&

EUROPEAN CENTRAL BANK

EUROSYSTEM

Working Paper Series

Giancarlo Corsetti, Romain Lafarguette, [Fgst trading and the virtue of entropy:
Arnaud Mehl ! .
evidence from the foreign
exchange market

No 2300/ July 2019

Disclaimer: This paper should not be reported as representing the views of the European Central Bank
(ECB). The views expressed are those of the authors and do not necessarily reflect those of the ECB.



Abstract

Focusing on the foreign exchange reaction to macroeconomic announcements, we show
that fast trading is positively and significantly correlated with the entropy of the distribution
of quoted prices in reaction to news: a larger share of fast trading increases the degree
of diversity of quotes in the order book, for given liquidity, order book depth and size of
order flows. Exploiting the WM Reuters’ reform of the fixing methodology in February 2015
as a natural experiment, we provide evidence that fast trading raises entropy, rather than
reacting to it. While more entropy in quoted prices means noisier information and arguably
complicates price discovery from an individual trader’s perspective, we show that, in the
aggregate, more entropy actually brings traded prices closer to the random walk hypothesis,
and improves indicators of market efficiency and quality of trade execution. We estimate
that a 10 percent increase in entropy reduces the negative impact of macro news by over 60%
for effective spreads, against over 40% for realized spreads and price impacts. Our findings
suggest that the main mechanism by which fast trading may have desirable effects on market
performance specifically hinges on enhanced heterogeneity in trading patterns, best captured

by entropy.
Key words: High-Frequency Quoting, Asset Pricing, Macroeconomic News, Market Effi-

ciency, Random Walk, Quality of Trade Execution.
JEL classification: F31, G14, G15
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Non-technical summary

We pursue a novel approach to the analysis of fast trading, i.e. of transactions executed against a limit
order within 200 milliseconds, and of its impact on the microstructure of financial markets, where we
focus attention on how fast traders affect the patterns of exchange rate quotes.

What motivates our analysis is the observation that algorithmic and fast traders not only exploit
arbitrage opportunities arising from their ability to place and execute orders over infinitesimal time
intervals but may also try to exploit their ability to process large volumes of information simultaneously,
to direct and test the market with orders at disparate prices, not necessarily in line with the market
norm given available information. Correspondingly, algorithmic trading may rely on programs that
either generate a structured and tidy flow of orders, conditionally predictable once the market starts to
move in response to news, or place seemingly erratic orders.

In light of these observations, information theory provides a natural metric to quantify the
structure of the order book, the Shannon entropy. Intuitively, the Shannon entropy of a distribution
can be understood as the extent of its diversity—maximal for a uniform distribution. Applied to the
sequence of orders in reaction to news hitting the market, a low entropy will result from distributions
of order prices that are quite compact and concentrated. Conversely, entropy will be high when prices
in the order book are spread out and erratic.

We carry out our study on the foreign exchange market, focusing on the response to news. Our
sample covers seven of the most liquid currency pairs (EURUSD, USDJPY, EURJPY, GBPUSD,
EURGBP, USDCHF and EURCHF), sampled at the 100-millisecond frequency, with information on
bid-ask spreads, volumes and direction of trades, over the first quarter of 2015. This dataset enables us
to identify fast trades as those executed against a limit order within 200 milliseconds, i.e. faster than the
reaction time of human beings. Moreover, we build a dataset of about 150 announcements concerning
macro, financial and policy variables relevant for the exchange market in 17 countties.

We show that the entropy of the distribution of quotes is a good indicator to synthetize the
structure of the order book and its evolution in response to news, with a straightforward behavioural
interpretation in the spirit of Hong and Stein (1999). Second, we document that entropy is significantly
correlated with the share of fast trading in total trade. Third, we use a natural experiment — the reform
of the WM Reuters’ fixing methodology on 15 February 2015 — to ascertain the direction of causality
and show that high-frequency trading tends to create, rather than react to, a richer distribution of
exchange rate quotes as measured by entropy. Finally, we produce evidence that fast trading has a
significant and strong impact on market performance—improving rather than deteriorating indicators
of market efficiency and quality of trade execution.

In our interpretation, entropy is a key channel by which this occurs. That fast traders post
diverse quotes at no specific price levels arguably adds noise to fundamental information which, in
principle, might complicate the problem of other individual traders. But from a market-wide
perspective, this additional noise may help offset existing distortions that move prices away from
efficiency standards. By increasing the amount of information to be processed by traders, higher
entropy in the distribution of quotes helps avoid one-sided concentration and mitigates overshooting,
in turn bringing the pricing process closer to the prediction of classic theoretical models.

These findings matter for policy and research. From a policy perspective, they suggest that an
increasing diversity of exchange rate quotes associated with fast trading is not necessarily damaging for
market performance. It is actually beneficial in our estimates. This is a point deserving further attention
in the discussions about fast traders’ optimal regulatory regime. In particular, from a research
perspective, this suggest that future research should complement the results of this paper with an
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analysis of possible nonlinearities and a reconsideration of the role of entropy in situations of market
stress. Finally, our paper makes a contribution to the literature on high-frequency identification of
macro shocks, notably monetary policy shocks. It suggests that micro-market conditions, especially
high frequency quoting patterns, are crucial aspects of the mechanism underlying the transmission —
and interpretation — of monetary policy and other macro shocks to exchange rates.
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1 Introduction

The rise of algorithmic trading and fast trading in general has generated widespread concerns
about potential adverse effects on liquidity and volatility of financial markets (see e.g. Kirilenko
and Lo 2013, Lee et al. 2013, Chaboud et al. 2014, Lewis 2014, Hasbrouck 2015, Dobrev and
Schaumburg 2016). These concerns have in turn motivated a number of theoretical and empirical
studies into the channels through which fast trading impacts price formation and market thickness,
typically focusing on information, market structure, and expectations coordination (see Brogaard
et al. 2014, 2015, Chaboud et al. 2014, Latza et al. 2014, Biais et al. 2016, Foucault et al. 2016,

among others).

In this paper, we reconsider these issues from a new angle. Rather than focusing on the size
and direction of order flows and the other indicators usually studied by the market microstructure
literature (as in e.g. Evans and Lyons 2002, Evans 2002, Payne 2003, Love and Payne 2008,
Berger et al. 2008, Rime et al. 2010), we ask whether, in the data, there is any systematic relation
between fast trading and the pattern of order flows. Once this relationship is established, we
further investigate the pattern of order flows as the key channel by which fast trading affects the

performance and efficiency of markets.

What motivates our analysis is the observation that algorithmic and fast traders not only
exploit arbitrage opportunities arising from their ability to place and execute orders over infinites-
imal time intervals (e.g., instantaneously detecting the beginning of large orders in the market).
They may also try to exploit their ability to process large volumes of information simultaneously,
to direct and test the market with orders at disparate prices, not necessarily in line with the
market norm given available information. Correspondingly, algorithmic trading may rely on
programs that either generate a structured and tidy flow of orders, conditionally predictable
once the market starts to move in response to news, or place seemingly erratic orders. By way of
example, the strategy known as “quote stuffing” consists in quickly entering and withdrawing a
large number of trading orders in an attempt to flood the market and, in turn, create confusion
and trading opportunities for fast traders (see, e.g. Biais and Foucault 2014). In certain trading
venues like e.g. NYSE, AMEX, and NYSE-Arca, the ratio of orders relative to actual transactions
has exploded in the past decade, together with the increasing activity of high-frequency traders.

Arguably, which trade structure prevails and better describes fast trading is consequential for
the market equilibrium. If the prevailing pattern is arbitrage, the sequence of orders from fast
traders would mainly inform other traders about the logical structure of the algorithms engaged

when news hit the market. In the prevailing pattern is that of testing and directing the market,

LOther fast trading strategies include “smoking”, which consists in posting alluring limit orders to attract slow
traders while executing trades on less generous terms, and “spoofing”, which involves placing a large number of
orders in the opposite direction to fast traders’ true intentions in order to lure slower traders and move prices to
the benefit of the fast traders. Over time, many of these practices have been deemed as illegal.
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instead, the distribution of orders would appear spread out and irregular, potentially complicating

the traders’ task of extracting relevant information from observing the order book.

In light of these observations, information theory provides a natural metric to quantify the
structure of the order book, the Shannon entropy (Shannon and Weaver 1949). Intuitively, the
Shannon entropy of a distribution can be understood as the extent of its diversity—maximal for
a uniform distribution (see, e.g., Brissard 2005). Applied to the sequence of orders in reaction to
news hitting the market, a low entropy will result from distributions of order prices that are quite
compact and concentrated. Conversely, entropy will be high when prices in the order book are

spread out and erratic.?

The contribution of our paper to the literature is threefold. First, we show that the entropy
of the distribution of quoted prices is a good indicator to synthetize the structure of the order
book and its evolution in response to news, with a straightforward behavioral interpretation in
the spirit of Hong and Stein (1999). Second, we document that entropy is significantly correlated
with the share of fast trading in total trade. Third, we produce evidence that fast trading has
a significant and strong impact on market performance—improving rather than deteriorating
indicators of market efficiency and quality of trade execution. In our interpretation, entropy is a

key channel by which this occurs.

We carry out our study on the foreign exchange market, focusing on the response to news.
Micro-level data on exchange rates are drawn from Electronic Broking Services (EBS), one of
the two major platforms for trading FX. Our high-frequency data focuses on the first quarter
of 2015, and covers the abandon of the EUR/CHF peg by the Swiss National Bank and the
announcement and implementation of the quantitative easing policy by the European Central
Bank. Our sample covers seven of the most liquid currency pairs (EURUSD, USDJPY, EURJPY,
GBPUSD, EURGBP, USDCHF and EURCHF), sampled at the 100-millisecond frequency, with
information on bid-ask spreads, volumes and direction of trades. This data enables us to identify
fast trades as those executed against a limit order within 200 milliseconds, i.e. faster than the

reaction time of human beings of 250 milliseconds or more, in line with Latza et al. (2014).3 We

2The concept of entropy was originally used by physicists and mentioned for the first time in 1865 by German
physicist Rudolf Clausius. It has been also used in information theory, computer science and, more recently, in
economics and finance. Finance researchers use it to define portfolio selection and asset pricing strategies—in
particular for options (see Zhou et al. 2013 for a review). Physicists have also used the concept of entropy in recent
papers to study the time series properties of FX returns (e.g. Wang et al. 2012; Sosic et al. 2016). In particular,
they find that entropy is higher in times of financial crises (e.g. the Asian crisis or the subprime crisis), which
they consider as an indicator of higher “confusion” in FX markets—without outlining the economic mechanism
through which entropy emerges in FX markets and discussing why it matters, however. We use here one of the
interpretations of the concept of entropy, as defined by Brissaud (2005), p. 2: “For an observer outside the studied
physical system, entropy represents the lack of information about the state of the system. But for the system itself,
entropy represents information, positively counted”.

3Fast trading is a subset of algorithmic-generated trades. It partially overlaps with high-frequency trading,
which includes trading strategies based on, inter alia, very large order submissions and cancellations. Latza et al.
(2014) use London Stock Exchange data sampled at the millisecond level. They are therefore able to use a finer
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rely on FX Street to build a dataset of about 150 announcements concerning macro, financial
and policy variables relevant for the exchange market in 17 countries, including information on
previous, forecasted and announced values. We derive a standardized measure of the news content
of each announcement. And we calculate the entropy of the distribution of quoted prices following

each announcement hitting the markets over a 30 minutes window.

Our main empirical findings are as follows. First and foremost, we document that the entropy
of the distribution of quoted prices is significantly and positively correlated with the share of fast
trading: the higher the share of fast trading in the exchange market, the higher is entropy. The
association of fast trading with entropy remains strong and highly significant after controlling for
standard metrics such as liquidity, order book depth and order flows, as well as for the type of
news hitting the market. Among the regressors, order flows has a positive although small effect

on entropy; order book depth has a negative and significant effect.

Second, while there is no good instrument to establish the direction of causality—high entropy
may well induce a high share of fast traders to be active in the market—we produce indirect
evidence consistent with the view that high entropy is the result of fast trading, rather than its
cause. As a natural experiment, we consider the reform of the WM Reuters’ fixing methodology
on 15 February 2015, extending the fixing window from one to five minutes. This reform was
introduced well after legal cases were drawn up against large banks for market manipulation,
causing large intermediaries to reduce or even phase out their FX trading at the time of fixing.
The reform targeted large orders and high frequency trading. We show that, before the reform,
fixing coincided with a peak of fast trading and entropy; extending the fixing time to five minutes
removed this peak. The reform thus resulted in a large drop in the share of fast trading active in
the market, and, correspondingly, a large drop in entropy—suggesting that it is high-frequency
trading that tends to create, rather than reacting to, a richer distribution of exchange rate quotes.

Third, building on the methodology of Andersen et al. (2015), we document the effects of
fast trading and entropy on the market reaction to news and on quality of trade. While more
entropy means noisier information—which, from an individual trader perspective, might translate
into “confusion”—, we show that, from an aggregate perspective, the added noise may have
desirable effects. In our findings, fast trading and entropy both cause prices to move more in line
with the market-efficiency (random walk) hypothesis, and improve indicators of quality of trade.
Specifically, we find that a 10 percent increase in entropy reduces the negative impact of macro
news —negative in the sense that prices move away from the random walk hypothesis— by over

60% for effective spreads, against 40% for realized spreads and price impacts.

These results unveil a (somewhat unexpected) key virtue of entropy. If markets tend to overreact

threshold of 50 ms, but found that it was not qualitatively different from a 100 ms threshold.
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to news, say, causing exchange rate overshooting, by increasing the amount of information via a
richer distribution of quoted prices to be processed by traders, entropy moderates their response.
In line with the seminal analysis of Hong and Stein (1999), it hence mitigates overreaction and

brings the pricing process closer to the prediction of classic theoretical models.

Our results complement the conclusion of the vast body of literature mentioned above, relating
quantitative characteristics of trading (e.g. bid-ask spread, orders flows, etc.) to fast trading and
microstructure features of markets (e.g. liquidity provision, price impact, market efficiency, etc.)
as in e.g. Brogaard (2010), Brogaard et al. (2014), Easley et al. (2012). A number of studies—a
leading example being Hendershott et al. (2011, 2013 and 2014)—find potentially positive effects of
fast trading on market liquidity and performance, in terms of cost of trading and informativeness
of quotes. Breedon et al. (2018) find that algorithmic traders withdrew liquidity and generated
uninformative volatility in Swiss franc currency pairs in the wake of the removal of the cap on
the Swiss franc on 15 January 2015, which came as a complete surprise to market participants,
while human traders did the opposite, although they find no evidence that algorithmic trading
propagated these adverse effects on market quality to other currency pairs. Van Kervel and
Menkveld (forthcoming) find that high-frequency traders initially lean against large institutional
orders but eventually change direction and take position in the same direction for the most
informed institutional orders. Our specific contribution is to show the key role played by the
pattern of exchange rate quotes, and document how this varies with fast trading. Focusing on the
foreign exchange market reaction to public news, we provide evidence that the pattern of trade
conveys complex information for market participants, with significant effects on the process of
price formation—we document their importance over a 30 minutes windows. Overall, our findings
suggest that fast trading not only matters for the microstructure of the foreign exchange market,

but may also have broader aggregate implications.

Our paper further relates to the thriving literature on high-frequency identification of macro
shocks, notably monetary policy shocks. In particular, a growing body of studies, e.g. Kuttner
(2001), Cochrane and Piazzesi (2002), Bernanke and Kuttner (2005), Gertler and Karadi (2015)
and Nakamura and Steinsson (2018), Jarocinski and Karadi (2018), have sought to exploit the
fact that a large amount of monetary news is revealed in the immediate aftermath of sched-
uled monetary policy meetings. These studies typically construct monetary policy shocks using
unexpected changes in interest rates over narrow time windows (e.g. 30 minutes) surrounding
scheduled monetary policy announcements. Insofar as it relies on interest rate surprises around
policy announcements, a key strength of this approach is how cleanly it is able to address concerns
about endogeneity. Our paper puts the issue under the microscope to understand the mechanism
and aims to identify how high frequency quoting patterns at the micro level influence the response

of exchange to macro news, including monetary policy news.

This paper is organized as follows. In the following section, we introduce our conceptual
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framework with a brief discussion of our empirical measure of the structure of trade—-Shannon
entropy. We then present a simple partial equilibrium model of asset pricing where this measure
emerges as the natural metric of the information content of order books relevant to price formation.
In Sections 4 we show that fast trading and the Shannon entropy of the distribution of quotes are
systematically related, and produce evidence that fast trading raises entropy, rather than reacts
to it. In Section 5, we analyse how fast trading and entropy impact price formation, quality of

trade execution and market efficiency. Section 6 concludes.

2 Entropy and the structure of order books/flows

In this section, we introduce our conceptual framework with a brief discussion of the Shannon
entropy, that we propose as an empirical measure of the structure of trade. We then present
a simple partial equilibrium model of asset pricing where this measure emerges as the natural

metric to measure the information content of order books relevant to price formation.

At an intuitive level, entropy is typically introduced drawing on an example from information
theory. A message is sent by an emitter through a channel and delivered to a receiver who attempts
to infer which message was initially sent. Through the transmission process, the channel might
have distorted the information initially available. Entropy measures the value of information that
the message contains. If the message represents the realization of an event, the higher the number
of possible events in the message, the higher the entropy; in particular, if in the message all events
are equally likely, entropy is maximal. In contrast, in the case of events known with certainty,
entropy equals 0. In other words, entropy is a measure of unpredictability of the set of states of

the worlds described in the message.

In our context, we may think of entropy as characterizing uncertainty about the direction
that a price process may take when some news hit the market. Entropy is higher, the higher the
dispersion of beliefs about the implications of the news in question for the market price, thus the
most disperse is the distribution of price quotes in the order book. A measure of this dispersion is

the information content of entropy.

Formally, let p; represent the probability that price ¢ occurs in the sample’s distribution of

exchange rate quotes. By the definition of entropy by Shannon and Weaver (1949), we can write:

H (P,,time horizon) = — Z@l log p;).

7

As already mentioned, the Shannon entropy can be understood as the extent of the diversity of
a statistical distribution. The negative log increases the weight given to rarer events because

they carry more information (i.e they surprise when they occur). Entropy is hence maximal for
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uniform distributions and minimal for events known with certainty.

To visualize entropy, in Figure 1 we show the distribution of EUR/USD quotes sampled at
the one-minute frequency immediately after the announcement of two macro news. We select
two case studies that contain a broadly similar number of quotes (about 7,000-9,000) for the
same, most liquid, currency pair— to control for trade volume and liquidity. In the figure, each
case study is synthetized by two scatter plots—the upper scatter plot shows quotes and volumes,
while the lower one shows the distributions of the quotes. Contrast the two cases. In the case
study to the left of the figure, the distribution of quotes is densely concentrated on a narrow
range of prices within intervals smaller than 2 pips. In contrast, in the case study to the right of

the figure, the distribution is spread out. Shannon entropy is low in the first case, high in the second.

These two case studies provide a preview of a key empirical result from our analysis: on
average, the distribution with low entropy (to the left) corresponds to a low share of fast traders.
A high share of fast traders characterizes the distribution to the right, with high entropy. We will

see that this pattern is supported by extensive empirical analysis.

Why should entropy be relevant for market performance? A parsimonious way to elaborate on
this question consists of drawing on the well known model by Hong and Stein (1999), henceforth
HS. Departing from full rationality, these authors specify an economy with different types of
agents trading claims on a risky asset, where prices are not fully revealing. Specifically, they
postulate that “news watchers” are sequentially exposed to bits of information—or informative
subinnovations of the fundamental. The key message from their analysis is that these traders

will tend to “underreact to news”, relative to the full information price under rational expectations.

HS postulates that news watchers only observe a small subset of innovations that the news
convey but can acquire sequentially more subinnovations, according to a “rotation scheme.” In
the same spirit, we postulate that a news watcher gets information sequentually by observing the
prices that are quoted in the order book over time. Individual orders may reflect both fundamental
subinnovations and individual beliefs: the higher the dispersion of news and beliefs in the market,
the higher the spread of the distribution, the less accurate the information on the innovation the

trader can derive from an incomplete observation of the quote distribution.

Concretely, a trader will observe exchange rate quotes at specific price levels which vary by
a few fractional pips, e.g. for the euro-dollar exchange rate, at 1.1558, 1.1559, 1.1560, 1.1561,
1.1562, etc. By observing the orders that hit the market sequentially, the trader can update the
frequency of each of these quotes—the longer she/he waits, the closer she/he will get to the market
distribution. As in HS, the key trade-off is apparent: by waiting longer before posting her /his own

order, our representative trader will observe a larger share of the distribution of orders and thus
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acquire better information. However, by waiting longer, she/he may lose trading opportunities.*

We assume that, from past trades, the representative news-watcher has a priori knowledge
about the number of quotes that follow a news, and has an priori idea of the share of the distribution
of quotes she/he wants to observe before taking a position.® Let p; denote the frequency of quotes
at price level 7, and « denote the share of the distribution of prices the trader decides to observe
a priori. After the news hits the market, she/he will start observing orders sequentially appearing
in the book. She/he will observe prices that are most frequently quoted, then move on to consider
prices that are less frequently quoted—up to the point at which the frequency of the observed
prices make up for a% of the total number of quotes he/she wants to observe before taking a
position. Denoting z the number of quoted prices (subinnovations of information) that she/he

observes, we can write the problem of the trader as:

z
z = min Z pi 2«
i=1
Intuitively, the trader’s problem is to find the number of quoted prices he/she needs to look at to
extract sufficient information from the distribution of the quotes in question before trading. ©
We can give a nicer concave shape to the optimization function, leveraging on the fact that
f(x) = z1n(x) is strictly bijective over [0,1]. The above minimization problem is thus equivalent

to the following

z 2
Z = min sz‘ In (p;) =max— Zpi In (p;)
i=1 i=1
The quantity —>_;_, p;In(p;) is nothing else than the Shannon entropy. Crucial for our
purposes is that z—the number of quotes optimally observed by the trader before taking action—
is an increasing function of the Shannon entropy. Essentially, our z variable plays a similar role
as the rate of information diffusion in Hong and Stein (1999), where traders are assumed to
rotate in observing subinnovations about the fundamentals. In their context, z can be thought of

as a proxy for the linear rate of information flow—higher values of z imply slower information

4What is central in our analysis is to model the time it takes for our representative trader to process information,
not the interaction between traders who process information.

5That traders know a priori the size of the order book is not an implausible assumption. It is common knowledge
that the size of the order book hinges much on the time of the day (i.e. that trading in many pairs is typically much
less active at night, i.e. during the Asian session). The size of the order book varies systematically conditional on
the type of macro news (e.g. big monetary policy meeting decisions attract much more trading than releases of
low-key data such as e.g. the unemployment rate).

6By way of example, imagine a situation in which 10,000 quotes are currently active on the market and spread
over 10 different price levels or subinnovations (1 / 1.1 / 1.2/ ... /1.9). 3 price levels are overly attractive, with
3,000 quotes each. The remaining 1,000 quotes are evenly spread out among the 7 other price levels. In such a
case, the trader processes 90% of the available quotes by looking at only 3 price levels. Now imagine that the same
number of quotes and price levels are distributed completely uniformly. Each price level attracts 1,000 quotes,
therefore representing 10% of the market. If the trader wants to cover 90% of distribution of active quotes, he/she
needs to look at 9 different price levels and integrate them into his/her decision. Because the quotes are much
more dispersed, processing information becomes more complicated—the time needed for it may become longer.
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diffusion. In our context, higher entropy means a richer dispersion of quotes to process before
trading. Moreover, following the same steps as Hong and Stein, it can be shown that the difference
between price p; quoted by the trader observing the market and price p* obtained in a fully
revealing equilibrium —i.e. by synthesizing the entire distribution of quotes— is a function of

Shannon entropy.

P —p; =G (—Zm In (m))
=1

By analogy with HS, higher values of entropy—higher values of z in HS— also imply slower
information diffusion, insofar as entropy is a measure of the rate of information flow. And the
difference between the fully revealing "fair' price and the trader’s price is also a function of
entropy. It should be clear here that our interpretation of entropy draws on models with cognitive
bias, featuring divergence of opinions or beliefs among traders. In line with these models, the
dispersion of exchange rate quotes results from a large number of a priori beliefs among market
participants about the price process. However, in the case of algorithmic trading, the dispersion
of exchange rate quotes is not necessarily driven by heterogeneous views about the interpretation
of a fundamental shock—it may reflect the “absence of a view” about fundamentals, with fast
traders posting a number of diverse quotes to fit into their trading strategies. Observationally, of

course, this would be equivalent to a large number of traders with different views.”

But this is where our approach is most effective in shedding light on the market micro-structure,
with entropy defining an almost ideal metric to analyse how markets process information ema-
nating from the distribution of exchange rate quotes. Market metrics that are standard in the
literature, such as quoting spreads (i.e. the distance between the best and the worst ask, or the
best and the worst bid), tend to weigh infrequent subinnovations, arguably representing outliers,
with potentially lower volumes and smaller probabilities of being executed. What traders may
want to obtain is information about the structure of the entire distribution of quotes—paying
more attention to the prices that are most frequently quoted, arguably reflecting market-relevant

subinnovations. We actually confirm this conjecture in the empirical section of the paper.

3 Data

Our high-frequency data focuses on the first quarter of 2015, and covers the abandon of the
EUR/CHF peg by the Swiss National Bank and the announcement and implementation of the
quantitative easing policy by the European Central Bank. Exchange rate quotes and transacted
prices are taken from EBS, which is one of the two largest electronic platforms in the foreign

exchange spot market (with Thomson Reuters). In particular, the vast majority of electronic spot

"In a model where price quotes are itself news, these may not necessarily be informative on the fundamentals.
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trading for the two most liquid currency pairs, EURUSD and USDJPY is transacted through
EBS. We have information on best bid and ask quotes, on volumes and on direction of trades.
Data are sampled at the 100-millisecond frequency. We have data on seven liquid currency pairs
(EURUSD, USDJPY, EURJPY, GBPUSD, EURGBP, USDCHF and EURCHF). We compute
order flows, amounts traded and number of trades, as well as the Shannon entropy of exchange
rate quotes for the pairs in question. We match each trade with the most recent quote at the
same price of opposite direction, and compute the time difference between the trade and matched
quote in question. When the time difference is below 200 milliseconds, trades are classified as
“fast” insofar as this threshold falls beyond the physical abilities of human beings in terms of

speed of execution.

Our data on announcements are taken from FXStreet. FXStreet provides information about
the type of announcements, their realized, previous and forecasted values, as well as the corre-
sponding time stamp (at the second level). We break announcements into five categories: real
macroeconomic announcements (e.g. GDP, trade, unemployment data releases); finance announce-
ments (bond auctions, capital flows, etc.); policy rate decisions by central banks; inflation-related
announcements (HICP, consumer and producer price index, etc.) and other announcements (e.g.
speeches from policy makes, international policy summits, etc.). Table 1 breaks down macroeco-

nomic announcements by country and type, while Table 2 provides examples.®

[Tables 1 and 2 about here]

We can calculate expected values using the median of forecasts made by professional forecasters,
collected shortly before announcement of the macroeconomic indicators in question. Following
Andersen et al. (2003), we measure the news content of the announcement by calculating the
normalized difference between the realized value of a given macroeconomic indicator k£ and its
value expected by market participants:

Ak _ Fk
k t i
St = —F Vkel
where AF is the value of the indicator k announced at time ¢, F}* is the expected value of the same

indicator, o* is the sample standard deviation of A¥ — F¥ and I is the set of information indicators.

The use of standardized news (in other words scaling the difference between the announced
and expected values of indicator k by its respective standard deviation) facilitates the comparison

of responses of exchange rates to different announcements. We should stress that, in most cases,

8following link https://www.fxstreet.com/economic-calendar. FXstreet is a global online currency trading
portal that offers real-time exchange rates, currency charts, news, market forecasts, technical analysis and currency
conversion tools. Owned by Forexstreet S.L and registered in Barcelona, FXstreet is published for more than 50
countries and ranks within the world’s top-ten online currency trading portals.
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announcement days are known in advance and surveys of market expectations are realized before
macroeconomic data are released—mnews can be considered as exogenous with respect to other eco-
nomic developments. In extended specifications, we complement the set of standard macroeconomic
announcements with other relevant pieces of news mentioned above, such as major economic policy
decisions, outcome of key international economic policy meetings, speeches, etc. To the extent

that no expected values are available for these pieces of news, we analyze them as robustness checks.

Overall, our dataset comprises about 150 news and 1,223 observations (the same piece of
news can impact different currency pairs). Descriptive statistics of our main variables of interest
are shown in Table 3. The normalized surprise variable (as defined above) varies significantly in
both directions, from -4.1 to 3.6 standard deviations. We can thus explore the market impact of
news/shocks of different sizes. Following the news, there is a very high number of orders in the
order book—in our sample, we can have more than a million quotes over the 30 minutes window
following a piece of news. However, the number of deals does not exceed 7,000. Over the same
time window, the log of entropy varies significantly; so does the share of fast traders, which varies

significantly across currencies, as shown in Figure 2 below.

Figure 2 shows the distribution of the proportion of fast trades for different currency pairs in
response to news. The boxplot indicates the 10th, 25th, 50th, 75th and 90th percentiles, respec-
tively. It shows that the share of fast trades varies considerably between the different currency
pairs, ranging from nil to 90 percent. Not all currency pairs attract fast trades to the same extent,

in other words.

[Figure 2 about here]

4 Fast trading and entropy of the distribution of price

quotes

Our first question concerns whether, in the data, there is any systematic relation between fast
trading and the structure of exchange rate quotes, as synthesized by the entropy of their distribution.
To address this question, we estimate a log-log regression between the two variables, controlling
for the wide set of controls used in the market microstructure literature, and including currency

fixed effects. The regression model is as follows:

logHj: = o + BplogFT; + OF; 4 + AmT;; + NumTj ¢ + €+ (1)

where Hj ; is the entropy of exchange rate quotes measured over a 30 minutes horizon; F'T} ; is the
share of fast trading for currency pair j at time ¢, OF}; the order flow, AmT); the amount traded

and NumT}; the number of trades; the residual is denoted as ¢;,,. The results are presented in
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Table 4. The elasticity coefficient 3 is significant at the 1% level and hovers around 0.2: an

increase in fast trading activity by 10% is associated with a rise in entropy by 2%.

[Table 4 about here]

Observe that some of the regressors are not significant—including trading book depth, number
of deals, number of quotes. Order book flow is significant, but small. Interestingly, order book
depth is significant and negative—offsetting the effect of fast trading: entropy falls with order
book depth. It is worth stressing that the inclusion of controls actually raises the magnitude of

the coefficient on the share of fast trading.

Table 4 provides evidence consistent with the view that, on average, fast traders are post-
ing diverse quotes, increasing entropy. However, it can be argued that there is an endogenous
relationship between entropy and fast trading. It may be possible that fast traders are attracted
by a high diversity of quotes in response to news, to grab opportunities and act as middlemen,
capturing bid-ask spreads as in the model of e.g. Jovanovic and Menkveld (2016). In this sense,
high frequency traders may respond to entropy. Unfortunately, to our knowledge, there is no

reliable instrument to control for endogeneity at the microstructure level.

To gain insights on this reverse causality problem, we consider a case study with the features of
a natural experiment. On February 15th, 2015, following an earlier scandal on fixing manipulation,
WM Reuters decided to modify the way it computes the fixing of the exchange rate at 4 p.m.
GMT (London time). Before the reform, fixing was computed over a 1-minute window. After the
reform, the window in question was extended to 5 minutes. This reform was designed to avoid
very short-term manipulations and targeted specifically large orders as well as high frequency
quoting behavior around 4 p.m. Therefore, fast traders should have been the first to be impacted
by this methodological change. An important additional piece of information was that the reform
was introduced well after large intermediaries were hit by legal action on charges of market
manipulation. This legal action meant that all large banks were already quite wary and caution

in their trading at the time of the fixing.

[Figure 4 here]

Figure 4 presents the evolution of entropy before and after the reform, computing median
entropy at 10-second intervals over 30 days before and after 15 February 2015. As is apparent
from the figure and also from two statistical tests (difference in means and difference in medians),
the fixing reform removed the peak in entropy observed before the reform and smoothed quoting
patterns. As argued above, large financial intermediaries were already conspicuously absent from

the market. This suggests that the fall in entropy can be attributed to a large extent to the drop
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in fast trading done outside banks.

The result from this case study suggests that it is fast trading activity that creates a richer
distribution of exchange rate quotes, increasing entropy—inconsistent with the alternative view,

that high entropy exogenous to fast trading attracts this class of market participants.

5 Fast trading, entropy and market efficiency

In this section, we investigate how fast trading and entropy affect the reaction of the foreign
exchange rate market to macro news. We will first define a set of key indicators of market efficiency
and quality of trade execution that we employ as dependent variables in our regression analysis.

Then we will discuss our main results.

5.1 Empirical framework
5.1.1 Indicators of market efficiency

We measure market performance and quality of trade execution using standard indicators proposed

in the literature—price efficiency, bid ask spread, price impact.

One may argue that volatility of exchange rates is a natural metric to study the market impact
of fast trading. However, it is likely that some fast traders will generate volatility while others
will seek to exploit it. In other words, volatility may tend to be endogenous with respect to fast
trading activity. To circumvent this issue, the literature on high frequency trading, and especially
the literature on high frequency quoting (see e.g. Conrad et al., 2015) has considered alternative
metrics. One such metric is price efficiency. According to the market efficiency hypothesis, the
price of financial assets should follow a random walk (see Fama 1970). Lo and MacKinley (1988,
1989) propose a variance ratio test, to estimate the distance of the price process from a random
walk.” The main idea is that the variance of a random walk is linear in time intervals. Under the
random walk hypothesis, the ratio between the short-term variance and the long-term variance per
unit of time is equal to 1. Deviations from 1 would therefore provide evidence against the random
walk hypothesis. Using the test statistic distribution provided by Lo and MacKinley (1989) for
heteroscedastic time processes, we estimate both the variance ratio statistic and its associated
p-value (against the random walk hypothesis) immediately after announcement of macro news,
by comparing the post 5-minutes unbiased variance estimator with the post-30 minutes one. The
advantage of using the variance ratio as a metric of price efficiency is that immediate fast trading

activity is pre-determined with respect to the variance ratio estimated over a 30 minutes window.

9See Shiller and Perron (1985) for an analysis of statistical methods for testing the random walk hypothesis on
financial markets.
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For a given time interval ¢ and time horizon n, Lo and MacKinley (1989) define the following

unbiased variance ratio test as measure of the log of the price process Xg, X1.., X7:

MT(Q) = 2 1 (2)
where 02(q) = £ Y09 (Xp — Xy g — i), 02 = =10 00 (Xp — Xp_y — )%, m = glng — g +

1)(1 = ;L) and the mean drift in prices is measured as:

o= (Xk;_Xk—l) = n*q(Xnk_XO)

In the literature, some studies focus on the test statistic defined above as the dependent
variable. But the variance ratio test is by essence two-sided. Therefore, we prefer to use the
p-value associated with the test statistic instead, relying on the heteroscedastic robust asymptotic

distribution proposed by Lo and MacKinley. The asymptotic distribution in question is:

M,.(q) ~ NI[0,V(q)]

: _ \a—172(g=34)y2 . N :ijﬂ(X’“*X’“—l*“)QX(X’*"—-ffx’“—-i—lfﬂﬁ
with V(q) = 32721 [F9-7]° x 6(j), where 6(j) = S (X0 1=

In addition to the variance ratio test, we consider other metrics traditionally used in the
financial market microstructure literature, such as the effective spread, the realized spread and
the price impact. The effective (half) spread is defined as:

(Pjt = mji)
esjt = qjr————"

J j mie
where ¢;; is equal to +1 for buyer-initiated trades and -1 for seller-initiated trades, p;; is the
transaction price and my; is the prevailing quote midpoint.

The realized spread is computed as:

(pjt — Myjtsr)

rSjt = q;
gt gt
mjt

where mj;, is the quote midpoint 7 periods after the trade. The price impact is computed as:

Piji = q; tw
Mt

All these metrics proxy for quality of trade execution; tighter spreads and lower price impacts
are associated with lower execution costs and therefore better market functioning. Again, because
these metrics are based on future prices values, they are unlikely to be endogenous to contempo-

raneous fast trading activity.
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Descriptive statistics for these variables are reported in the last three columns of Table 3.
The random-walk test metric, the p-value of the variance ratio, is roughly equally distributed
between significant results (below 10%) and non-significant results; the median of the p-value
is 9%. Measures of quality of trade execution—effective spread, bid-ask spread—exhibit large
outliers, which is not infrequent in the aftermath of a shock (large news in our case). The median
value of the absolute bid-ask spread in the sample is around 30 pips, quite usual in normal times
for FX traders, but due to large outliers, the mean exceeds 7 percentage points (our sample
captures fully the first quarter of 2015, including significant events such as the announcement by
the European Central Bank of the launch of its Asset Purchase Program on January 15th, the
removal by the Swiss National Bank of the floor on the EURCHF on January 22nd, the EURUSD
flash crash on March 18th, etc.). To mitigate concerns that these outliers may drive our results,
we carry out robustness checks, by running regressions where the observations are winsorized
below the 95th upper percentile of the absolute bid-ask spreads distribution. Results are robust

to winsorization and are reported in the online appendix.

5.1.2 Regression model

Our goal is to investigate the extent to which fast trading and entropy impact the reaction of the
foreign exchange market to shocks to macroeconomic fundamentals. To this end, we regress the
indicators of price efficiency and quality of trade execution defined above, on macroeconomic news
(expressed in standard deviations), the log of fast trading activity/entropy, and an interaction
term between these and macroeconomic news. Essentially, we build upon the specification of
Andersen et al. (2003), who restrict their analysis to macroeconomic news, by augmenting the

model with entropy and fast trading.

In the regression model, we also include a number of controls in the baseline estimates, such
as order flows, in line with Evans and Lyons (2002), as well as liquidity, book depth, type of news,
and other variables, in line with studies on market quality such as Conrad et al. (2015). Our
dependent variables for price efficiency or execution quality (based on spreads), are all in absolute
values (e.g. tighter spreads indicate lower costs of execution independently of their signs). By
the same logic, we also measure the surprise component of macro indicators in absolute value, as
we are not interested in asymmetric effects of downside or upside surprises, but on whether the

surprise is large or small.

We consider first the fast-trading specification of our model. The equation we estimate for

each currency pair j is:

Imj¢| = o + B, ’S]’it| +Bpr I FTj 4+ f;InFTj, - ‘Sf’t’ + controls + ¢4 (3)
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where |m; ;| is either a price efficiency or an execution quality variable, Sj’it’ the standardized
news associated with the announced value of indicator k for country j at time, InF'T}, is the log
of fast trading activity over the period of interest, and the controls include order flows for currency
j at time ¢, the amount traded, and the number of trades; a; is a currency fixed-effect, and

€;,¢ is the residuals. In extensions of this baseline specification, we also control for the type of news.

We define the market reaction to macro news as g‘{g,ﬁt'l —for our baseline specification this
gt
will be 9| |
myj ¢
— = [, + B InFT;
9 ’Sit‘ ﬁs ﬁ[ 7t

Therefore, 5 is the semi-elasticity of the market reaction to macro news with respect to fast trading.

The regression model for fast trading is the same as above, whereas the log of fast trading

activity over the period of interest In F'T;; is replaced with entropy Hj ;:

Imji| = o + B, |S§€7t| +B8prnH; + By InH,j,;- |Sg]‘€,t’ + controls + €4 (4)

where Hj; is the entropy of the distribution of quotes, measured over a 30 minutes window after
the news. Again, the 3; coefficient represents the semi-elasticity of market quality measures with

respect to entropy conditional on macroeconomic news.

5.2 Results
5.2.1 Price efficiency

Our first set of results concerns the question of whether a higher share of fast trading and/or
higher entropy is detrimental to price efficiency, as measured by the statistical deviation of the
price process from a random walk. The OLS estimates of our fast trading and entropy equa-
tions (3) and (4) are shown in Tables 5 and 6. In either table, the dependent variable is the
heteroscedastic-robust p-value of the variance ratio test. Column (1) reports our baseline, while
columns (2)-(4) include order flows, liquidity measures and control for news type. All estimates

include currency fixed effects. Errors are robust to heteroscedasticity.

Results for our OLS estimates of the fast-trading equation (3) are shown in Table 5. The
coefficient for the surprise component of news is highly significant and negative—large surprises
lower the p-value of the variance ratio test. In other words, “large news” cause the price process
to deviate from the random walk hypothesis, and introduce price persistence as well as worsens
the quality of trade execution (typically by increasing spreads). However, and here is a key result,
the interaction coefficient between fast trading and the magnitude of the economic surprise is
of the opposite sign, i.e. positive, and significant at the 1% level: a large share of fast trading

attenuates the adverse impact of large macro news on exchange rate price efficiency.
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[Table 5 about here]

This is a key empirical finding. To visualize it, in Figure (3) we plot the average price impact
of news over a 30 minutes window, against the share of fast trading, by currency pair and type of
news. Besides one clear outlier, the US dollar response to policy interest rate news, the rest of
the observations are characterised by a negative relation between the share of fast trading and
price impact. A high proportion of high frequency trading tends to reduce the response of prices

to news. Why this is the case is what we will further discuss below.

[Figure 3 about here]

Results for our OLS estimates of the entropy equation (3), in turn, are shown in Table 6. The
coefficient for the surprise component of news is also negative—large surprises lower the p-value of
the variance ratio test—but now significant only at the 10-15 percent level. Nonetheless, the interac-
tion coefficient between entropy and the magnitude of the economic surprise has again the opposite
sign relative to the effect of news—and its effect is also significant only at the 10-15% level. High

entropy tends to attenuate the adverse impact of large macro news on exchange rate price efficiency.

[Table 6 about here]

5.2.2 Quality of trade execution

We now discuss our OLS estimates of model equations (3) and (4), where quality of execution
metrics (in absolute terms) are regressed on the surprise component of macroeconomic news and
either the share of fast trading or entropy. For each quality of execution variable, we report the
regression without controls and with the full set of controls. As above, currency fixed effects are

included in each specification, and standard errors are robust to heteroscedasticity.
[Table 7 about here]

The results for the fast trading equation are shown in Table 7. As in Table 6, the coeflicient
on macro news is significant at the 1% level of confidence and positive for the execution quality
variables—large macro surprises deteriorate execution quality (i.e., they are associated with wider
spreads). Once again, however, the interaction coefficient between the share of fast trading and
macro news is systematically of the opposite sign of the direct effect of macro news, and significant
up to the 1% level of confidence. A larger share of fast trading attenuates the adverse impact of
large macro news on quality of execution. The effect is economically sizeable. A 10% increase
in the share of fast trading in market activity reduces the impact of macro news by 9% for the

effective spread, 7% for the realized spread and 15% for the price impact.!®

10These estimated impacts are based on the estimated coefficients of model equation (3) discussed above, taking
into account both the direct effect of fast trading on trade quality execution metric, as well as the interaction
between fast trading and normalized news.
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[Table 8 about here]

Results obtained from model equation (4), where we replace the share of fast trading with
entropy, are also in line with the above. Across execution quality variables, the coefficient for
macro news tends to be positive, which indicates that large macro surprises deteriorate execution
quality (i.e. lead to wider spreads), but not consistently significant at the standard level. In
contrast, the coefficient of entropy is positive and highly significant. The interaction coefficient
between entropy and macro news is negative and significant at the 5% level when we include the
full set of controls. This indicates that entropy tends to attenuate the adverse impact of macro

news on the execution quality variables.

It is worth stressing that even the magnitude of the coefficients for entropy is broadly in
line with those obtained for the share of fast trading, after taking into account the fact that the
elasticity between the share of fast trading and entropy is estimated to be on the order of 0.2. So,
intuitively, one should expect a ratio of 5 between the two coefficients, as is roughly the case here.

Figure 5 summarizes the results for the two specifications.

[Figure 5 about here]

As an important check and placebo test, we run the model using as dependent variable a
different measure of dispersion of quotes, the quoting spread—defined as the average of the spread
between the best and worst asks and between the best and worst bids. Table 9 presents estimates
for different market quality metrics. In these regressions, the interaction terms between macro
news and the quoting spread is not significant. This is highly relevant, because, together with the
rest of our results, it confirms the view that fast trading affect market performance via its effect
on the structure of the order book, rather than pure outliers which may not be that relevant for
traders. This result clarifies and strengthens the case for using entropy as the relevant measure of

patterns in exchange rate quotes.

Finally, as additional robustness checks we obtained estimates with winsorized observations,
where we removed the upper 5th percentile of the distribution of absolute bid-ask spreads obser-
vations. We also obtained estimates where we used our measure of entropy in levels, rather than
in logarithms. In both cases, our results remained robust (see the tables in the online appendix

hereafter).

[Table 9 about here]
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5.3 Discussion

Overall, our findings lend support to the hypothesis that fast trading impacts market reaction to
macro news through its effect on quoting patterns, highlighting a so far understudied transmission
channel. A large share of high frequency trading dampens overreaction to news, reduces price
persistence and brings prices more in line with a random walk—hence closer to the prediction of

the efficient market hypothesis.

If one holds the view that fast traders such as statistical arbitragers or high frequency market
participants “trade without a view” about future fundamentals, our results would suggest that
the fact that they may end up posting diverse quotes at no specific price levels ends up having
desirable effects on market performance—arguably offsetting existing distortions that move prices
away from efficiency standards. One possible mechanism is that high entropy in the distribution
of quotes increases the amount of information to be processed by market participants. In light of
the classical analysis by Hong and Stein (1999), underlying our analysis in Section 2, this may
contribute to slow down markets and reduce their reaction to macro news.'! The seemingly erratic
pattern of quotes by fast traders appears to counteract any tendency of traders to overreact to

news through orders that rebalance trades and avoid one-sided concentration.

6 Conclusion

In this paper, we have pursued a novel approach to the analysis of fast trading, i.e. of transactions
executed against a limit order within 200 milliseconds, and of its impact on the microstructure of
financial markets, where we focus attention on how fast traders affects the patterns of exchange

rate quotes.

We have shown that high frequency trading is positively and significantly correlated with
the entropy of the distribution of quotes in reaction to news. We have produced evidence that
fast trading raises, rather than reacts to, entropy. We have documented and that entropy not
only brings prices closer to the random walk hypothesis but also improves indicators of market

efficiency and quality of trade execution.

Our paper also makes a contribution to the literature on high-frequency identification of macro
shocks, notably monetary policy shocks. It shows that micro-market conditions, especially high

frequency quoting patterns, are crucial aspects of the mechanism underlying the transmission —

I This also connects to the literature on the delayed overshooting puzzle uncovered by Froot and Thaler (1990)
who observed that gradual portfolio adjustment could explain why some investors are slow in responding to changes
in fundamentals, perhaps because these investors need some time to think about trades before executing them, or
that they simply cannot respond quickly to recent information; see Bachetta and van Wincoop (2010) ad (2018)
for more recent discussions.
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and interpretation — of monetary policy and other macro shocks to exchange rates.

Our findings suggest that, through entropy, fast trading may have desirable aggregate effects
on market performance, specifically stemming from enhanced heterogeneity in quoting patterns.
That fast traders post diverse quotes at no specific price levels arguably adds noise to fundamental
information which, in principle, might complicates the problem of individual (fundamental) traders.
But from a market-wide perspective, this additional noise—the activity of traders “without a
view on fundamentals”—may help offset existing distortions that move prices away from efficiency
standards. One plausible conjecture consistent with our empirical evidence is that markets tend
to overreact to news, causing exchange rate under- or overshooting. By increasing the amount
of information to be processed by traders, higher entropy in the distribution of quotes helps
avoid one-sided concentration and makes traders “pause” — so to speak — and slow down their

response, in turn bringing the pricing process closer to the prediction of classic theoretical models.

These findings matter for policy and research. From a policy perspective, they suggest that
an increasing diversity of exchange rate quotes associated with fast trading is not necessarily
damaging for market performance. It is actually beneficial in our estimates. This is a point
deserving further attention in the discussions about fast traders’ optimal regulatory regime. In
particular, from a research perspective, it would be important to complement the results of this
paper with an analysis of possible nonlinearities and a reconsideration of the role of entropy in

situations of market stress. We leave these topics to future work.
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7 Statistic appendix

7.1 Data

We use FX street to extract macroeconomic news, as well as market expectations associated
with the news in question. Because we want to focus on news with market impact, we extracted
news classified by FXStreet as “important”. This represents more than 150 macroeconomic an-
nouncements over 17 countries. We focus on the most liquid currency pairs, as high-frequency
trading is usually limited on illiquid markets. These pairs are: EURUSD, USDJPY, EURJPY,
USDCHF, EURCHF, GBPUSD, EURGBP. Note that we have much less currency pairs than

countries because we take news from several euro area members.

Overall, our dataset comprises 1,223 observations (the same piece of news can impact differ-

ent currency pairs). We present the descriptive statistics of our main variables of interest in Table 3.

Using FXStreet data, we were able to retrieve the time stamp indicating when announcements
were released. For each piece of news concerning the country of issuance of a particular currency
(for instance, for a macro announcement in the UK, we look at GBPUSD and EURGBP), we
compute in the following 30 minutes different metrics: random-walk test, average effective spread,
bid-ask spread, average quotes entropy, average share of fast trading, etc. Then we obtained for
each dyad (news, currency pair) a series of variables with market quality metrics, share of fast
trading and entropy averaged over a 30 minute-window. Our dataset is restricted to observations
with the said announcements. We therefore have a cross-sectional data set, not a panel data
set. This rules out estimation problems arising from e.g. clustered standard errors or serial

auto-correlation.

The typical trade-off for choosing a window of observations is to have a long enough time
period to capture most of the impact of announcements on the market, but short enough to avoid
confounding the impact of a particular announcement with other pieces of information. For this
reason, we chose 30 minutes as a time window. Besides, this allows us to implement the random
walk test, which is usually done in the literature by computing a short variance over 5 minutes

and a long one over 30 minutes.
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7.2 Random-walk test

Following Lo and MacKinley (1989), we define three parameters:

e The sample time of log prices. Even though our observations are sampled at 100ms intervals,
it makes little sense to look at log returns over such a small interval. We therefore sample

the data at 5-second intervals.
e Long and short horizons—set at 30 and 5 minutes, respectively.

e The “n” and the “q” parameters (as defined by Lo and MacKinley 1989)—set, respectively,
to 6 (30 minutes/5 minutes) and 60 (5 minutes/5 seconds).

From there, we compute the unbiased random walk statistic as explains in the text. The

p-value test is two-sided.

7.3 Quality of execution metrics

We present the computations of the quality of execution spreads in section 5.1.1. Typically, we
compute the spreads at the 100 ms frequency based on the best bid and the best ask, unless
otherwise mentioned (one exception is the quoting spread, which is based on the average spread
between the best and worst bid and the best and worst ask). We then take the average of these

metrics in the 30 minutes following the macro announcements.

7.4 Share of fast trading

To compute the share of fast trading over a certain time frame, we match all trades with their
corresponding quote (same price, volume and opposite trading side). We then look at the time
difference between quotes and trades and define as fast trading those executed below 200ms

(bearing in mind that the average reaction time of a human being is above 250ms).

7.5 Entropy

To compute the entropy of the distribution of quotes, we consider all quotes active in the market
in the 30-minute period following a macroeconomic announcement. From this distribution, we

compute the Shannon entropy using the formula presented in section 2.
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