or the level of distortions
observed in another economy.

For any chosen reference level, the deviation of actual output from its
reference level is given by

e {@] 20)

Y, Y
So 9, < ét is a sufficient statistic for the output loss due to factor market
distortions. Below, we will calculate output losses using equation (20) with
data on firm-level repayment probabilities and employment.

Scale and TFP effects The framework enables us to decompose the total
effect of frictions on output into a “scale” and “TFP” effect by writing:

0, = 07e! (21)

where
on

N (1-a)n N
@f = Z wntTntT,l{t> Z wntTntTfl(t> (22)
n=1 n=1

and

N
@T Zn:l wntTnt (23)
(anl wntTntTnt> (Zn:l wntTntTnt>

The scale effect, ©F, represents the impact of frictions on output through
the size of the aggregate capital stock and labor inputs, while holding the
joint distribution of frictions and productivity constant, while the TFP effect
estimates the impact of frictions on output holding the aggregate stock of
capital and labor inputs fixed. This decomposition allows us to relate our
findings to the standard misallocation literature which focuses mainly on
the measurement of TFP losses due to firm-level distortions (e.g. Hsieh and
Klenow, 2009). Below, we will estimate both of these terms separately.

Since the scale and TFP components of © are multiplicative, we can write
the total output loss due to credit market frictions as

L= (n(6,) ~In(®))) = L= (1n(67) ~ m(67)) + 11 — (1n(®}) ~m(e}))

1—an 1—oan —an

(24)
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where ©,, ©F, and O are the actual estimates and ©,, ©F, and O are the
counterfactual benchmarks. The percentage contribution to output losses

of scale and TFP distortions can be written as <M> * 100 and

In(0¢)—1In(O¢)
( In(©7)—In(e7)

n(G) (6] ) * 100, which is what we report below.

4 Data and Measurement

In this section, we describe our data sources and show how the magnitudes
suggested by the model can be measured empirically. More details on the
construction of the data can be found in online Appendices A and B, but we
sketch the most salient information here.

4.1 Administrative Data on Firm Size

Our main source of micro data is the Inter-Departmental Business Register
(IDBR), a business register of all UK establishments (i.e. “local units”of
manufacturing plants or retail stores). Our unit of analysis are firms which
are collections of these establishments. We work with annual snapshots
of the IDBR which are used as the sampling frame for two smaller but
richer datasets, the Annual Business Inquiry and the Annual Business Survey
(ABI/ABS).!” We focus on the non-financial “market sector’- i.e. dropping
agriculture, mining and quarrying and utilities as well as sectors where out-
put is particularly hard to measure - local and central government, education,
health care, financial services, real estate and non-profit organizations.

In extensions we also use the ABI/ABS which contains output, investment
and (goods and services) intermediate inputs.'® The ABI/ABS surveys are a
census of larger businesses and a stratified (by industry, region and employ-
ment) random sample for establishments with under 250 employees (SMEs).
They are similar in structure and content to the U.S. Annual Survey of Man-
ufacturing (ASM) except they also contain data on the non-manufacturing

17See Office for National Statistics (2012, 2018). Sampling weights are provided in the
ABI/ABS to make them representative.

8These surveys are used by the UK Census Bureau (the Office for National Statistics
or ONS) in the construction of various national account aggregates. See Barnett et al
(2014a) and Riley et al (2015) for useful discussions of these datasets and recent work on
productivity using them. Details of the ABI and ABS data can also be found in Griffith
(1999) and Bovill (2012) respectively.
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sectors (and unlike the U.S. Economic Census, have capital investment in
non-manufacturing). Although we do not strictly require the richer data of
the ABI/ABS to implement our method, the sample is necessary to compare
our approach with the standard approach in the misallocation literature (e.g.
Hsieh and Klenow, 2009).

Table 1 shows some basic descriptive statistics. In the IDBR there are
an annual average of 15.7 million employees in the market sector across 1.5
million firms. Using the ONS definition of SMEs as having under 250 em-
ployees conveniently generates a split of about half of all employees in the
SME sector (51.8%) and half in large firms (48.2%). Of course, there are
vastly more firms in the SME sector, due to the well-known heavily skewed
firm size distribution (on average only 0.37% of all firms have more than 250
employees).

4.2 Default Probabilities and Firm Accounting Data

A unique feature of our study is that we use data on estimates of firms’ re-
payment probabilities (¢,,). In order to estimate repayment probabilities, we
use financial statement data from Bureau Van Dijk’s (BvD) Orbis database
in combination with S&P’s PD Model and CreditPro. PD (Probability of
Default) Model is a credit scoring facility which uses a combination of finan-
cial accounts data, industry, and country-specific macroeconomic factors to
assess the credit risk of a company. The scoring algorithm can be applied
both to private and publicly listed firms.

PD Model has 19 firm-level accounting items to generate a risk score
(called “implied credit worthiness”) using S&P’s traditional rating symbols,
(‘triple A> = AAA, ‘triple B’ = BBB, etc.). The exact list of data inputs
depends on the public/private status of the firms and the broad sector in
which they operate.! The model generates 21 bins of risk scores (from AAA
to C) and these are combined with historical information on default rates
for each bin in each time period from S&P CreditPro. We only use lagged
information to do this, in order to reflect lenders’ historical information sets.

n addition to industry and year, the accounting items are: EBIT, income tax ex-
pense, interest expense, total revenue in the previous year, cash flow from operation, net
property plant and equipment, retained earnings, total assets, cash and short-term invest-
ments, current liabilities, total debt, total liabilities, net income, earnings from continuing
operations, total depreciation and amortization, total deferred taxes, and other non cash
items.
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For example, in 2006 we use average historical default rates from 1980 to
2006, as market participants would have used. PD model does not require
that a firm reports all 19 items. We generate risk scores for all publicly listed
firms that report total equity and all privately listed firms that report sales
(or, if not sales, the four following items: total assets, fixed assets, total
liabilities and current liabilities). We run the model through 16.6 million
firm-year observations in the BvD Orbis data for 2005-2013. We are able to
generate a risk score for 95% of those (15.8 million observations), with the
remainder likely to be essentially shell or non-trading companies.

The next step is to match the data on PDs and accounting information
from Orbis to the IDBR. Orbis and the IDBR both have Company Regis-
tration Numbers and the UK Data Service performed the match. Appendix
Table A2 shows that we match 54% of the IDBR data to PDs and 70% of
the ABI/ABS subsample. There are several reasons for the imperfect match
rate. First, some of the IDBR firms are branches of foreign multinationals
rather than wholly owned subsidiaries, so will not appear in Orbis. Second,
as noted above, some Orbis firms do not have the necessary inputs to cal-
culate a PD. Third, Orbis has incomplete coverage of smaller firms (hence
the better match rate with the ABI/ABS as these are skewed towards larger
firms). Fourth, the UK Data Service is not able to match all the CRNs to
an enterprise unit in the IDBR.

Our baseline approach to dealing with missing PDs is to impute them in
the IDBR using year and three digit industry specific regressions on employ-
ment interacted with firm age. Importantly, we show that all our results are
robust to working solely with the non-imputed data or just the ABI/ABS.?
The non-imputed IDBR sample covers 74% of aggregate employment because
firms with missing PDs tend to be small, which is why imputing missing PDs
makes little difference to the aggregate results.

4.3 Descriptive Statistics on Default Probabilities

Figure 1 shows the evolution of the employment-weighted average of firm-
level probabilities of default, i.e. the aggregate default probability. In all
years, default probabilities are systematically higher for SMEs - consistent

20Whenever we use smaller samples (e.g. samples without predicted PDs), we construct
our own set of sampling weights in order to capture aggregate developments.
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with the idea that lenders regard SMEs as riskier.?! Second, the time-series
patterns show that default probabilities are countercyclical, decreasing prior
to the global financial crisis, rising sharply during the crisis, and falling back
thereafter roughly to pre-crisis levels. This is in line with the existing liter-
ature on credit spreads (e.g. Gilchrist and Zakrajsek, 2012). There is clear
heterogeneity between SMEs and large firms, however. The jump during the
crisis was larger for SMEs, and unlike their larger counterparts, their default
probabilities have stayed elevated through 2013.22

The increase in default probabilities in our sample reflects the deteriora-
tion of credit conditions faced by firms during and after the financial crisis.
All of the effects suggested by the model of Section 2 are likely to have been
at work. First, banks’ funding conditions deteriorated, represented by a in-
crease in p, due to stress in inter-bank markets.?> Second, the valuation of
commercial real estate saw a sharp decline during the crisis, which can be
thought of as a fall in A.2* Third, competition in the UK banking sector
was negatively affected during the crisis. Concerns about the effectiveness
of competition in the retail lending market are long-standing and the finan-
cial crisis exacerbated this through mergers and exits from the market.?® In
2010, concentration was higher than before the crisis in many retail banking
sub-markets, including SME banking (Independent Commission on Banking,
2011).

2L This is implied by our model as they have a lower value of 8, and are also likely to
have weaker balance sheets, i.e lower collateral A,;.

22Controlling for industry composition makes little difference to these results.

23The average annual CDS premium for the 6 major UK banks stood at 21 basis points
in 2007 and peaked at 211 basis points in 2012 (Bank of England, 2014). The true cost
of granting new loans is likely to have been even higher due to the need to repair balance
sheets and adhering to stricter capital requirements.

24 According to Benford and Burrows (2013), by the end of 2007 commercial real estate
loans accounted for more than a third of the stock of lending to UK private non-financial
companies by UK-resident banks. That the availability of pledgeable assets plays a role
in affecting corporate investment is also argued, for example, in Gan (2007) and Chaney,
Sraer and Thesmar (2012).

25There have been several studies on this topic since 2000: the Cruickshank report
into competition in UK banking (2000), the Competition Commission’s inquiry into SME
Banking (2002), the Office of Fair Trading’s (OFT) Survey of SME Banking (2006), the
OFT’s Review of Barriers to Entry, Expansion and Exit in Retail Banking (2010) and the
Final Report of the Independent Commission on Banking (2011). During the crisis, the
mergers of Lloyds TSB with HBOS and Santander with Alliance & Leicester eliminated
the strongest challengers identified by the OFT before the crisis.
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Figure 2 looks at the distribution of credit scores across firms and its
change over time.?® Panel A shows the distribution for every year and Panel
B overlays the last year’s density with the first year. There is a clear shift
in the mass to the right, from the relatively low risk scores of B (bin 9,
average default probability of 6.5%) towards scores of CCC+ (bin 11, average
default probability of 23%) and worse. This indicates an assessment of a
larger chance of default over 2008-2013. For example, Table A1l shows that
the fraction of firms in the B group fell from 36% in 2005 to 18% in 2013,
whereas the fraction rose from 6% to 17% in the CCC+ group.

4.4 Estimating Aggregate Distortions

In this section, we describe how we estimate the aggregate distortion due
to default risk corresponding to equation (18) using the micro-data. We
proceed “bottom-up” by first disaggregating by industry (which we index
by j) and calculating industry-specific distortions ©;,. We then compute
industry size-weighted aggregates of ©; to obtain a whole-economy measure.
To measure relative productivity (w,j:) at the firm level, we use firm-level
employment data together with repayment probabilities. A firm’s employ-
ment share in total industry employment is
_ Lnge 925
Tt Zr]jitl Linje )
where L,,;; denotes the employment of firm n in industry j at time ¢. In a
frictionless world, wyj; = 7,5, i-e. the productivity weight and employment
share are the same. However, with factor market distortions:

o f}/njt@jt
Wnjt =

et (26)
Hence, a firm’s relative productivity is estimated by adjusting its employ-
ment shares using the firm-specific friction (16) and the aggregate industry
distortion measure, © j;.

In the ABI/ABS sub-sample, we can use an alternative estimate of w,j;
by computing firm-level Solow residuals using data on value added, the wage

26 Although S&P’s has 21 separate ratings (from AAA to C-), we group the cells from
AAA to A- due to disclosure rules as cell sizes are small. For the empirical analysis we
use all 21 bins.
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bill, and capital stock estimates. However, using Solow residuals might not
be appropriate as this would deliver a measure of productivity which is con-
taminated by the very frictions we want to measure. In addition, there are
many measurement issues with firm-level data, particularly as regards the
estimation of capital stocks (e.g. De Loecker and Collard-Wexler, 2016).

Putting it all together, we proceed as follows. Let ¥, be the share of
firm n in total employment in industry j at date ¢:

_ Lmj
th T
Zn:l Lnj

where L,,; denotes the average employment over the entire sample period. In
our baseline estimations, we ignore the possibility of labor market frictions
and set 7%, = 1. We then use our estimate of the firm-level repayment
probability, ¢,,,, from PD Model and use the fact that equation (27), together
with the firm’s optimizing decisions implies that:

(27)

’ynjt =

an

w”jt% (57 Pt ¢nt> 1

N = 28
f)/n]t @jt ( )
Each firm’s relative productivity is given by:
~ ~ _._an
Wnjt = ant(.-)jtT (5’ Pts ¢nt) e (29)

To solve for wy,j;, we use the fact that szgl wnjt = 1, which implies that ©;,
can be written entirely in terms of observables as:

Ny -1
an

®jt = Z /?njt% (57 Pt gbnt)iﬂ (30)

n=1

Plugging equation (30) in equation (29) enables us to estimate relative firm-
level productivities. Note that ©;, can be estimated either using equation
(30) or equation (18) using the estimates of w,,;;. For the estimation of the
scale and TFP effects, we follow equations (22) and (23) after estimating
Whjt-

An advantage of our approach is that the only data requirements are data
on firm-level employment and repayment probabilities. As our last step, we
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use industry employment shares to obtain an estimate of ©;. Specifically, we
write our estimate of the efficiency parameter with distortions as

J
ét = Zth@jt (31)
j=1

where X, is industry j’s share of aggregate market sector employment at
time t.

Note that we work with average employment in equation (27), rather
than time-varying employment. This implies that time-variation in w,,;; only
comes from changes in the population of firms in each industry. In other
words, we fix a firm’s “fundamental” productivity when considering changes
in default risk. This minimizes the possibility that our estimates of ©;
reflect demand-side shocks, except to the extent that these change the level
of perceived default risk.?”

Finally, we have to specify three parameter values for the baseline esti-
mates. For the degree of returns to scale, we assume n = 0.85,% for the
output-capital elasticity we use & = 1/3 and we also set p = § = 0.05 (as in
e.g. Hsieh and Klenow, 2009). In Section 6, we discuss the sensitivity and
robustness of our baseline results to a wide number of alternative parameter
values.

5 Core Results

We look at the evidence in two steps. We begin by looking at the firm-level
implications of credit market frictions. Specifically, we investigate whether
the repayment probabilities correlate with firm-level behavior as suggested
by the theory in Section 3.3. This is a validation exercise. We then use the
data to examine the aggregate effects of credit frictions following Section 3.4.

2"There are other ways to estimate wnj¢ using employment data. First, we could rely
solely on lagged employment (¢ — 1 and earlier), but this would mean that we would be
unable to calculate w,;; for entrants at time ¢. Second, we could rely solely on current
employment (or current and lagged employment). Results seemed reasonably stable across
different methods.

28This is a standard value - see the survey in Garicano, Lelarge and Van Reenen (2016)
for example.
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5.1 Firm-level Outcomes

One validation of our approach is to examine whether there are robust corre-
lations between the repayment probabilities and firm-level decisions as pre-
dicted by our theory in Section 3.3. In the IDBR sample, we can look at the
relationship between the predicted repayment probability and employment
(and also survival). For the smaller ABI/ABS sample, we have a richer set
of dependent variables including data on value added, investment (capital
expenditures), and an estimate of the size of the capital stock. From Orbis,
we use measures of total assets and fixed assets for the firms in the ABI/ABS
sample.

We estimate the following empirical model for firm n in industry j in year ¢:

In(yn;e) = fln &(xnj,tfl) + an + a; + Epjt. (32)

where y,,;; is the performance outcome; g%(xnj,t 1) is the predicted repayment
probability derived from the PD model. We make explicit that this is derived
from information dated at ¢ — 1 which we denote by x,;:1; a, are either
industry fixed effects or industry and firm fixed-effects; a; are year dummies;
and €,;; is an error term clustered by firm.

We estimate equation (32) in Table 2, with Panel A controlling for indus-
try fixed effects and Panel B controlling for industry and firm fixed effects
(both panels have time dummies). The firm fixed effects specification con-
trols for all sources of persistent firm-level heterogeneity, and hence is quite
demanding: the relationship between performance and the repayment prob-
ability is identified only from variation in ¢, ;, and performance within firms
over time.

In the first two columns of Table 2, we use employment as the dependent
variable, for the whole IDBR in column (1) and the ABI/ABS subsample in
column (2). Employment is positively and significantly correlated with the
repayment probability in all specifications, but with a much smaller coeffi-
cient when firm fixed effects are included, suggesting that a substantial part
of the relationship is driven by unobserved firm heterogeneity. For exam-
ple, a 10% increase in the repayment probability is associated with a 0.3%
increase in employment in column (2) of Panel B. For columns (3) to (10),
there is a consistent positive correlation between the expected repayment
probability and all the firm-level performance outcomes: value added, cap-
ital, and investment. Consistent with the theory, the coefficient on a firm’s
repayment probability is larger for capital and investment than for labor
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(as shown explicitly in columns (8) and (9)). Column (11) indicates that
a higher repayment probability is also associated with a higher probability
of survival.?? Table 2 is also robust to the inclusion of industry-year fixed
effects.3’

Overall, these results suggest that default risk is a promising way of look-
ing at credit market conditions at the firm level. The findings are consistent
with a model in which the repayment probability is an input into the firm’s
cost of capital and where firms with high default probabilities have less access
to capital, reducing their size for a given level of productivity. It is particu-
larly encouraging for the approach that we take that the default probability
predicts firm-level outcomes in the presence of firm fixed effects; especially so
when the firm-level outcomes are sourced from an entirely different dataset
than the one we use to estimate those default probabilities with the S&P
software.

5.2 Aggregate Outcomes

We now turn to the analysis of the macroeconomic effects of credit frictions
by computing estimates of ©; and the associated output losses. This will give
an insight into how important default risk is in affecting the economy through
reducing the stock of capital and distorting its allocation across firms.

Our baseline estimates of credit frictions, ©;, are in Table 3. These are
based on the population IDBR data with sample sizes in Column (1). The
estimates of firm-level relative productivities obtained using equation (29)
rely solely on data on employment and probabilities of repayment. For the
moment, we set aside entirely the possibility of labor market frictions, setting
7L = 1. Column (2) is the core estimate of ©; using equation (18) and
Column (3) gives our estimates of the associated output losses according

29Survival is defined as the exit of the firm from the economy: an extreme event. The
default risk estimated with PD Model captures a swathe of default events, bankruptcy
being only one of them (which is one reason why the coefficient is not unity). In a fully
dynamic model with renegotiation and bankruptcy costs, it is possible that firms could
reschedule their debts rather than disappearing completely upon default.

30The number of observations varies across the two panels of Table 2 because singleton
observations are dropped when we include firm fixed effects. The number of observations
differs across columns even within the ABI/ABS sample because we condition on non-
missing and strictly positive values of the dependent variable (in order to take logs).
Table A3 shows that the results are robust to conditioning on the same sample across
columns.
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to equation (20). We compare the actual state of the economy to a world
without default where ¢,, = 1 for all n,t. Columns (2) and (3) show that
credit frictions depress aggregate output by between 26% and 29% every
year in our sample period. The average annual output loss over 2005-2013
is about 27.5%. An alternative way of describing these results is to say that
productivity (and real wages) would rise by 38% (=27.5/(1-27.5)) if credit
frictions were eliminated. Either way, these results represent nontrivial effects
on output.

Table 3 also gives some insight into how aggregate credit frictions vary
over time. Using equation (19) it is clear that the change in output (equiva-
lent to labor productivity) that can be explained by changes in credit market
frictions is given by the change in logs of Column (2) as follows:

Yy  1-1n
Aln <Z)t T an nO; —In©,; 4] (33)

Column (4) estimates this implied change in productivity due to changes in
credit frictions. Note that unlike Columns (2) and (3) this does not rely on
a comparison with an idealized benchmark. It is clear that the aggregate
impact of credit frictions deteriorated markedly in the Great Recession and
this mirrors the time path of default assessments from the PD Model in
Figure 1. We estimate that in 2009, a worsening of credit frictions caused a
4.8% loss of output. The actual fall of labor productivity between 2009 and
2008 was 9.3% (see Appendix C, especially Figure Al), implying that credit
frictions account for just over half (4.8/9.3) of the productivity slump in the
Great Recession.®! Clearly this leaves room for many other factors, such as
demand shocks, as potentially important (e.g. Mian and Sufi, 2018) as well
as other finance-driven mechanisms, which is something we return to in the
conclusions.

In Columns (5) through (8) of Table 3, we decompose the effect of aggre-
gate credit frictions into scale and TFP components using equations (22) and
(23). Column (5) shows our estimates of scale efficiency, ©7, and Column (6)
shows the corresponding percentage output loss due to credit frictions. Col-
umn (7) shows our estimates of TFP efficiency, O, and Column (8) shows

31 Further, as discussed in Appendix C, the model implies that we explain about a fifth
of the UK productivity gap by 2013: the difference between the level of productivity at the
end of the sample period and what we would have predicted from the 1979-2007 annual
growth trend of output per worker.
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the corresponding percentage output loss due to credit frictions. The results
indicate that the scale effects dominate quantitatively: on average, scale ef-
fects account for about 93% ( = 25.5/27.5) of the overall output losses. For
example, in 2009, the peak of the credit crisis, the 29.1% total loss divides into
27.0% from scale losses and 2.1% from TFP losses. Thus it is the aggregate
deterioration in default risk assessments which drives the output losses from
credit market frictions, rather than the way in which default probabilities
are distributed across firms with different productivity levels. This is consis-
tent with the sharp decline in capital investment following the financial crisis
(see Appendix Figure A2). Our results are robust to using the ABI/ABS
datasets. Appendix Table A4 indeed shows that in the entire ABI/ABS the
estimated overall loss is 27.4%, almost identical to that in the IDBR in Table
3‘32

6 Additional Results

In this section, we present some further results, both to provide further in-
sights into the patterns observed in the data and to contrast our results with
other ways of measuring the impact of credit market distortions. We also
report the results from a series of robustness checks.

6.1 Heterogeneity Between Firm Sizes and Industry
Segments

We have already seen from Figure 1 that there are substantial differences in
the default probabilities of large and small firms, including how they have
evolved since the financial crisis. Since our estimates are computed from mi-
cro data, they can be disaggregated between small and large firms. A priori,
we would expect small firms to face a much more challenging environment in
accessing credit, as reflected in their higher default assessments by lenders.
To explore this empirically, Table 4 disaggregates ©; into two sub-groups
reflecting firm size (we use a threshold of 250 employees). We maintain the

32The findings in Table 3 are also in line with the results of Gilchrist, Sim, and Zakrajsek
(2013) and Midrigan and Xu (2014) who find modest TFP losses from misallocation re-
sulting from credit frictions in the U.S. and in South Korea respectively (but larger losses
from a fall in aggregate capital).
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baseline parameters from Table 3 and continue to estimate relative productiv-
ity using equation (29). However, this time relative productivity is measured
within firm-size groups (see Appendix B for details). We make three key
observations. First, as suggested by Figure 1, the output losses due to credit
frictions among SMEs are greater than for large firms - 33% in Column (2)
compared to 20% in Column (8). Second, the deterioration in credit frictions
was larger and more persistent for SMEs.

In 2008 the effect of such frictions was a 30% output loss for SMEs and
19% for large firms, but in 2009 the size of the effect had risen to 34% and 21%
respectively. Moreover, by the end of the sample period losses had returned to
19% for large firms, but remained high (at 35%) for SMEs. This is consistent
with evidence from Armstrong et al (2013) that financial constraints persisted
for UK SMEs post crisis. Thirdly, the scale effects substantially dominate
the TFP misallocation effect for both SMEs and large firms, as they did in
the baseline results of Table 3.

We also measure the extent of credit market frictions in the six broad
sectors of the market sector (Table A14). Average losses vary between about
a third and a quarter, so there is not an enormous degree of variation. The
average output loss is highest in construction (32.6%) and lowest in Wholesale
and retail trade at 23.3%. The growth contribution of credit frictions in 2008-
2009 was -5.3% for construction and -2% for Wholesale and retail trade. The
results are generally consistent with the idea that credit frictions are more
severe in real-estate exposed sectors.

6.2 A Wider Measure of Capital Market Distortions?

A virtue of our approach is that we focus on a specific measurable aspect
of credit frictions, that due to perceived default risk. But there are other
potential sources of frictions in capital investment due, for example, to policy
distortions and adjustment costs which prevent capital from being allocated
to equalize marginal products. There is also the concern that default risk
could depend on other information which is available to lenders, but which we
do not have access to. It is useful therefore to compare our findings to those
that would emerge in the more standard approach to the capital misallocation
literature, such as Hsieh and Klenow (2009). Such an approach begins from
the static first-order condition for the capital stock, measuring the capital
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market distortion as:

k_ (p+0) Ky
_ Mt r/ont 4
O”IYnt (3 )

nt
This requires an estimate of the capital stock and firm-level value added,
which we have only in our smaller ABI/ABS sample. To forge a more exact
comparison with existing work, we focus on manufacturing®® and continue,
as above, to set p = d = 0.05 which are the values used in Hsieh and Klenow
(2009).

Although it does widen the range of possible capital market distortions,
there is a well-known drawback with equation (34), namely that all of the
measurement error in capital stocks and value added is now attributed to fac-
tor market distortions. For example, White, Reiter and Petrin (2018) show
that even in the high-quality U.S. Census of Manufacturing, around three
quarters of firms have some aspect of the elements underlying productivity
calculations imputed.®® Nonetheless, it is interesting to make a comparison
to assess how much larger the efficiency loss implied by this wider measure
is. Since we need ABI/ABS data to estimate equation (34), we perform the
methodological comparison using the ABI/ABS sub-sample for the manufac-
turing sector.

Columns (2) to (7) of Table 5 replicate our baseline results of Table 3
for just manufacturing instead of the whole economy. The overall percentage
loss of output is only slightly smaller than in the whole IDBR (25.9% vs.
27.5%).> As in Table 3, scale losses clearly dominate misallocation. In
Columns (8) to (13) we estimate equation (34) and compute the associated
output losses for the same sample. The overall losses in Column (9) are over
twice as large as those estimated in Column (3) using our baseline method.
They imply that capital market frictions depress manufacturing output by
on average 64% per annum. Note that the framework of Hsieh and Klenow

330ur findings are qualitatively similar if we look at all sectors individually.

34Rotemberg and White (2017) show that trimming outliers lowers measured misallo-
cation in Indian data compared to the U.S. - and therefore argue that the conclusions in
Hsieh and Klenow (2009) are very sensitive to standard data cleaning procedures. Bils,
Klenow and Ruane (2017) argue that there has been a large increase in measurement error
in the plant-level U.S. productivity numbers over time.

35Note that this difference is not due to the reduced sample size in ABI/ABS. Appendix
Table A4 indeed shows that in the entire ABI/ABS the estimated overall loss is 27.4%,
almost identical to that in the IDBR in Table 3. Weighting the sub-sample correctly is
important for this result, as although the ABI/ABS has fewer firms than the IDBR (37,573
vs 1.5 million on average per year), these are the largest businesses in the economy.
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(2009) can only recover the TFP losses arising from an inefficient allocation
of capital across firms with heterogeneous productivity (this is identified
from the variance of the marginal revenue product of capital across firms).
Although these TFP losses of about 5% (Column (13)) are over twice as
large as in our approach (2% in Column (7)), they remain much smaller
than the scale effects (59% in Column (11)). In other words, output losses
from misallocation are relatively small compared to the scale effects even
when using the standard approach. The sample weighted mean of 7y is
0.55 when we use default risk, while it is 0.32 using the standard approach
(with a lower number reflecting larger credit frictions on average). There
is also much more dispersion in the measure based on equation (34). The
sample-weighted variance of 75 is 0.07 when we use default risk, while it is
0.34 using the standard approach. In the misallocation literature a larger
dispersion translates into larger TFP losses.

There are at least two reasons why the standard approach yields larger
estimated losses compared to our method. First, it takes a more encom-
passing view of credit market distortions, whereas our measure only captures
the fraction (about 40%) due to the variation in estimated default probabil-
ities. We do not, for example, allow lenders to “subsidize” inefficient firms
(so-called “zombie firms”) since we always have 7% < 1. Second, we are
arguably less susceptible to problems due to measurement error in observed
capital stocks, something which a number of contributions have drawn at-
tention to. Either way, there is a virtue in learning the lessons from a more
specific approach to credit frictions, recognizing that in future it would be
valuable to widen the range of factors considered where data is available.

6.3 Labor Market Distortions

We have so far focused on the case where the only factor market distortion is
in credit markets. We now add the possibility of labor market distortions in
order to see whether this changes the estimates of the output losses attributed
to credit frictions. Although there are good reasons to expect labor markets
to be imperfect (e.g. labor regulations, unions, adjustment costs and search
frictions), we generally do not have direct measures of these frictions. Instead,
we infer them from the data by using the fact that, from the firms’ first-order
conditions, the firm-level labor distortion is given by 7%, = %, as in
the standard approach of the previous subsection. These firm-level “labor
taxes” can be estimated from firm-level data on payroll and value-added. We
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combine this with our measure of credit market distortions (default risk) to
construct a measure of total distortions 7,,; faced by each firm as in equation
(16).

We are less interested in labor market distortions per se but rather in
whether adding them affects our core findings on the importance of credit
market distortions. Specifically, we set 72 = 1, i.e. eliminate default risk
completely while keeping labor market frictions in place. This implies that
the benchmark O, is less than one. The impact of allowing for labor market
frictions is not clear a prior:i since it will depend on how the estimates of
labor and credit market frictions are correlated in the data.’® The results
are in Table A5. We use the ABI/ABS sample as we need payroll and value
added. Implementing this exercise leads to results that are only slightly
smaller than the core results - credit frictions reduce output by 23% instead
of 27% on average.

6.4 Some Further Robustness Tests

Although the exact magnitude of the estimates vary somewhat, our main
findings survive a range of robustness checks.

Alternative Parameter Values The two key parameter values that we
use are the returns to scale parameter (n = 0.85) and the output-capital
elasticity (¢ = 1/3). We show the sensitivity of the results to a wide range
of these values in Table A6, ranging from 1 = 0.75 to n = 0.95 and o = 0.25
to a = 0.41. For a given «, the losses increase in 7. In the baseline where
a = 1/3, the losses increase from 20% for n = 0.75 to 48% for n = 0.95. This
is intuitive as moving closer to constant returns to scale allocates more output
to the most productive firms, hence when they have higher default risk this
weighs more negatively on output.?” For a given 7, the losses also increase in
«. Unsurprisingly, when capital is more important in production, the output
losses from credit frictions increase. In the baseline where 7 = 0.85, moving
from the lowest level of a to the highest level increases the output loss from
18% to 39%.

36The correlation between repayment probabilities and 7%, is negative and significant at
the 1% level. Since frictions are negatively correlated, they will tend to offset each other
to some extent.

37See Garicano et al (2016) for a similar result on the welfare cost of labor regulations.
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Our baseline approach used a constant value of a across industries, which
could have different production technologies. So, as a robustness check, we
estimated values of o using the empirical shares of labor costs in value added
separately for each three-digit industry (see Appendix B). Allowing for such
heterogeneity does not change the aggregate output losses of Table 3 mate-
rially. The average output loss is slightly smaller at 24.6% and the growth
contribution between 2008 and 2009 is -3.3% (see Table AT).

Finally, we test the sensitivity of the results to a change in the deprecia-
tion rate. Specifically, Appendix Table A8 doubles the depreciation rate and
shows that this reduces output losses (from 27.5% to 21%) as expected. The
losses due to default risk decrease in 0 because, for a given level of default
represented by ¢, a higher value of ¢ implies that default risk represents a
smaller proportion of the overall cost of capital. This translates into smaller
losses due to default risk relative to the benchmark.

An Alternative Measure of Productivity: Solow Residuals Our
baseline approach imputes relative firm-level productivity using the size dis-
tribution and data on default risk following our theoretical model. Alterna-
tively, one could try to estimate productivity directly. As a robustness check,
we use Solow residuals (see Appendix B) to estimate firm-level productivity.
We favor our baseline approach over Solow residuals (and TFP estimates)
for several reasons. First, Solow residuals are subject to measurement er-
ror (due in part to measurement errors in the estimates of firm-level capital
stocks). Second, they are revenue-based measures of TFPR as we do not
have firm-specific prices. Hence, they may reflect mark-up differences rather
than fundamental TFPQ differences (#). Finally, any estimates will be con-
taminated by the very frictions we are attempting to quantify, since frictions
affect value added, and labor and capital inputs.

The estimation of Solow residuals requires data on output and factor in-
puts, so we use the ABI/ABS sample (both manufacturing and non-manufacturing).
The results are in Appendix Table A9. We find that the average magnitude
of the output loss is smaller (19% in Table A9 vs. 27% in Table A4).3® Credit
frictions explain roughly 43% of the productivity fall between 2008 and 2009.
The patterns of heterogeneity across size categories are qualitatively similar

3¥Note that the sample used in Table A9 is slightly smaller than the entire ABI/ABS
in Table A4. This is because we condition on non-missing values for real value added and
factor inputs, including capital stock estimates.
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to the baseline estimates (not reported). The relative importance of the scale
and TFP components is also similar, with the scale effects clearly dominat-
ing. We conclude that mismeasurement of relative productivity with Solow
residuals leads us to underestimate output losses due to credit frictions (both
scale and TFP effects).

Time-varying Funding Cost In our baseline results, we follow Hsieh and
Klenow (2009) and the extant literature in setting p = ¢ = 5%. We relax
this by allowing p to vary over time. We measure p, as the sum of the annual
average official Bank Rate and the annual average Credit Default Swap (CDS)
premium of the six largest UK banks. The results are in Table A10. The
average annual loss of output now stands at 30.4% - slightly higher than
our baseline result. The time series pattern however is more striking. The
growth contribution of credit frictions in 2009 amounts to -14.8% - compared
with -4.8% in our baseline. This is due to a large endogenous decrease in the
annual average official Bank Rate (from 4.68% in 2008 to 0.64% in 2009),
which causes default risk to become a larger proportion of the overall cost of
capital. This endogenous response could potentially lead us to overestimate
the impact of credit frictions, which is why we favor setting p = 5%.

Dropping Imputed Default Probabilities As noted in the data sec-
tion, we predict missing risk scores in order to be able to exploit the full
IDBR dataset. As a robustness check, we drop all the predicted values and
rely solely on the raw data to ensure that this does not create a large bias.
Appendix Tables A11 and A12 present the results for the IDBR and for the
ABI/ABS, respectively. When we use these smaller samples, we construct
our own set of sampling weights in order to capture aggregate developments.
All our results are robust to working solely with the non-imputed data. The
estimated losses are similar to those obtained with the entire samples, al-
though slightly larger (e.g. 30.4% for the IDBR in Table A1l compared to
27.5% in Table 3). It is noticeable that the non-imputed IDBR sample cov-
ers 74% of aggregate employment because firms with missing PDs tend to
be very small, which is why imputing missing PDs makes little difference to
the aggregate results.
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7 Conclusion

This paper develops a novel theoretically-grounded approach to credit mar-
ket frictions using firm-level data. We use the “Probability of Default (PD)
Model” and “CreditPro” data of Standard and Poor’s, which are credit scor-
ing tools of the type used by lenders prior to making loans, to estimate a
time-varying default probability for the population of UK firms. We show
that the default probability from the PD Model predicts firm-level decisions
as suggested by the theory, even conditional on firm fixed-effects.

The framework allows us to assess the impact of default risk on aggregate
economic performance. We find that credit frictions depress economic output
by 28% over the 2005-2013 period on average. These frictions increased
sharply in the Great Recession, accounting for over half of the observed 9.3%
fall in productivity between 2008 and 2009. Smaller firms were particularly
hard hit by the banking crisis and the increase in frictions has largely been
driven by the SME segment. This shows the value of allowing heterogeneity
among firms when looking at these issues. We show that most of the impact
of credit frictions comes from the average assessment of default risk (the scale
effect) rather than the way in which capital is distributed across firms with
different productivity levels (the TFP, i.e. misallocation effect).

We have focused on a specific measurable aspect of credit market frictions
and the fact that we anchor the empirical analysis in a simple model permits
counterfactual exercises including an estimate of what output would be in the
absence of default risk. That said, there could be other aspects of frictions
in capital markets which are not picked up by our focus on default risk. It
does not, for example, assess the possibility that “zombie firms”, i.e. those
which benefit from lender forbearance, depress output and productivity (see
Andrews and Petroulakis, 2017). This explains why the standard approach
to capital market inefficiencies generates larger output losses than the ones
based exclusively on default risk. Trying to apportion the components of
capital misallocation to specific and measurable distortions in a range of
dimensions is an important challenge for the research agenda in future.®”

39Future work could also integrate our approach with the literature on how bank connec-
tions affected the impact of the global financial crisis - see e.g. Chodorow-Reich (2014),
Huber (2018), and Anderson et al (2019). Although these papers have cleaner causal
identification of the impact of the crisis on firms, it is harder to aggregate these up to
general equilibrium output effects - which is the focus of our paper (see Sylvain et al,
2018, for a similar point). In our framework, these connected firms might suffer a larger
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Our focus on default risk leaves a substantial fraction of the weak pro-
ductivity performance unaccounted for. This residual may potentially be
explained by other factors, beyond just having richer models of capital mar-
ket frictions, such as chronically weak demand (Summers, 2016), a slowdown
of technological change (Gordon, 2016) and/or research productivity (Bloom,
Jones, Van Reenen and Webb, 2019), mismeasurement (Syverson, 2017), un-
observed experimentation and investment in intangible capital (Brynjolfsson
et al, 2017), among others. More work is needed to apportion the relative
importance of these factors in explaining the evolution of aggregate produc-
tivity.

Overall, our results underline that firm-level assessments of default risk
are a useful way of understanding credit frictions and the financial crisis.
Moreover, the approach highlights the value of automated scoring tools used
by lenders for assessing the impact of credit market frictions using firm-level
data. The framework can be applied with parsimonious data requirements
and opens up the “black box” of credit frictions in a novel way linked to an
underlying theory.
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A Data Appendix

A.1 Business Register Populations: IDBR Market Sec-
tor

The Inter-Departmental Business Register (IDBR) is a list of all UK incorpo-
rated businesses and other businesses registered for tax purposes. It does not
include the crop and animal production part of agriculture, public adminis-
tration and defence, activities of households as employers; undifferentiated
goods and services-producing activities of households for own use, and activ-
ities of extraterritorial organizations and bodies. The IDBR is maintained by
the Office for National Statistics (ONS, UK Census Bureau) and is the basis
for almost all government business surveys as the best up to date snapshot
of the enterprise and establishment population. The IDBR contains basic in-
formation for all businesses such as employment, industry and zip code. The

IDBR is available at the “local unit” leve]. A local unit is a distinct economic
unit in a defined geographical site, in other words a plant in manufacturing

or a store in retail services. Local units are grouped into “reporting units”
which we define as a firm in our study. In most cases, the reporting unit is the
same as an “enterprise”, defined by the ONS as “the smallest combination
of legal units, which have a certain degree of autonomy within an enterprise
group”.?® IDBR is a continuous rolling business register. It is essentially the
population of employer firms and is analogous to the U.S. Longitudinal Busi-
ness Database. The IDBR is not provided directly to researchers. However,
a snapshot of the IDBR is taken each year by the ONS and used as the sam-
pling frame for various surveys, including the ABI/ABS. We reconstruct this
annual sampling frame by merging the files that contain the identity of the
firms (reporting units) that were surveyed for the ABI/ABS and responded,
and those that were either not selected for the survey or were selected but
failed to respond.

We focus on the market sector which includes an average of 1.5 million
firms and around 16 million workers per year (see Table 1). It includes the
following sectors in the ABI (SIC 1992 or 2003 sections): D Manufacturing, F
Construction, G Wholesale and retail trade; repair of motor vehicles, motor-
cycles and personal and household goods, H Hotels and restaurants, I Trans-
port, storage and communication, and K real estate, renting and business
activities (but excluding real estate SIC 2-digit 70). Sectors we cover in the
ABS (SIC 2007 sections) are: C Manufacturing, F Construction, G Whole-
sale and retail trade; repair of motor vehicles and motorcycles, H Transport
and storage, I Accommodation and food service activities, J Information
and communication , M Professional, Scientific and Technical Activities, N
Administrative and Support Service Activities. Our sectoral coverage is com-

40A small number of large enterprises with a more complex structure have several re-
porting units.
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parable to that of Riley et al (2015). The sectors we drop are those where
output is hard to measure, namely: financial services, non-market service sec-
tors (e.g. education, health, social work and the public sector), agriculture,
mining and quarrying, utilities, real estate, and non-profit organizations.

A.2 Productivity Sub-sample: ABI/ABS data

The Annual Business Survey (ABS) is the main survey of the UK non-
financial business economy conducted by the Office for National Statistics
(ONS). Until 2008, the ABS was known as the Annual Business Inquiry
(ABI). ABI/ABS includes a rich set of variables that have been used to cal-
culate UK productivity statistics including gross output, value added, labor,
capital investment, intermediate inputs (of goods and, unlike the U.S. Census
of Manufactures, service inputs) and wage bills.

The surveys are a census of large businesses (those with over 250 em-
ployees) and a stratified random sample of smaller businesses. Large firms
are therefore over-represented and sampling weights must be used to reflect
aggregate developments. For this purpose, the ABI/ABS contains grossing
weights which reflect the survey design. Groups of reporting units (sampling
cells) are defined by three strata: employment size band, industry, and ge-
ographical region. We use a combination of probability weights (the inverse
of the sampling probability) and employment weights provided by the ONS.
Denote with N,; the number of firms in the population in sampling cell 7, N,
the number of firms surveyed in sampling cell 7, F,; average employment in
the population in sampling cell ¢, and F; average employment in the sample
in sampling cell 7. Using the ONS weights, total GVA in cell ¢ is then:

N .
- Npi Epi
; GV ASE - (35)

These are the weights we use when we work with the ABI/ABS full sam-
ple, e.g. in Table A4. In a few instances, we have to work with a sub-sample of
the ABI/ABS. Specifically, we condition on non-missing data on real value
added, the wage bill, and a capital stock estimate when we compare our
approach to the standard misallocation approach (Table 5), include labor
market frictions (Table A5), or use Solow residuals (Table A9). When we
work with smaller samples, we adjust the ONS weights above to reflect extra
selection and ensure that the sample is representative of the market sector
as a whole. In grossing up the ONS weights, sampling strata are defined in
terms of industry (SIC 1992 and SIC 2007 at the 4-digit level) and employ-
ment size bands (1-9; 10-19; 20-49; 50-99; 100-249; 250 or more). As other
researchers before us, we ignore regions in defining the sampling strata due
to small cell sizes.
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We define labor productivity as real value added per employee. Nominal

value added (at market prices) and the wage bill are deflated using implied
GVA deflators from the ONS.

A.3 Data on Default Probabilities

We use Bureau Van Dijk’s Orbis database to obtain data for the inputs
required by Standard and Poor’s PD Model. Orbis is a worldwide digital
database of the accounts of publicly and privately traded firms. We select

all active and inactive UK firms from _this database from 2005 to 2013.
Standard and Poor’s widely used PD Model is an algorithm which takes

accounting items and generates a risk score (called “implied credit worthi-
ness”) for each firm in each year. A risk score is expressed using S&P’s
traditional rating symbols (‘triple A’ = AAA, ‘triple B> = BBB, etc.). There
are 21 risk categories, from AAA to C. Apart from industry, year and pub-
lic/private status, there are 19 items potentially used by the algorithm. These
are total revenue, total equity, EBIT (operating income), income tax expense,
interest expense, total revenue in the previous year, cash flow from opera-
tion, net property plant and equipment (fixed assets), retained earnings,
total assets, cash and short-term investments, current liabilities, total debt,
total liabilities, net income (P&L), earnings from continuing operations, to-
tal depreciation and amortization, total deferred taxes, and other non cash
items. The exact list of inputs depends on the public/private status of the
firms and the broad sector in which they operate (manufacturing, services,
infrastructure).

The actual default rates used by PD Model are averages by risk category
which incorporate a long history of observed defaults up to the present (S&P’s
CreditPro). Since we are interested in the historical perception of default
probabilities, i.e. the probability of default as perceived at the time of the
financial accounts data, we only use past (and not future) aggregate default
information. For example, to calculate the expected one year ahead default
probability in 2006 we use the 2006 risk scores combined with aggregate
default rates from 1980 through 2006 and no data from 2007 or after.

Not all of these accounting items are needed to give a firm a risk score,
however. For public firms total equity is required and for private firms we
require either total revenue or (if this is missing) the four items: fixed assets,
total assets, current liabilities, total liabilities. This generates a risk score
for 95% of the 16,621,924 firm-year observations. We therefore have a total
of 15,759,528 observations for the period 2005-2013.

Note that bankruptcy and full exit from the market represent a minority
of all defaults. The PD Model takes into account a variety of “default events”,
for example if a firm is unlikely to pay its credit obligations to the banking
group in full or if the firm is past due more than 90 days on any material
credit obligation. Elements taken as indications of unlikeliness to pay include
if the bank consents to a distressed restructuring of the credit obligation; the
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bank sells the credit obligation at a material credit-related economic loss or
the firm has been placed in bankruptcy.

The next step is to match the data on risk scores and accounting informa-
tion from Orbis to the IDBR and the ABI/ABS surveys. BvD Orbis provides
us with Company Registration Numbers (CRNs) that can be matched to the
IDBR business register using the identification codes for enterprise units (en-
trefs). To respect confidentiality rules, this linking process was performed by
the UK Data Service. Our IDBR panel is at the level of reporting units
(rurefs), so the final step is to match the reporting units to their respective
entrefs using a lookup table provided by the ONS.

There are several issues with this multi-step matching process that lead
to imperfect match rates. In other words, there will be firms for which we
do not have a risk score. First, some of the IDBR firms might be branches
of foreign multinationals rather than wholly owned subsidiaries, so will not
appear in the UK Orbis dataset, but will appear in the IDBR as reporting
units. Second, some firms in Orbis do not have the necessary inputs to cal-
culate a risk score. Third, Orbis has incomplete coverage of smaller firms
(hence the better match rate with the ABI/ABS as these are skewed towards
larger firms). Fourth, the UK Data Service is not able to match all the CRNs
to an enterprise unit. The CRN and IDBR systems are maintained indepen-
dently, hence the same business is sometimes represented differently in either
register. The IDBR identifies business units according to functional units,
which are relevant for the computing of government statistics. A CRN num-
ber is created whenever a company’s management registers a new business
name. Hence there is no necessary one-to-one concordance between entrefs
and CRNs. Finally, we are unable to match some reporting units to their
entrefs for a similar reason, namely the ONS provided us with an entref-ruref
concordance table which is a snapshot taken in 2013.

The UK Data Service was able to match 2,372,326 CRNs to an entref,
representing 12,282,574 entref-year observations. From these, we drop ob-
servations with consolidation code C2 (consolidated accounts of a company-
headquarter that also has unconsolidated accounts) to avoid double counting
as in Kalemli-Ozcan et al (2015) (81,354 matches). Although the majority
of CRNs are matched to a single entref (and hence risk score), some CRNs
are matched to the same enterprise reference number. This creates 463,726
entref-year duplicates. For these entrefs, we compute a weighted average risk
score using weights based on the total assets of the individual CRNs that
belong to the entref. Duplicate groups with insufficient data on total assets
to calculate the weights are dropped entirely. We also sum up accounting

items (e.g. total assets) at the entref level for those entrefs with multiple

CRNS.
The next step is to match the risk scores and accounting data at the

entref-year level to our IDBR panel, constructed using the ABI/ABS annual
sampling frame. Our IDBR panel is at the ruref-year level. We therefore
match the rurefs to their corresponding entrefs using a lookup table provided
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by the ONS (2013 vintage). We were able to match 7,175,770 observations
to the IDBR. Although the majority of reporting units correspond to a single
enterprise reference number, there are rurefs that belong to the same entref.
In these cases, each ruref is assigned the risk score of its entref, and the
accounting items are allocated to each ruref based on the latter’s share of
employment in total entref employment. This leaves us with 6,137,335 miss-
ing values for risk scores. Our baseline approach to dealing with missing risk
scores is to predict them using data on employment, age, industry (3-digits)
and year. Employment, age, and industry are also interacted with the year
dummies. For the ABI/ABS, we experimented with predicting missing risk
scores using other data, e.g. on value added, in addition to industry, age,
and employment, and found very robust results (not reported). Importantly,
as discussed in the text all our results are robust to working solely with the
non-imputed data. Whenever we use these smaller samples, we construct
our own set of sampling weights in order to capture aggregate developments.

Finally, the risk scores are matched to historical default rates using data from

S&P’s CreditPro.
Table A2 gives an overview of the match rates. Column (1) reports the

number of firms in the IDBR (our core sample) and Column (2) reports the

number of firms in the IDBR for which we were able to match a risk score.
Column (1) shows that we have 1.5 million firms per year on average in

the IDBR and we match 54% of these (almost 800,000 firms) to risk scores
as shown in Columns (2) and (3). Column (4) shows that we have 37,573
firms per year on average in the ABI/ABS, 70% of which can be matched
with a risk score on average (Column (6)). The higher match rate compared
to Column (3) is mainly because it is harder to match smaller firms and the
ABI/ABS is dominated by large firms due to its sample design. Reassuringly,
the non-imputed IDBR sample covers on average 74% of annual aggregate
employment because firms with missing risk scores tend to be very small,
which is why imputing missing scores makes little difference to the aggregate
results. In the paper we show extensive robustness tests, including showing
that dropping all the imputed default probabilities makes little difference to
our results, mainly because the non-matched firms are relatively small and
only make a minor contribution to the aggregate losses.

As discussed in the text, we tabulate the average default probabilities by
risk score and year in Table A1l and plot the risk score densities in Figure 2
for the IDBR matched sample. Although there are 21 risk score categories,
we bin these into 15 categories for disclosure purposes. There has been a
clear shift to the right in the mass of risk scores (firms’ default probabilities
have increased), which started in the Great Recession.
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A.4 Capital Stock Calculation and Perpetual Inven-
tory Method

We apply the Perpetual Inventory Method (PIM) on establishment-level data
from the ABI/ABS surveys. This is the standard way in which the ONS
calculates establishment-level capital stocks and we follow their procedures
as closely as possible. The PIM is:

Ky = (1 - 5)Knt—1 + It (36)

where K, is establishment n’s capital stock at the beginning of period ¢,
K,;_1 is the capital stock at the beginning of period ¢ — 1, I,,; is real net
investment (capital expenditure minus proceeds from disposal of capital)
deflated by an industry specific deflator, and ¢ is the depreciation rate. We
allow for three types of investment: Plant and Machinery, Buildings, and
Vehicles with depreciation rates of 8%; 2% and 20% respectively. We do a
separate PIM calculation for each type of capital, then sum them to obtain
the total capital stock in every period.

Although our sample starts in 2005 we have ABI/ABS data back to 1979
for manufacturing which we can use for the PIM. However, small establish-
ments are not sampled every year. Because the ABI/ABS is a stratified ran-
dom sample there are gaps in the establishment’s investment series making
it hard to implement the PIM. Hence, we impute missing investment values
using each establishment’s average ratio of real net capital expenditures to
employment (which is always available from the IDBR if the establishment is
alive). The imputation of investment values will be more of a problem when
there are many missing values. So we set a ‘tolerance level’, i.e. a maximum
ratio of imputed to actual values. If we increase the tolerance level, we will
get more establishments with capital stock data, but mismeasurement may
worsen. In the baseline data set, we apply a ratio of 10 (so not more than
10 investment values are imputed for an establishment with only one valid
investment number), but we change the tolerance level to check robustness.

We then need to impute an initial capital stock for entrants and for es-
tablishments that are sampled for the first time but are not genuine entrants
(i.e. they were born before the year in which they were first sampled). To do
so, we apportion to those establishments part of the aggregate industry-level
capital stock. Our measure of aggregate industry-level capital stocks is the
Volume Index of Capital Services (VICS) produced by the ONS. The VICS
is a measure of capital input to economic production which takes account
of the quality and use of the capital stock across time and different types
of assets. VICS weights together the growth of the net stock of assets using
a user cost of capital. The VICS data sets contain data on capital stocks,
investment, and deflators at the industry level, by asset category. The appor-
tioning procedure has two steps. First, the VICS is apportioned to the entire
population of selected establishments in the sample based on their share of
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capital expenditures in the sectoral aggregates. The resulting capital stock is
what we call ‘selected capital’. Second, each establishment is allocated part
of this selected capital based on its share of total purchases in the sectoral
sample aggregate. Missing data on total purchases of goods and services are
imputed using employment data and a firm’s average ratio of total purchases
to employment.

There are some observations with zero values of the capital stock after
this procedure, for which we cannot calculate a valid TFP number using the
Solow residual method (rather than our baseline method). Overall we lose
115,729 observations over the entire sample period 2005-2013 due to missing
data on the capital stock, the wage bill, and value added.

B Further Technical details

B.1 Empirical factor shares and Solow residuals

Given the production function

Yor = O (L}mt_ath)n (37)
the Solow residual is constructed in the standard way from:
In(0,;) = In(Yy) — n (1 — ) In(wy L) — naln(K,,) (38)

where Y,,; is real gross value added, w;L,; is the wage bill (real labor costs
instead of headcount) and K, is the real capital stock estimated using the
perpetual inventory method. In our baseline estimates, we set 1 equal to
0.85 and « equal to % across industries.

Because industries could in principle have different production technolo-
gies, we also estimate values of o using the empirical shares of labor costs
in value added separately for each three-digit industry using ABI/ABS data.
Abstracting from frictions in labor markets, the first order condition for em-
ployment generates that the labor share is:

Wy Ly
Ynt

We use the share of labor costs in value added in each three-digit industry
in each year and average this between 2005 and 2013 to estimate n(1 — «).
As above, we set 7 = 0.85 and recover an industry-specific estimate of a.
Note that although these are not directly relative to a time-varying industry
average, the way TFP enters the formula for ©; is relative to industry means,
so we are not making TFP comparisons across industries. In order to im-
plement equation (20), we also estimate an aggregate « following the same
procedure. The aggregate estimate stands at approximately 0.38, slightly
higher than our baseline of %

—n(1-a) (39)
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B.2 Decomposing credit frictions by size

Credit market frictions in industry j at time t are given by

th
@jt == an]‘t’rnjt (40)
n=1

This can be re-written as the weighted sum of an SME component 0,5 and
a large-firm component © 7, as follows

Ojt = X\jtsOjrs + Atz Ojir
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where

e Njs is the number of SMEs in industry j, Nj;z the number of large
firms in industry j, and Nj; the total number of firms in industry j;
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In this decomposition, the size-specific measures of credit market fric-
tions, Oj:s and ©;;,, are weighted by the relative aggregate productivity of
each size category. As we did when estimating ©;, we implement the size
decomposition at the 3-digit industry level and then aggregate using industry
employment shares by size category to obtain an aggregate estimate of credit
frictions for SMEs and large firms separately. We use a similar decomposition
to look at sectors (SIC 1992 divisions) in isolation.
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B.3 Further Robustness Tests

B.3.1 Micro regressions of firm performance on default probabil-

ities

Table 2 shows that firms with higher repayment probabilities have better
performance outcomes in the future along a number of dimensions - employ-
ment, capital stock, investment flows (and intensities) and survival. These
positive correlations are robust to a wide variety of checks. Table A3 repli-
cates the analysis of Table 2 but conditions on a common sample where none
of the relevant dependent variables are missing. The results are very similar.
In addition, we used the level of the repayment probability instead of the
logarithm; levels of the dependent variables instead of the logarithms, and
experimented with less parametric approaches, all of which supported the
positive correlations shown in Table 2 (not reported).

B.3.2 Expected versus Realized Output

Following the standard macro approach, our estimates of efficiency losses
are based on realized output, but one could argue that they should be com-
puted ex ante, i.e. before output is realized. For any given level of realized
output, expected output is lower since each firm’s output is multiplied by
the probability that default does not occur.*! For any chosen benchmark,
the deviation of expected output from its reference level is now given by

1—n

Yt},;fyte =1- [g—g] mwhere 0f = Zf:;l OpWntTne, 18 now used instead of
equation (18). The results from this exercise are in Appendix Table A13.
They show that an expected output benchmark implies that the estimates
of output losses increase only marginally (from 27.5% in Table 3 to 28.5% in

Table A13).

C Productivity Trends

Basic UK productivity trends (value added per worker) in the market econ-
omy are shown in Figure Al. Our aggregated ABI/ABS data is compared to
the official “sectoral publications” from the ONS.*? The industry definitions
cannot be compared precisely (see notes to Figure A1), but the overall trends
are very similar. We also include a trend based on the average annual growth

41 This does of course assume that default is associated with no output being produced.

42 «Gector publications” refer to estimates of aggregate labor productivity based on the
sectoral figures (four-digit SIC) released publicly by the ONS for the sectors included in
the sample (See ONS UK non-financial business economy Statistical bulletins).
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rate of output per worker (whole economy, seasonally adjusted) between 1979
and 2007. This shows the predicated path of output per worker according
to the pre-crisis trend (2% per annum). There was a productivity gap of 11
percentage points by the end of 2013. Our model implies that we explain
about a fifth of this gap. Indeed, had credit frictions stayed at their pre-crisis
level of 2007, output would have been 2.16 percentage points higher in 2013
(28.2% - 26% in Column (3) of Table 3).

The productivity decline was accompanied by a fall in business investment
that was significantly larger than in previous recessions (Benito et al, 2010).
It took until the third quarter of 2013 for business investment to reach its
level in the second quarter of 2008 (Figure A2). There are many factors that
could explain the decline in investment such as weak demand, pessimism
over future TFP growth and uncertainty. But the financial crisis also led
to restrictions in bank lending to non-financial corporations. Bank lending
to the corporate sector in the UK continued to contract long after the acute
phase of the credit crisis. While large firms can have recourse to other sources
of finance, for instance by issuing bonds or equities, SMEs are more likely to
be constrained. They are also more dependent on banks for their external
finance.*> This is consistent with the heterogeneity we find between large

and small firms. . )
range of explanations have been put forward to explain weak produc-

tivity but work on the role of credit supply remains sparse. Franklin et al
(2015) use financial statement data for a set of UK firms and information on
the identity of firms’ lenders in the pre-crisis period to identify the negative
impact of the contraction in credit supply on labor productivity, wages and
the capital intensity of production at the firm level. Using decomposition
techniques to separate contributions to aggregate productivity of business
restructuring and of productivity growth within firms, Barnett et al (2014a,
2014b) and Riley et al (2015) find that the within-firm component accounts
for the vast majority of the fall in UK productivity. These papers also provide
some evidence of reallocation being subdued during the crisis. Barnett et al
(2014a) find that the contribution from reallocation declined in 2008-2009
and became negligible between 2010 and 2012, instead of increasing signifi-
cantly as one would expect in a recession. They estimate that less efficient

reallocation and a slowdown in creative destruction account for around one
third of the fall in average annual productivity growth between 2002-7 and

2008-11. Similarly, Riley et al (2015) find that the growth contribution of
both between-firm effects (changes in market share among continuing firms)
and net entry were more subdued between 2007 and 2013 than between 1998
and 2007. Those two papers also provide some evidence of a weakening corre-
lation between firms’ financial health and their investment and employment
behavior. Our contracting model of Section 2 suggests two main channels

43In 2010, only around 2% of SMEs used external equity as a source of finance (BIS,
2010). Armstrong et al (2013) show that SMEs have faced a very challenging environment
for accessing credit after the financial crisis and during the subsequent recession.
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through which the financial crisis could have negatively affected default risk:
lower asset values affecting collateral (A) and weaker competition in bank-

ing leading to an increase in switching costs (x), which worsened borrowers’
outside options.
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