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Abstract

A quantile vector autoregressive (VAR) model, unlike standard VAR,

models the interaction among the endogenous variables at any quan-

tile. Forecasts of multivariate quantiles are obtained by factorizing the

joint distribution in a recursive structure. VAR identification strate-

gies that impose restrictions on the joint distribution can be readily

extended to quantile VAR. The model is estimated using real and fi-

nancial variables for the euro area. The dynamic properties of the

system change across quantiles. This is relevant for stress testing ex-

ercises, whose goal is to forecast the tail behavior of the economy when

hit by large financial and real shocks.

Keywords: Regression quantiles; Multivariate quantiles; Structural VAR;

Growth at Risk.

JEL Codes: C32; C53; E17; E32; E44.
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NON-TECHNICAL SUMMARY

The standard definition of financial stability adopted by central banks around

the world emphasises the negative impact that severe financial shocks may

have on real economic activity. This definition underscores an intrinsic ten-

sion in connecting the macro and financial dimensions of the economy. The

empirical workhorse of macroeconomists is the vector autoregressive (VAR)

model, which studies the expected dynamics of the endogenous variables.

Financial instability, on the other hand, is inherently linked to the tail dy-

namics of the system. Using econometric models developed to analyse the

average behaviour of macroeconomic variables is bound to miss important

aspects of macro-financial linkages which arguably only arise when the sys-

tem is affected by tail shocks. This paper develops a quantile VAR model,

which is designed to address many of the core questions of the macro-finance

research agenda.

Quantile VAR models the interaction and feedback effects that the vari-

ables of the system have on their quantile dynamics. To study the macro-

financial linkages in Europe, we estimate a quantile VAR model on euro area

data for industrial production and an indicator of financial distress. We find

that financial shocks – defined as a tail quantile realization – are transmitted

to the real economy only when the economy is simultaneously hit by a real

negative shock. Modelling the mean dynamics with a standard VAR misses

most of the action associated with this important channel of transmission of

financial shocks. Furthermore, shutting down financial linkages in the system

ECB Working Paper Series No 2330 / November 2019 2



significantly changes the dynamics of the real economy when hit by negative

shocks, but leaves the dynamics largely unaffected in normal conditions. One

advantage of quantile VAR is that it allows us to perform impulse response

analyses and to forecast the quantiles of the endogenous variables. We find

that by hitting the system with a financial shock there is a strong and persis-

tent asymmetric impact on the distribution of industrial production, which

takes about two years to be absorbed.

Quantile VAR provides also the natural environment to perform stress

testing exercises. To its core, stress testing is a forecast of what happens to

the system when it is hit by an arbitrary sequence of negative shocks. If the

euro area is hit by a sequence of six monthly consecutive financial and real

shocks, its industrial production contracts by a maximum amount of about

4% if the stress scenario were applied in August 2008 and by less than 2%

in July 2018. This contrasts with a median forecast of industrial production

hovering around 0%.

Finally, this paper contributes to the quantile regression econometric lit-

erature by showing how to deal with multiple variables and how to forecast

in a time series context. Our econometric framework is general enough to

cover the modelling of multiple quantiles of multiple random variables. Stress

testing can be thought of as an estimate of the reaction of the endogenous

random variables when the system is hit by a sequence of quantile shocks.

Stress scenarios are nothing else than an arbitrary series of quantile shocks

hitting the macro-financial environment.
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1 Introduction

Vector autoregressive (VAR) models are the empirical workhorse of macroe-

conomics. In their most basic formulation, these models rely on constant

coefficients and i.i.d. Gaussian innovations. There is, however, substantial

empirical evidence that macroeconomic variables are characterized by non-

linearities and asymmetries which cannot be captured by simple linear Gaus-

sian models (Perez-Quiros and Timmermann 2000, Hubrich and Tetlow 2015,

Kilian and Vigfusson 2017, Adrian, Boyarchenko and Giannone 2019). We

show how such nonlinearties can be captured by estimating VAR models

with quantile regression methods. The insights of our approach can be ex-

tended more generally to produce iterated quantile forecasts for nonlinear

models. The methodology is applied to the euro area. Using a standard

recursive identification scheme, a quantile impulse response analysis reveals

that shocks to the financial system have a strong and persistent impact on

the left tail of the real economy, but no effect on its right tail.

Quantile regression was introduced by Koenker and Bassett (1978) and

has found many applications in economics (Koenker 2005, 2017). Early ap-

plications to univariate time series include Engle and Manganelli (2004) and

Koenker and Xiao (2006). White, Kim and Manganelli (2010, 2015) de-

velop the asymptotics for multivariate quantile models. In homoskedastic

linear regression models, the conditioning variables shift the location of the

conditional density of the dependent variables, but they have no effect on
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conditional dispersion or shape. In general, however, this needs not be the

case. Quantile regression is a semiparametric technique which allows differ-

ent covariates to affect different parts of the distribution. If and how this

happens is an empirical question. In our empirical applications, we find that

estimates of quantile regression slopes and quantile impulse response func-

tions vary across quantiles. This may occur either because of time varying

higher order moments, and/or because the conditioning variables affect the

conditional distribution of the dependent variables in a nonlinear way. These

effects cannot be detected with standard OLS VAR estimates.

Quantiles fully describe univariate distributions. A long standing issue in

the quantile regression literature, however, is how to deal with multivariate

settings. We show how factorizing multivariate distributions into the prod-

uct between marginal and conditional univariate distributions provides the

insight to use quantiles to characterize also the properties of joint distribu-

tions. This factorization paves the way to a general framework for quantile

forecasting.

For instance, for a bivariate random vector, one can forecast first the

quantile of the marginal distribution of the first random variable and then

the quantile of the distribution of the second random variable conditional

on the first. This reasoning can be repeated recursively for any number of

random variables, therefore giving the forecast of the cross section at any

given point in time. This intuition holds also for multi step ahead quantile

forecasting. The quantile two periods ahead depends on the value taken by
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the random variables one period ahead. By conditioning on the quantile

values of the random variables one period ahead (which is available from the

initial one step ahead forecast just described), we can estimate the quantiles

of quantiles of the two step ahead random variables. Iterating this reasoning

forward, we can obtain any multi step ahead quantile forecast.

One important issue is identification. In general, the factorization strat-

egy advocated in this paper allows one only to characterize the joint distri-

bution of the random variables. Identification relies on a series of economic

restrictions on this joint distribution. If there are economic reasons to follow

a particular ordering in the factorization, the model can be given a structural

interpretation. In the context of VAR models, this corresponds to a standard

Cholesky decomposition. More general identification strategies imposing as-

sumptions on the dynamic properties of first and second moments of the

endogenous random variables can be readily extended to our multivariate

quantile framework.

One advantage of the multivariate approach is the flexibility to assess the

impact of any future quantile realization. Stress testing can be thought of

as an estimate of the reaction of the endogenous random variables when the

system is hit by a sequence of tail shocks, where tail shocks are defined as

future realizations of the random variables being equal to low or high quantile

probabilities. Stress scenarios are therefore defined as an arbitrary series (to

be chosen by the policy maker or calibrated to past crises) of future quantile

realizations hitting the system.
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We estimate a quantile VAR model on euro area data for industrial pro-

duction growth and an indicator of financial distress and perform three types

of exercises. First, we estimate euro area growth at risk, defined as the 10%

quantile of industrial production growth. We find that severe financial shocks

have an asymmetric impact on the distribution of the real variable. Modeling

the conditional mean with a standard VAR seriously underestimates these

macro-financial dynamics in times of stress, and underscores the potential

of quantile VAR models for financial stability purposes. These results are

broadly in line with those found by Adrian et al. (2019) for the U.S. econ-

omy. The empirical model estimated by Adrian et al. (2019) is equivalent

to estimating only one equation of our quantile VAR model. Estimating the

full quantile VAR allows us to perform impulse response analyses. We find

that by hitting the system with a financial shock there is a strong, persistent

and asymmetric impact on the distribution of industrial production, which

takes about two years to be absorbed.

Second, we forecast euro area growth under alternative stress scenarios.

Quantile VAR provides the natural environment to perform stress testing

exercises. At its core, stress testing is a forecast of what happens to the

system when hit by an arbitrary sequence of negative shocks. If the euro area

is hit by a sequence of six monthly consecutive financial and real 10% quantile

realizations, its industrial production contracts by a maximum amount of

about 4% if the stress scenario were applied in August 2008 and by less than

2% in July 2018. This contrasts with a median forecast (that is, a sequence
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of median realizations of the endogenous variables) of industrial production

hovering around 0%.

Third, we perform a counterfactual scenario analysis before Lehman Broth-

ers’ default and replay this scenario at each point in time. Using estimates

up to August 2008, we find evidence of sizable and unprecedented downside

risk to the euro area real economy already in mid 2007. Such counterfactual

exercises can help policy makers to better understand the financial stability

risks to the economy and put them in an historical perspective.

The paper is organized as follows. Section 2 describes the general frame-

work for quantile forecasting. Section 3 introduces the quantile vector au-

toregressive model. It provides the links with standard OLS structural VAR

and derives the forecasting properties. Section 4 estimates the quantile VAR

model for the euro area, performs a stress testing exercise and estimates

the counterfactual scenario of Lehman’s bankruptcy at each point in time.

Section 5 concludes.

2 General framework for forecasting with quan-

tile regression

Quantiles can be used to characterize any part of a univariate distribution.

Since any multivariate distribution can be factorized into the product be-

tween marginal and conditional univariate distributions, quantiles can be

used to characterize also the properties of joint distributions. Exploiting this
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intuition, this section presents a general framework for quantile forecasting.

The following assumption characterizes the data generating process.

Assumption 1 (Data Generating Process)

1. The observations at time T are ỹT = (ỹ′0, ỹ
′
1, . . . , ỹ

′
T )′, with ỹt ∈ Rn, for

t = 0, 1, . . . , T .

2. ỹt is a realization from the random variable Ỹt, an n× 1 vector with ith

element denoted by Ỹit for i ∈ {1, . . . , n}.

3. Ỹt has pdf ft(y1, . . . , yn) ≡ f(y1, . . . , yn|ỹt−1), t = 1, 2, . . ., conditional

on past observations, with continuous cdf Ft(y1, . . . , yn).

Any joint pdf can be decomposed into the product between marginal and

conditional densities:

ft(y1, . . . , yn) = ft(y1)ft(y2|y1) . . . ft(yn|y1, . . . , yn−1)

where, with standard notation, the marginal and conditional densities are

computed as:

ft(y1, . . . , yi−1) ≡
∫
. . .

∫
ft(y1, . . . , yn)dyi . . . dyn

ft(yi, . . . , yn|y1, . . . yi−1) ≡ ft(y1, . . . , yn)/ft(y1, . . . , yi−1)
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Using a simplified notation for the conditional densities:

ft(y1)ft(y2|y1) . . . ft(yn|y1, . . . , yn−1) ≡ f1t(y1)f2t(y2) . . . fnt(yn) (1)

the following theorem shows how to factorize multivariate distributions with

conditional quantiles.

Theorem 1 (Conditional quantile decomposition of cdf) — Suppose

Assumption (1) holds. Let Fit(yi) denote the conditional cdf of fit(yi) and

qθiit = F−1it (θi) the corresponding θi quantile, θi ∈ (0, 1), i ∈ {1, . . . , n}, t =

1, . . . , T . The joint cdf of ft(y1, . . . , yn) can be decomposed as:

Ft(q
θ1
1t , . . . , q

θn
nt ) = F1t(q

θ1
1t )F2t(q

θ2
2t ) . . . Fnt(q

θn
nt ) (2)

= θ1θ2 . . . θn

Proof — See appendix.

By construction, qθiit is a function of (y1, . . . , yi−1) for i > 1. However, its

quantile probability is constant and does not depend on these observations.

The corresponding term can therefore be pulled out of the integral, leading

to the above independent-like factorization.

The joint distribution at any future time T + h, for h ≥ 1, can be com-

puted as in a simulation procedure (Serfling, 1980). Suppose that, given

the information available at time T , one can compute the T + 1 conditional

quantile forecasts. These quantiles can be used to characterize the joint dis-
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tribution at time T + 1. Conditional on each quantile at time T + 1, one can

compute the T + 2 conditional quantile forecasts to generate the joint distri-

bution at time T + 2. The process can be repeated indefinitely to produce

the forecast joint distribution at any future date T + h.

Implementation of this procedure requires the choice of a grid of quantile

probabilities and a parametric specification for each quantile. The choice of

quantile probabilities characterizes the different parts of the density. They

should be symmetric around the median, to avoid that specific parts of the

density receive disproportional weights. The finer the grid, the more precise

the approximation, but the higher the computation cost. For instance, if one

chooses p quantiles, the number of branches increases exponentially at each

iteration, so that after h periods there are pnh possible ramifications. This

curse of dimensionality can be tackled by taking sub-samples.

The quantile parametric specification is needed to compute the forecast

associated with each quantile. When multiple quantiles of the same random

variable are estimated, a well-known problem is that the monotonicity prop-

erty of quantile functions can be violated: some estimated quantiles can cross

each other. If the quantile model is correctly specified, then the population

quantiles are monotonic and quantile crossing is simply a finite sample prob-

lem. If the quantile model is misspecified and/or the sample size is not large

enough, then quantile crossing can still be of concern. In that case, one can

use techniques such as the monotonization method by Chernozhukov et al.

(2010), the dynamic additive quantile specification of Gourieroux and Jasiak
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(2008), or the isotonization method suggested by Mammen (1991). Notice,

however, that quantile monotonicity (that is, lack of quantile crossing as in a

location-scale model) does not imply that the model estimates do not suffer

from estimation and/or mis-specification errors.

2.1 Example

Consider the following model from example 3.1 of Engle, Hendry and Richard

(1983), to illustrate the logic of Theorem 1:

Ỹ1t
Ỹ2t

 ∼ N(µ,Σ) µ = (µi), Σ = (σij), i, j = 1, 2 (3)

Letting F (y1, y2) denote the cdf of the bi-variate normal distribution, it can

be decomposed as:

F (y1, y2) = F1(y1)F2(y2)

where F1(y1) ≡ F (y1; η1, ω1), F2(y2) ≡ F (y2; η2t, ω2) and F (y; η, ω) denotes

the cdf of the univariate normal distribution with mean η and variance ω.

Knowing that η1 = µ1, ω1 = σ11, η2t = µ2 + (σ12/σ11)(y1t − µ1), and ω2 =
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σ22 − σ2
12/σ11, the conditional quantiles associated with this model are:

qθ11t = η1 + κθ1
√
ω1

qθ22t = η2t + κθ2
√
ω2

where θi ∈ (0, 1) and κθ is the θ-quantile of the standard normal distribution.

Notice that qθ22t depends on y1t via the term η2t. The initial bi-variate

normal distribution can therefore be simulated via quantiles by first comput-

ing the quantiles for the marginal distribution of y1, and then, conditional

on each of these quantiles, by computing the quantiles for the conditional

distribution of y2. This reasoning can be repeated for any multistep ahead

forecasting.

2.2 Relationship with identification

As noted by Engle et al. (1983), an equivalent factorization of the bivariate

normal model (3) could be obtained by inverting the ordering of the variables.

If there are economic reasons to prefer a particular ordering, the model can

be given a structural interpretation, as in a standard Cholesky recursive

identification. In general, however, the procedure highlighted in this section

allows one only to characterize the joint distribution of the random variables

of interest.

Identification relies on a series of restrictions on the joint distribution.

Since most identification methods in the macro-econometric literature impose
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assumptions on the dynamic properties of the first and second moments of

the endogenous random variables, and since these moments can be simulated

from the joint distribution (Serfling, 1980), it is possible to apply similar

identification strategies to the quantile-based model.

The empirical application of this paper appeals to a recursive structural

identification. Application of other identification methods is left for future

research.

3 Quantile vector autoregression

This section studies the properties of quantile VAR (QVAR). It starts in

section 3.1 by introducing the QVAR(1) model, establishes the law of iterated

quantiles (section 3.2), and applies the general framework of the previous

section to forecasting and stress testing (section 3.3). Section 3.4 generalizes

the results to any QVAR(q). Section 3.5 contains details about estimation

and asymptotics.

3.1 Quantile VAR(1)

Consider the following vector autoregressive model, written in recursive form:

Ỹt+1 = ω̃ + Ã0Ỹt+1 + Ã1Ỹt + ε̃t+1, ε̃t+1 ∼ i.i.d.(0,Σ) (4)
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where Ã0 and Ã1 are a n × n coefficient matrices, ω̃ is a n × 1 vector of

constants, ε̃t+1 is a n×1 vector of i.i.d. structural zero mean shocks with Σ a

diagonal matrix. Imposing that Ã0 has a lower triangular structure with zeros

along the main diagonal is equivalent to factorizing the joint density into the

product of marginal and conditional densities, as highlighted in Theorem 1.

In the context of the VAR literature, this is also equivalent to identification of

the system by assuming a Choleski decomposition of the variance covariance

matrix of the residuals from a standard reduced form VAR (see, for instance,

chapter 2 of Lütkepohl 2005).

Our goal is to cast model (4) in a quantile regression framework.1 An

explicit example may help to fix concepts, before moving to more general

notation. Consider a model with two endogenous random variables and two

quantiles to be modeled, say 50% and 90%. A QVAR system can be written

1See Schüler (2014) for an example of Bayesian quantile structural vector autoregressive
model.
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explicitly as:



Ỹ1,t+1

Ỹ2,t+1

Ỹ1,t+1

Ỹ2,t+1


=



ω.51

ω.52

ω.91

ω.92


+



0 0

a.5021 0

0 0

0 0

0 0

0 0

0 0

a.9021 0





Ỹ1,t+1

Ỹ2,t+1

Ỹ1,t+1

Ỹ2,t+1


+ (5)

+



a.511 a.512

a.521 a.522

0 0

0 0

0 0

0 0

a.911 a.912

a.921 a.922





Ỹ1t

Ỹ2t

Ỹ1t

Ỹ2t


+



ε.51,t+1

ε.52,t+1

ε.91,t+1

ε.92,t+1


The first and second blocks determine, respectively, the dynamics of the

50% and 90% quantiles. The error term are quantile specific and satisfy the

condition that P (εθ1,t+1 < 0|Ωt) = θ and P (εθ2,t+1 < 0|Ωt, Ỹ1,t+1) = θ, for

θ ∈ {0.50, 0.90}, where Ωt is the information available at time t.

Let us move now to the general setup. Since we want to consider the pos-

sibility of jointly modeling multiple quantiles, we need additional notation.

For our purposes, it is important to define a recursive information set, which

allows us to work with recursive models.

Definition 1 (Recursive information set) — The recursive informa-
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tion set is defined as:

Ω1t ≡ {Ỹt, Ỹt−1, . . .}

Ωit ≡ {Ỹi−1,t+1,Ωi−1,t} i = 2, . . . , n

According to this definition, the recursive information set Ω2t, say, contains

all the lagged values of Ỹt as well as the contemporaneous value of Ỹ1,t+1.

Considering p distinct quantiles, 0 < θ1 < θ2 < . . . < θp < 1, the quantile

vector autoregressive model is defined as follows:

Yt+1 = ω + A0Yt+1 + A1Yt + εt+1, P (ε
θj
i,t+1 < 0|Ωit) = θj, (6)

i = 1, . . . , n, j = 1, . . . , p

The dependent variable Yt is now an np-vector, which is obtained as Yt =

ιp ⊗ Ỹt, where ιp is a p-vector of ones, and εt ≡ [εθ11t , . . . , ε
θ1
nt, . . . , ε

θp
1t , . . . , ε

θp
nt]
′.

The matrices A0 and A1 are block diagonal, to avoid trivial multicollinearity

problems. We further impose that the diagonal blocks of A0 are lower trian-

gular matrices with zeros along their main diagonal, reflecting the recursive

structure of the system. The conditioning information set in the probability

defining the regression quantile follows the recursive structure as well.

If system (4) is the data generating process, then ω = ιp ⊗ ω̃ + κθ, where

κθ is the np-vector containing the θ quantiles of ε̃t+1, A0 = Ip ⊗ Ã0 and

A1 = Ip ⊗ Ã1. Under this assumption, the VAR and quantile VAR are
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characterized by identical dynamics.

3.2 The law of iterated quantiles

Quantile forecasts in a linear model like (6) can be obtained by taking quan-

tiles of quantiles. The forecasting properties of the system are derived in the

next subsection. In this subsection, we clarify the logic underlying quantile

forecasts.

Define the quantile operator, for convenience:

Definition 2 (Quantile operator) — The conditional quantile op-

erator Qθ
it(Ỹi,t+1) of the random variable Ỹi,t+1, given the information set

Ωit, is implicitly defined by:

P (Yi,t+1 < Qθ
it(Ỹi,t+1)|Ωit) = θ

Let us work with example (5) to illustrate the intuition of quantile fore-

casting. Consider, for instance, the line corresponding to the 50% quan-

tile of Ỹ2,t+1, which is Ỹ2,t+1 = q.52t + a.5021Ỹ1,t+1 + ε.52,t+1, where q.52t ≡ ω.52 +

a.521Ỹ1t+a.522Ỹ2t. The 50% quantile of Ỹ2,t+1 conditional on the information set

Ω2t = {Ỹ1,t+1, Ỹt} is:

Q.5
2t(Ỹ2,t+1) = q.52t + a.5021Ỹ1,t+1

because, by the conditional quantile restriction, Q.5
2t(ε

.5
2,t+1) = 0. This quan-
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tity is still a random variable at time t, because of the term a.5021Ỹ1,t+1. One

can choose to take any quantile of this random variable. Let us take the

90% quantile, which according to model (5) is Q.9
1t(Ỹ1,t+1) = q.91t, where

q.91t ≡ ω.91 + a.911Ỹ1t + a.912Ỹ2t. If a.5021 > 0, we can now compute the 90%

quantile of the 50% quantile of Ỹ2,t+1:
2

Q.9
1t(Q

.5
2t(Ỹ2,t+1)) = q.52t + a.5021q

.9
1t

We formalize the intuition of this example in the following theorem.

Theorem 2 (Law of Iterated Quantiles) — Consider model (6) and

let ϑ ∈ [θ1, . . . , θp]
n be an n-vector with typical element denoted by ϑi, for

i = 1, . . . , n. Then:

Qϑ1
1t (. . . Q

ϑi−1

i−1,t(Q
ϑi
it (εϑ11,t+1 + . . .+ ε

ϑi−1

i−1,t+1 + εϑii,t+1))) = 0 (7)

Proof — See appendix.

An important difference with the law of iterated expectations is that

the quantile of the sum of random variables is not necessarily equal to the

quantile of the quantile of the sum:

Qϑi
t (εϑi1,t+1 + εϑi2,t+1) 6= Qϑi

1,t(Q
ϑi
2,t(ε

ϑi
1,t+1 + εϑi2,t+1))

2Notice that if a.5021 < 0, we would be actually computing the 10% quantile of the 50%
quantile.

ECB Working Paper Series No 2330 / November 2019 19



where Qϑi
t represents the ϑi-quantile conditional on the standard information

set Ωt ≡ {Ỹt, Ỹt−1, . . .}.

The next subsection shows how, in linear models like (6), it is possible

to compute the quantile of any future quantile, but there is no closed form

solution for the quantile of future random variables at horizons greater than

1, because they depend on the sum of future residuals. If the interest is

in these quantiles, they can always be recovered by simulation, following

procedures similar to those outlined in Serfling (1980).

3.3 Forecasting and quantile impulse response func-

tions

This subsection derives the quantile forecast for any combination of future

quantiles for model (6).

One can think of quantile forecasts as branches of a tree. An illustrative

example is reported in Figure 1, for two variables, two periods ahead and

three quantiles, say 10%, 50% and 90%. Exploiting the factorization (2), the

starting node, Ỹ1,t+1, has three branches (the three quantiles). At the end of

each branch, there are three more branches for Ỹ2,t+1, corresponding to the

one step ahead quantile forecast of the second variable conditional on the

quantile forecast of the first variable. The branching continues at t+ 2, and

can go on for any arbitrary number of variables, quantiles and horizon.

Each path in the quantile forecasting tree can be formally identified by
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Figure 1: Quantile forecasting tree

Note: Example of possible quantile forecast paths for a model with two variables (Ỹ1
and Ỹ2), two periods ahead (t+ 1 and t+ 2), where three quantiles are modeled for each
variable (the three branches coming out of each node). Increasing the number of quantiles
per variable results in a richer branch structure.
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defining the following quantile selection matrix.

Definition 3 (Quantile Selection Matrix) — The quantile selection

matrix is the n × np matrix Sϑ
h

t+h, for h ≥ 1, selecting one, and only one,

quantile for each endogenous variable from the np-vector εt+h in model (6):

Sϑ
h

t+hε
θ
t+h = [ε

ϑh1
1,t+h, . . . , ε

ϑhn
n,t+h]

′ (8)

where ϑh ∈ [θ1, . . . , θp]
n is an n-vector with typical element denoted by ϑhi ,

for i = 1, . . . , n.

Note that S ≡ {Sϑht+h}Hh=1 identifies one entire path in the quantile forecast-

ing tree. The collection of all possible paths is obtained by choosing every

different ϑh from the set [θ1, . . . , θp]
n, for all h = 1, . . . , H. Since at each

period there are pn possible choices, after H periods there are pnH distinct

forecasting paths. In the example of the tree of Figure 1, where p = 3, n = 2

and H = 2, there is a total of 81 distinct paths.

The next theorem derives the generic H step ahead quantile forecasts

associated with any path of the quantile forecasting tree identified by S .

Theorem 3 (Multi step quantile VAR forecast) — Let S ≡ {Sϑht+h}Hh=1

denote the sequence of quantile selection matrices as in definition 3, selecting

the quantiles to be forecasted. The corresponding n × 1 quantile forecasts as

of time t associated with process (6) for H ≥ 1, can be computed recursively
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as:

Ŷ S
t+1 = B̄ϑ1

t+1(ω + A1Yt) (9)

Ŷ S
t+h = B̄ϑh

t+h(ω + A1S̄Ŷ
S
t+h−1) for h ≥ 2 (10)

where B̄ϑh

t+h ≡ (In−Sϑ
h

t+hA0S̄)−1Sϑ
h

t+h for h = 1, . . . , H, In is the n×n identity

matrix, and S̄ is the np×n duplication matrix stacking p times the n identity

matrix.

Proof — See appendix.

To build intuition about the mechanics of quantile forecasting, consider

forecasting the sequence of medians. In this case, S selects H times the

median quantile block of system (6). Denoting the respective matrices with

ω.5, A.50 and A.51 with obvious notation, the median forecast H steps ahead

is
∑H−1

h=0 B
hω + BHYt, where ω ≡ (In − A.50 )−1ω.5 and B ≡ (In − A.50 )−1A.51 .

Notice how this is the median VAR forecast counterpart of the standard mean

VAR forecast. Theorem 3 generalizes the forecast to any possible sequence

of quantiles.

Unlike the classical VAR, however, the greater generality and flexibility of

(9)-(10) provides the natural environment to perform stress testing exercises.

A policy maker interested in how the endogenous variables react to a given

stress scenario can first define the scenario by choosing a series of future

tail quantiles of interest (say, 10%), and then obtain the forecast of the

endogenous variables conditional on the chosen scenario.
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If the recursive model can be given a structural interpretation, it is pos-

sible to derive a structural quantile impulse response function. Express Yt in

terms of structural shocks:

Yt = ν +BYt−1 + (Inp − A0)
−1εt

where ν = (Inp−A0)
−1ω and B = (Inp−A0)

−1A1. In a standard VAR model,

a shock to variable i at t is affecting only the conditional expectations. In

the case of QVAR, the same shock is affecting all the quantiles. Define the

shock to the structural residuals of variable i, for i = 1, . . . , n, as follows:

ε̈it = εt + siδ

where δ ∈ R and si is an np vector of zeros with p ones in the positions

corresponding to the quantile residuals of the ith variable. The intuition is

that the shock δ is simultaneously applied to all the quantile structural shocks

of the ith variable. Denoting with Ÿt the value of the dependent variables if

the shock ε̈it is applied, the impulse response function at time t+ h can then
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defined recursively from equations (9)-(10):

∆i
t ≡ Ÿt − Yt

= (Inp − A0)
−1siδ (11)

∆iS
t+1 = B̄ϑ1

t+1A1∆
i
t (12)

∆iS
t+h = B̄ϑh

t+hA1S̄∆iS
t+h−1 for h ≥ 2 (13)

Notice that if one were to model only the median, this is again the median

impulse response analogue of the standard mean impulse response function.

Quantile impulse response functions, however, will generally depend on the

quantiles paths which are considered, and therefore the dependence on the

selection matrix S.

3.4 General quantile VAR(q) model

Model (6) can be generalized to any desired lag order q using its companion

form. Define the npq vectors ω̄ ≡ [ω′, 0′, . . . , 0′]′, Ȳt+1 ≡ [Y ′t+1, Y
′
t , . . . , Y

′
t−q+2]

′,

εt+1 ≡ [ε′t+1, 0
′, . . . , 0′]′, and the (npq × npq) matrices

A0 =



A0, 0, . . . , 0

0, 0, . . . , 0

...
. . .

0, 0, . . . , 0


and A1 =



A1, A2, . . . , Aq

Inp, 0, . . . , 0

...
. . .

0, . . . , Inp, 0


.
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Then the companion form of the VAR(q) model is:

Ȳt+1 = ω̄ + A0Ȳt+1 + A1Ȳt + εt+1 (14)

All the results of the previous sections extend to model (14).

3.5 Estimation and asymptotics

The recursive QVAR model (6) fits the framework of White et al. (2015),

which can therefore be used for inference. Let qt(β) ≡ ω+A0Yt+A1Yt−1 and

qjit(β) the jth quantile of the ith variable of the vector qt(β), where we have

made explicit the dependence on β, the vector containing all the unknown

parameters in ω, A0, and A1. Define the quasi-maximum likelihood estimator

β̂ as the solution of the optimization problem:

β̂ = arg min
β
T−1

T∑
t=1

{
n∑
i=1

p∑
j=1

ρθj

(
Ỹit − qjit(β)

)}
, (15)

where ρθ (u) ≡ u(θ − I(u < 0)) is the standard check function of quantile

regressions. The asymptotic distribution of the regression quantile estimator

is provided by White et al. (2015), which we report here for convenience.

Theorem 4 (White et al., 2015) — Under the assumptions of theorems

1 and 2 of White et al. (2015), β̂ is consistent and asymptotically normally
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distributed. The asymptotic distribution is:

√
T (β̂ − β∗) d−→ N(0, Q−1V Q−1) (16)

where

Q ≡
n∑
i=1

p∑
j=1

E[f jit(0)∇qjit(β∗)∇′q
j
it(β

∗)]

V ≡ E[ηtη
′
t]

ηt ≡
n∑
i=1

p∑
j=1

∇qjit(β∗)ψj(ε
θj
it )

ψj(ε
θj
it ) ≡ θj − I(ε

θj
it ≤ 0)

ε
θj
it ≡ Ỹit − qjit(β∗)

and f jit(0) is the conditional density function of ε
θj
it evaluated at 0.

The asymptotic variance-covariance matrix can be consistently estimated as

suggested in theorems 3 and 4 of White et al. (2015), or using bootstrap

based methods in the spirit of Buchinsky (1995).3

The following corollary derives the standard errors of the forecasts.

Corollary 1 (Forecast standard errors) — Let Yt+h(β̂) ≡ Ŷ S
t+h the

forecast (9)-(10), where it has been made explicit the dependence on the model

3Modern statistical softwares contain packages for regression quantile estimation and
inference. This paper uses the interior point algorithm discussed by Koenker and Park
(1996).
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parameters β. Then:

√
T (Yt+h(β̂)− Yt+h(β∗))

d−→ N(0,Φ(β∗)Q−1V Q−1Φ′(β∗)) (17)

where Φ(β∗) ≡ ∂Yt+h(β
∗)/∂β′.

Proof — See appendix.

The standard errors associated with the impulse response functions (11)-

(13) can be computed in a similar fashion.

4 Stress testing the euro area economy

We estimate a QVAR(1) to model the interaction between real and financial

variables in Europe. We study the interrelationship between the euro area

industrial production growth (Ỹ1t) and the composite indicator of systemic

stress in the financial system (CISS, Ỹ2t) of Hollo, Kremer and Lo Duca

(2012). Our data sample is monthly and ranges from January 1999 to July

2018. We perform three exercises. First, we estimate short term euro area

growth at risk (defined as the 10% quantile of Ỹ1t), as a function of financial

conditions. Second, we forecast euro area growth under a severe stress sce-

nario, where both the real and financial parts of the euro area economy are

hit by a sequence of consecutive tail shocks. Third, we ask whether the quan-

tile VAR methodology could have been helpful in detecting vulnerabilities in

the months preceding Lehman Brothers’ default.
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4.1 Euro area growth at risk

Adrian et al. (2019) have shown that there are substantial asymmetries in

the relationship between the US real GDP growth and financial conditions.

In particular, they find that the estimated lower quantiles of the distribution

of future GDP growth are significantly affected by financial conditions, while

the upper quantiles appear to be more stable over time. The quantile model

specification of Adrian et al. (2019) is the following:

Ỹ1,t+1 = ωθ1 + aθ11Ỹ1,t + aθ12Ỹ2t + εθt+1 (18)

They estimate this model for θ ∈ {0.05, 0.25, 0.75, .95}. This corresponds to

the first line of model (6). We estimate, instead, the full QVAR model and

study its dynamic properties:

Ỹ1,t+1 = ωθ1 + aθ11Ỹ1t + aθ12Ỹ2t + εθ1,t+1 (19)

Ỹ2,t+1 = ωθ2 + aθ0Ỹ1,t+1 + aθ21Ỹ1t + aθ22Ỹ2t + εθ2,t+1 (20)

By ordering CISS after industrial production, we impose the structural

identification assumption that financial variables can react contemporane-

ously to real variables, but real variables react to financial developments

only with a lag. This corresponds to a Choleski identification where shocks

to real economic variables can have an immediate impact on financial vari-

ables, while shocks to financial variables are allowed to affect real variables
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only with a lag. Given the speed at which financial markets react to news,

this seems like a reasonable assumption.

The interaction between real and financial variables can be tested by

checking whether the off-diagonal coefficients are statistically different from

zero. Figure 2 reports the estimated quantile coefficients of (19)-(20), to-

gether with 95% confidence intervals and the corresponding OLS estimates.

We observe the presence of substantial asymmetries, especially in the aθ12

coefficient, which cannot be detected with standard OLS models. The co-

efficient estimates of aθ12 are consistent with the findings of Adrian et al.

(2019), whereby financial conditions significantly affect the left tail of the

distribution of industrial production, but not the right tail.

Figure 3 shows that the impact of financial conditions is not only statisti-

cally significant, but also economically relevant. The figure reports the 10%

quantile one step ahead forecast of industrial production, together with the

95% confidence intervals. As a comparison, the figure also shows the 10%

quantile estimated indirectly from an OLS VAR, obtained as follows. We

first estimated the OLS version of model (19)-(20). Second, we computed

the 10% quantile of the OLS model residuals and added it to the estimated

conditional VAR mean. This procedure would be consistent if model (19)-

(20) were correctly specified for the mean and the residuals were i.i.d.

The comparison reveals the strong impact that worsening financial condi-

tions have on the left tail of the forecast distribution. In relation to the OLS

estimate, the estimated quantiles are quantitatively and statistically similar
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Figure 2: Comparison of QVAR and VAR estimates

Note: Estimated coefficients of model (19)-(20) at different θ quantiles, with 95% confi-
dence intervals. The flat lines represent the corresponding OLS estimates.
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Figure 3: Euro area growth at risk

Note: Time series estimates of the 10% quantile of euro area industrial production, to-
gether with 95% confidence intervals. As a comparison, it is also reported the 10% quantile
estimated by adding to the mean the 10% quantiles of the residuals from a standard OLS
VAR. Under correct model specification, the two procedures would give consistent esti-
mates of the 10% quantile. The OLS VAR procedure, however, is not able to capture the
asymmetries between financial and real variables.
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in tranquil times, but sharply different in crisis times. This highlights how

modeling the interactions between real and financial variables with a stan-

dard OLS VAR could miss significant dynamics in the left tail, which are

relevant from a financial stability perspective.

In figure 4, we compute the quantile impulse response function of indus-

trial production corresponding to (11)-(13), following a one standard devia-

tion shock to CISS structural median residuals and for specific sequences of

quantile selection matrices S. The thought experiment is the following: How

different at any point in time the sequence of quantile forecasts would have

been if we had observed a more severe realization in the financial conditions

of the euro area economy? The left panel is the quantile impulse response

function when S selects the median forecasting path for both endogenous

variables. It is the median equivalent to the standard OLS impulse response

function for the mean. The QVAR model, however, allows us the flexibility

to analyze any part of the forecast distribution, for any period ahead. The

right panel of the figure reports the impulse response function when S selects

the 10% quantile of industrial production and the median for CISS. It shows

a stronger impact relative to the median.

In figure 5 we report a three dimensional quantile impulse response func-

tion. It is a concise way to visualize how each quantile of industrial pro-

duction is responding to a shock to CISS. It is obtained by stacking next to

each other all the panels of Figure 4, when S selects the median forecasting

path for CISS and different values of θ for industrial production. We did not
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Figure 4: Quantile impulse response functions for the euro area industrial
production

Note: The figure reports how a shock to the financial variable would affect the estimates of
future median (left panel) and 10% (right panel) quantiles of euro area industrial produc-
tion at different time horizons, conditional on a median forecast of the financial variable.
95% confidence intervals are also reported.

report the confidence intervals to avoid cluttering the chart, but they can be

readily constructed for each quantile as illustrated in Figure 4. The figure

shows on the vertical axis the magnitude of the impulse responses, on the h

axis the number of periods for which the response is computed, and on the

θ axis the quantile probabilities θ ∈ {0.05, 0.1, . . . , 0.9, 0.95}.

If the OLS VAR model were the correct representation of the dynamic

interactions between real and financial variables, all elements of this three

dimensional plot would shift in parallel and by the same magnitude across

the different quantile probabilities: in an homoskedastic OLS VAR model,

shifts in the forecast distribution are entirely driven by changes in the mean

forecast. The fact that this does not happen is a further confirmation that

OLS VAR may paint a misleading picture when the interest of the analysis is
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away from the central tendency of the distribution. Consistently with Figure

3, we continue to notice substantial asymmetric impacts in different parts

of the distribution. In addition, the chart now reveals that the impact of

the shock disappears for all quantiles considered after around 24 months.

This analysis highlights one advantage of our framework. It is an internally

consistent fully dynamic model of the real and financial variables of the euro

area economy, which allows us to study the propagation of shocks across the

different parts of the distribution and through time.

4.2 Forecasting growth under stress scenarios

In Figure 6, we report the multi step quantile VAR forecasts of industrial

production several months ahead, conditional on many different sequences S

of the quantile selection matrices. The figure on the left reports the forecast

as of September 2008 (the month of Lehman’s default). The figure on the

right is the forecast as of July 2018. Each dotted line corresponds to alter-

native specifications for the sequence S in (9)-(10). The various dots at each

point in time can be thought as possible realizations from the distribution of

the future random variables.

We have highlighted two specific scenarios, both reported with the 95%

confidence intervals. The one in blue corresponds to a situation where the

sequence of future random variables are set to their median values. This

roughly corresponds to the results that one would obtain from a standard

OLS VAR analysis. Our framework, however, allows us also to create arbi-
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Figure 5: Three dimensional quantile impulse response functions

Note: The figure reports how a shock to the financial variable would affect the estimates
of the different quantiles of euro area industrial production at different time horizons,
conditional on a median forecast for CISS.
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Figure 6: Forecasting and stress testing in the euro area

Note: The figure reports the forecasts of industrial production for the euro area associated
with different scenarios. The path highlighted in blue corresponds to a scenario where
both the real and financial variables evolve according to their median values. The path
highlighted in red corresponds to the stress scenario with a 90% quantile forecast for the
financial variable and and a 10% quantile forecast for the real variable for six consecutive
months, followed by median forecasts afterwards. The panel on the left is the forecast
as of August 2008, the panel on the right as of July 2018. 95% confidence intervals are
reported around each scenario.

trary stress scenarios and to assess their impact. In the same figure, we have

highlighted in red the forecast of the system associated with the following

stress testing exercise. We assume that the euro area economy is hit by a

series of six consecutive 90% quantile realizations to its financial system and

10% quantile realizations to its real economy. After that, we assume that the

system is reverting to normal functioning, by imposing median realizations

for all the variables. We notice that the median scenario is very similar at the

two points in time considered in this exercise. The stress scenario, however,

sees a much more severe contraction in industrial production in August 2008,

peaking at about -4%, than in July 2018, where the peak is around -2%.
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4.3 Counterfactual scenario analysis of Lehman Broth-

ers’ default

One year after the collapse of Lehman Brothers, Queen Elizabeth II famously

asked: Why did nobody notice it? From the perspective of the methodology

of this paper, predicting a crisis and its severity is like predicting that a

certain sequence S of adverse quantile realizations will hit the system. This

is impossible. It is possible, however, to use the QVAR methodology to assess

the resilience of an economy to alternative stress scenarios.

We estimate the model (19)-(20) using data only up to August 2008, one

month before Lehman’s default. For given parameter estimates, we use the

system to forecast industrial production six months ahead under the following

sequences of S matrices to define alternative scenarios:

1. Good financial scenario: sequence of six 10% quantile realizations

for both industrial production and CISS.

2. Normal financial scenario: sequence of six 10% quantile realizations

for industrial production and median realizations for CISS.

3. Bad financial scenario: sequence of six 10% and 90% quantile real-

izations for industrial production and CISS, respectively.

We apply these scenarios at each month of our sample, and report in

figure 7 the six month ahead forecasts for industrial production. It is evident

that the good and normal financial scenarios were posing little risks to the
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euro area economy, since even after a sequence of six adverse quantile realiza-

tions of industrial production, growth at risk was quite contained. It is only

under the combination of adverse real and financial quantile realizations that

growth at risk is significantly affected. In fact, already in mid 2007, growth at

risk under this adverse scenario had reached unprecedented magnitudes for

the euro area, from an historical perspective. The large growth at risk under

the bad financial scenario reveals the presence of a fat left tail in the distri-

bution of the euro area industrial production, which would go unnoticed by

simply estimating the 5% growth at risk using direct estimation techniques.

More generally, such counterfactual exercises are not feasible with the di-

rect forecast approach. By directly quantile regressing industrial production

six months ahead against current real and financial conditions, one implicitly

imposes that the system evolves according to some average scenario during

the intervening six months. While this may be a reasonable assumption if

one is interested in modeling the conditional mean of the endogenous vari-

ables, it seems like an undesirable constraint to impose when modeling their

tail behavior. Notice, however, that if one is interested in such unconditional

scenario, this can be recovered from the empirical distribution obtained by

simulating the quantile VAR under all alternative quantile scenarios (simi-

larly to all the possible dotted lines of figure 6) and then choosing the desired

empirical quantile forecast.
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Figure 7: Growth at risk under alternative scenarios as of August 2008

Note: Six month ahead forecast of euro area industrial production under three alternative
scenarios. The good, normal and bad scenarios are defined by a sequence of six consecutive
benign, normal and adverse quantile realizations. The parameter of the quantile VAR are
estimated using only observations up to August 2008.
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5 Conclusion

We have developed a quantile VAR model and used it to forecast and stress

test the interaction between real and financial variables in the euro area. Un-

like OLS VAR, quantile VAR models each quantile of the distribution. This

provides the natural modeling environment to design particular stress sce-

narios and test the impact that they have on the economy. A stress scenario

is just a sequence of tail quantile realizations, which can be arbitrarily chosen

by the policy maker or calibrated to mimic previous crisis episodes. We find

the presence of strong asymmetries in the transmission of financial shocks in

the euro area, with negative financial shocks being particularly harmful. By

modeling the average interaction between the random variables, OLS VAR

models miss most of these detrimental interactions.

Appendix — Proofs

Proof of Theorem 1 (Conditional quantile decomposition of cfd) —
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The joint cdf is:

Ft(q
θ1
1t , . . . , q

θn
nt ) =

∫ q
θ1
1t

−∞
. . .

∫ qθnnt

−∞
ft(y1, . . . , yn)dy1 . . . dyn

=

∫ q
θ1
1t

−∞
. . .

∫ qθnnt

−∞
f1t(y1) . . . fnt(yn)dy1 . . . dyn

=

∫ q
θ1
1t

−∞
. . .

∫ q
θn−1
n−1,t

−∞
f1t(y1) . . . fn−1,t(yn−1)[∫ qθnnt

−∞
fnt(yn)dyn

]
dy1 . . . dyn−1

= θn

∫ q
θ1
1t

−∞
. . .

∫ q
θn−1
n−1,t

−∞
f1t(y1) . . . fn−1,t(yn−1)dy1 . . . dyn−1

Even though both qθnnt and fnt(yn) are functions of (y1 . . . yn−1), since we are

conditioning on these observations, the probability θn associated with qθnnt

does not depend on them. It can therefore be pulled out of the integral. The

result follows by induction. �

Proof of Theorem 2 (Law of iterated quantiles) — Start from the

innermost expression:

Qϑi
it (εϑ11,t+1 + . . .+ ε

ϑi−1

i−1,t+1 + εϑii,t+1) = εϑ11,t+1 + . . .+ ε
ϑi−1

i−1,t+1

because, by definition Qϑi
it (εϑii,t+1) = 0 and the other terms are not random,

as they belong to the conditioning set. Repeating this reasoning for each of

the remaining terms gives the result. �
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Proof of Theorem 3 (Multi step quantile VAR forecast) — By (6),

the forecast of Ỹt+1, conditional on setting the residuals identified by the

matrix Sϑ
1

t+1 to zero, is:

Ŷ S
t+1 = Sϑ

1

t+1Yt+1

= Sϑ
1

t+1(ω + A0Yt+1 + A1Yt)

= Sϑ
1

t+1ω + Sϑ
1

t+1A0S̄S
ϑ1

t+1Yt+1 + Sϑ
1

t+1A1Yt

where we have made use of the equality S̄Sϑ
1

t+1Yt+1 = Yt+1. Notice that since

the vector Yt+1 is stacking p times the original vector Ỹt+1, the operation

Sϑ
1

t+1Yt+1 = Ỹt+1 implies no loss of information. It is in fact possible to

reconstruct Yt+1 by stacking again the vector Ỹt+1 with the S̄ matrix.

Solving for Sϑ
1

t+1Yt+1 and iterating the equation forward, for any given

sequence {Sϑht+h}Hh=1, we obtain the result. �

Proof of Corollary 1 (Forecast standard errors) — Consider the mean

value expansion YT+H(β̂) = YT+H(β∗) + Φ(β̄)(β̂ − β∗). The result follows

from the asymptotic properties of β̂. �
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