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Abstract

A statistical decision rule incorporating judgment does not perform
worse than a judgmental decision with a given probability. Under
model misspecification, this probability is unknown. The best model
is the least misspecified, as it is the one whose probability of underper-
forming the judgmental decision is closest to the chosen probability.
It is identified by the statistical decision rule incorporating judgment
with lowest in sample loss. Averaging decision rules according to their
asymptotic performance results in decisions which are weakly better
than the best decision rule. The model selection criterion is applied
to a vector autoregression model for euro area inflation.

Keywords: Statistical Decision Theory; Model Selection Criteria; Inflation Fore-
casting.
JEL Codes: C1; C11; C12; C13.
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NON-TECHNICAL SUMMARY

Suppose that a decision maker needs to bet on how much inflation will average
over the next two years. She thinks that the medium term inflation will
be slightly below 2%, say 1.9%, but she is not sure and therefore asks an
econometrician for advice. What should the econometrician recommend? If
the econometrician knows the correct statistical model, in Manganelli (2018)
I have shown how it is possible to arrive at a recommendation which improves
upon the judgmental choice of the decision maker with a given probability.
In the real world, however, the econometrician does not know the correct
statistical model. In fact, there are very good reasons to doubt that such a
model may exist at all. What should the econometrician recommend in this
case? This paper is concerned with providing an answer to this question.

In addressing this question, I rely on Hal White’s estimation and infer-
ence theory under possible model misspecification. Casting the statistical
problem in terms of decision theory, this paper shows that the most impor-
tant consequence of model misspecification is that the econometrician can no
longer guarantee that her recommendation will improve upon the judgmental
choice of the decision maker with the given probability. Rather this prob-
ability becomes unknown. The best the econometrician can do is to search
through a large class of models to find the least misspecified one, which is
characterized by the fact that the unknown probability of underperforming
the judgmental decision is closest to the given one. The best model is the
one associated with the decision rule with lowest in sample empirical loss.
If the class of models considered by the econometrician contains the correct
statistical model, this model selection criterion is able to identify it, as more
and more data become available.

I apply the model selection criterion to the problem of forecasting infla-
tion in the euro area. I use as judgmental forecast an average inflation rate
of close but below 2% over the medium term, motivated by the European
Central Bank’s definition of price stability. The models are selected from a
vector autoregression with four endogenous variables (inflation, core infla-
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tion, unemployment and industrial production) and 12 lags. I find that the
best forecasting model for the euro area inflation includes all variables with
different and long lags. In particular, the best inflation forecast at a two year
horizon is 1.9%. I also find that core inflation does not help much forecast-
ing at longer horizons, unlike unemployment, suggesting that Phillip’s curve
type mechanisms may be at work within the euro area. �

1 Introduction

It is often the case that people take decisions by informally combining per-
sonal experience, limited amount of information and beliefs about the likeli-
hood of uncertain events. I refer to these decisions as judgmental decisions.
This paper is concerned with the question of how an econometrician can help
decision makers take better decisions. In Manganelli (2018) I have addressed
this question under the assumption that the econometrician can estimate a
correctly specified econometric model. This paper explores the implications
of relaxing the assumption of correct specification.

According to the framework developed by Wald (1950), for a given se-
quence of random variables, a statistical decision problem is formally defined
by three essential ingredients: a probability distribution, a decision rule and
a loss function. The probability distribution fully describes the stochastic
process generating the observed realizations of the random variables. It is
unknown and the econometrician tries to approximate it using statistical
parameters. The decision rule prescribes the decision to take, given the
observed realization. The loss function expresses the loss suffered by the de-
cision maker when a decision is taken and the true probability distribution is
revealed. The concept of judgment is not explicitly incorporated, although
it is implicitly introduced via the prior distribution used to compute Bayes
risk. In Manganelli (2018) I show that once judgment is explicitly intro-
duced, it provides a unifying framework for statistics of which the Bayesian
and classical approaches become special cases.
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I define judgment as a pair formed by a judgmental decision and a con-
fidence level. The judgmental decision should be the starting point of any
statistical analysis, as it represents what the decision maker would choose
without statistical support. The fundamental goal of statistics is to pro-
vide a decision rule which improves upon the judgmental decision, in the
sense that it provides a lower loss. Given the lack of knowledge of the true
probability distribution, the decision rule can improve upon the judgmental
decision only in a statistical sense. Under correct model specification, the
statistical decision rule provided by Manganelli (2018) performs worse than
the judgmental decision with a probability which is bounded above by the
confidence level. This statistical decision rule prescribes to take the decision
identified by the closest bound of the confidence interval, which amounts to a
shrinkage estimation. The confidence level, which I also refer to as statistical
risk aversion, reflects the attitude of the decision maker towards uncertainty.
An extreme statistical risk averse person (characterized by a confidence level
of 0%) would never engage in statistical decision making. At the other ex-
treme, a statistical risk loving person (characterized by a confidence level of
100%) would ignore any risk that the statistical decision rule might underper-
form the judgmental decision. This is what happens with standard classical
plug-in estimators, which ignore any estimation risk. Bayesian priors are
associated with a time varying, sample dependent statistical risk aversion, a
fact which also seems to be at odds with actual behavior.

This paper starts from here and pushes forward in several directions.
First, it draws from the quasi-maximum likelihood theory developed by
White (1996) to approximate the distribution of the estimators, which in
turn is needed to construct the confidence interval. White’s theory is quite
general and applies to the most commonly used models in econometrics. The
main advantage of White’s framework is that it provides a coherent inference
theory even in the presence of model misspecification. Casting the statistical
problem in terms of decision theory reveals that in the presence of misspeci-
fication the probability that the statistical decision rule performs worse than
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the judgmental decision becomes unknown and it is therefore no longer de-
termined by the confidence level supplied by the decision maker. If one takes
the view that any model is inherently misspecified, this analysis reveals that
there is an irreducible level of uncertainty about the probability with which
any given statistical model performs worse than the judgmental decision.
Decision makers engaging in statistical decision making need to accept this
additional layer of uncertainty about the level of uncertainty.

The second major contribution of this paper is to provide a consistent
model selection criterion which asymptotically identifies the least misspec-
ified model. The best model asymptotically minimizes a Kullback-Leibler-
type of distance between the in sample loss associated with the model decision
rule and the optimal, but unknown decision. If the confidence level is equal to
100% and the loss function is quadratic, this selection criterion is equivalent
to minimizing in sample mean squared error. When the models to choose
from are nested, it will by construction select the largest model. This is due
to the fact that a decision maker with confidence level equal to 100% does not
care about the probability of committing statistical error, that is of selecting
decisions which may perform worse than the judgmental decision. When the
confidence level is less than 100%, however, this is no longer necessarily the
case, as the largest model may be characterized by larger confidence intervals
and be associated with suboptimal decision rules. I also show how averaging
decision rules according to their asymptotic performance results in decisions
which are asymptotically weakly better than the single best decision rule.

I apply the model selection criterion to the problem of forecasting infla-
tion in the euro area. Motivated by the European Central Bank’s definition
of price stability, I use as judgmental forecast an average inflation rate of
close but below 2% over the medium term, a confidence level of 10% and a
quadratic loss function. The models are selected from a vector autoregres-
sion with four endogenous variables (inflation, core inflation, unemployment
and industrial production) and 12 lags. Given the extremely large number of
possible combinations associated with this class of models, a complete grid
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search of the model with lowest in sample loss is not feasible. I show, instead,
how the problem can be cast in terms of an integer optimization program,
which can be solved using available optimization algorithms. I find that the
best forecasting model for the euro area inflation includes all variables with
different and long lags. In particular, the best inflation forecast at a two
year horizon is 1.9%. Forecasts based on a simple autoregressive process re-
veal significant evidence of model misspecification, especially for forecasts at
longer horizons. I also find that core inflation does not help much forecast-
ing at longer horizons, unlike unemployment, suggesting that Phillip’s curve
type mechanisms may be at work within the euro area.

The rest of the paper is structured as follows. Section 2 develops the
theory of model selection. Section 3 describes in detail the various elements
needed to implement the forecasting process. Section 4 reports the results
for the euro area inflation forecast. Section 5 concludes.

2 Model Selection Criterion

Model selection requires first an estimate of the data generation process un-
der possible misspecification, second a loss function for the decision maker
and her judgment, third the construction of a decision rule incorporating the
judgment, and fourth a criterion to assess the degree of model misspecifica-
tion. The structure of this section follows this order.

2.1 Asymptotic approximation to the data generation
process

The observations at time t are xt ∈ Rv, v ∈ N, where xt = (w′t, y′t)′, yt
is a l × 1 vector of dependent variables, and wt is a v − l × 1 vector of
potential explanatory variables. The history of observations available at
time n is xn = (x′1, . . . , x′n)′. The observed data xt are assumed to be a
realization of a stochastic process with c.d.f. Ft, so that Ft(x1

t , . . . , x
v
t ) =
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P (X1
t < x1

t , . . . , X
v
t < xvt |xt−1), t = 1, 2, . . .

Define the quasi-log-likelihood function (in the sense of White, 1996)
`n(Xn, θ) ≡ n−1∑n

t=1 log ft(X t, θ), where ft(·, θ) : Rvt → R+ is a suit-
ably chosen function and θ ∈ Rp, p ∈ N, is a finite dimensional param-
eter vector. θ(Xn) = arg maxθ `n(Xn, θ) is the quasi-maximum likelihood
estimator (QMLE).1 For simplicity, I impose the stationarity assumption
E(log ft(X t, θ)) = c, for c ∈ R constant, where the expectation is taken
with respect to the true data generation process. This assumption rules out
heterogeneity in the expectations of the log-likelihood function, so that the
QMLE converges to a fixed vector θ∗ which does not depend on n.2 As-
suming also that the conditions for consistency, asymptotic normality and
consistent asymptotic variance estimation are satisfied (see Theorems 3.5,
6.4 and Corollary 8.28 of White, 1996) gives:

B∗−1/2A∗
√
n(θ(Xn)− θ∗) A∼ N(0, Ip)

where A∗ ≡ E(∇2`n(Xn, θ∗)), B∗ ≡ var(
√
n∇`n(Xn, θ∗)) and Ip is the iden-

tity matrix of dimension p. The asymptotic covariance matrix A∗−1B∗A∗−1

is consistently estimated by Â−1
n B̂nÂ

−1
n , where:

Ân ≡ n−1
n∑
t=1
∇2 log ft(X t, θ(Xn))

B̂n ≡ n−1
n∑
t=1
∇ log ft(X t, θ(Xn))∇′ log ft(X t, θ(Xn))

2.2 Loss function and judgment

Consider a decision maker with the following loss function:

Lt(at|Ft) ≡ E(L (Yt,h, at)|X t) (1)

where at ∈ Rq, q ∈ N, is the action chosen at time t by the decision maker,
Yt,h ≡ (Y ′t+1, . . . , Y

′
t+h)′, h = 1, 2, . . . is the horizon of interest, and L (Yt,h, ·)

1I use the notation θ(Xn) to denote the estimator and θ(xn) for the estimate.
2See White (1996) for the more general treatment.
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is a continuously differentiable and strictly convex function on Rq. I assume
that the expectation exists and is finite.

Since Ft is unknown, the best the decision maker can do is to minimize
the loss function using the selected parametric specification ft(X t, θ):

Lt(θ∗, at) ≡ Eθ(L (Yt,h, at)|X t) (2)

≡
∫

L (y, at)ft,h(y, θ)dy

where ft,h is the suitable h-step ahead conditional density of Yt,h constructed
from ft(X t, θ), and is such that the expectation exists and is finite. Adapting
from White (1996), ft(X t, θ) is said to be correctly specified for the purposes
of the decision maker if θ∗ is such that Lt(at|Ft) = Lt(θ∗, at), ∀at, t = 1, 2, . . . ,
and misspecified otherwise.

Remark: Direct estimation — An alternative estimation strategy is to
choose a parametric specification for the decision at(X t, θ) and set ft(X t, θ) =
exp(L (Yt,h, at(X t, θ))).3 When ft is chosen as the p.d.f. of a normal distribu-
tion and L is quadratic the two estimation strategies coincide. In general,
they generate different QMLE and different decision rules. They should
therefore be treated as alternative model specifications, to be selected ac-
cording to the criterion presented later in this section. �

Continuity, differentiability and convexity of the function L guarantee
that a necessary and sufficient condition for optimality according to (2) is:

∇aLt(θ∗, at) = Eθ(∇aL (Yt,h, at)|X t) (3)
= 0

assuming again that the expectation exists and is finite.
The decision maker deciding at time n has judgment {ãn, α} as defined

in Manganelli (2018), where ãn ∈ Rq is referred to as judgmental decision
and α ∈ [0, 1] as the confidence level. The judgmental decision ãn implies a

3For a general treatment, see section 5.2 of White (1996).
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specific constraint on the model parameters θ. The null hypothesis that ãn
is optimal according to (2) can be expressed by imposing that the first order
condition (3) holds:

H0 : ∇aLn(θ∗, ãn) = 0 (4)

This hypothesis can be tested using a Wald, likelihood ratio (LR) or Lagrange
multiplier (LM) test statistic (Theorem 8.10 of White, 1996):

Wn(Xn) ≡ nk̂′n(K̂nÂ
−1
n B̂nÂ

−1
n K̂ ′n)−1k̂n

A∼ χ2
q (5)

LRn(Xn) ≡ −2n(˜̀
n − ˆ̀

n) A∼ χ2
q

LMn(Xn) ≡ n∇′ ˜̀n(∇2 ˜̀
n)−1K̃ ′n(K̃nÂ

−1
n B̂nÂ

−1
n K̃ ′n)−1K̃n(∇2 ˜̀

n)−1∇˜̀
n

A∼ χ2
q

where k̂n ≡ ∇aLn(θ(Xn), ãn), K̂n ≡ ∇a,θLn(θ(Xn), ãn), ˆ̀
n ≡ `n(Xn, θ(Xn)),

˜̀
n ≡ `n(Xn, θ̃(Xn)), with θ̃(Xn) the constrained QMLE solving the problem

maxθ `n(Xn, θ) s.t. ∇aLn(θ, ãn) = 0 and K̃n ≡ ∇a,θLn(θ̃(Xn), ãn).

2.3 The decision incorporating judgment

The inference apparatus outlined so far is needed to test the optimality of
the judgmental decision ãn of the decision maker.

Given the judgment {ãn, α}, testing the null (4) is equivalent to testing
whether the judgmental decision ãn is optimal. If the null is not rejected,
statistical evidence is not strong enough to suggest any deviation from ãn.
Rejection at the confidence level α, however, implies that marginal moves
away from ãn in the direction of the QMLE decision increase (instead of
decreasing) the loss function with probability less than α, the probability
of a Type I error (see Manganelli, 2018, for a formal development of this
argument). The willingness to take this risk depends on the decision maker’s
attitude towards uncertainty and is summarized by the confidence level α.

To formalize this reasoning, let’s first define the QMLE implied decision:

ât = arg max
a

Lt(θ(xn), a) (6)
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Analogously, it is possible to define the judgmental decision at time t implied
by ãn by exploiting the constrained QMLE :

ãt = arg max
a

Lt(θ̃(xn), a) (7)

and the associated shrinking action:

at(λ) ≡ λât + (1− λ)ãt, λ ∈ [0, 1] (8)

Clearly, ãt = at(0) and ât = at(1), t = 1, . . . , n.
It is important to note that both ât and ãt are not random, as they are

defined as a function of the sample realization xn. ât is the decision that
would obtain at time t by minimizing the loss function (2) using standard
plug-in estimators. ãt is the equivalent at time t of the original judgment ãn.

Defining the Wald statistic (5) in terms of at(λ) (similar definitions hold
for the LR and LM statistics):

Wt,λ(Xn) ≡ nk̂′t,λ(K̂t,λÂ
−1
n B̂nÂ

−1
n K̂ ′t,λ)−1k̂t,λ (9)

where k̂t,λ ≡ ∇aLt(θ(Xn), at(λ)) and K̂t,λ ≡ ∇a,θLt(θ(Xn), at(λ)). Notice
that Wn,λ(Xn) A∼ χ2

q under the null H0 : ∇aLn(θ∗, an(λ)) = 0, for any non
random λ ∈ [0, 1]. Notice also that since the likelihood ratio test LRn(Xn)
depends on the constraint (4) only via θ̃(Xn) and is asymptotically equivalent
to Wn(Xn) and LMn(Xn), testing H0 : ∇aLn(θ∗, an(0)) = 0 is equivalent to
testing H0 : ∇aLt(θ∗, at(0)) = 0, t = 1, . . . , n.

Letting cα denote the critical value of χ2
q, that is P (Z ≤ cα) = α for

Z∼χ2
q, define the following test function:

ψα(z) =


0 if z < cα

γ if z = cα 0 ≤ γ ≤ 1
1 if z > cα

The optimal decision can be obtained by applying Theorem 2.1 of Man-
ganelli (2018).

ECB Working Paper Series No 2188 / October 2018 10



Corollary 2.1 (Optimal Decision). Given the judgment {ãn, α}, if the
assumptions of Theorem 8.10 of White (1996) hold, the optimal decision at
time t = 1, . . . , n associated with the loss function (2) is:

δt(Xn) = at(0)[1− ψα(Wt,0(Xn))] + at(λ̂)ψα(Wt,0(Xn)) (10)

where λ̂ is implicitly defined by Wt,λ̂(xn) = cα.

Proof — See Appendix.

Theorem 2.2 of Manganelli (2018) shows that this decision is admissible.
The key element behind the admissibility result is that the decision rule (10)
conditions on the observed sample realization xn via λ̂.

The decision of Corollary 2.1 coincides with the judgmental decision if
there is not enough statistical evidence against it, and shrinks towards the
QMLE decision otherwise. The amount of shrinkage is determined by the
confidence level α. If α = 0, ψ0(Wt,0(Xn)) = 0 for all Xn and δt(Xn) = ãt.
If α = 1, ψ1(Wt,0(Xn)) = 1 for all Xn and δt(Xn) = ât. As also pointed out
by Manganelli (2009), this decision converges asymptotically to the QMLE
decision. However, in finite samples it is characterized by the property that
it performs worse than the judgmental decision ãn with probability less than
the confidence level α according to the pdf fn(Xn, θ) (see Manganelli 2018).

One key difference with respect to the setup of Manganelli (2018) is that
the present framework allows for the possibility of misspecification. In par-
ticular, the test function ψα(Wn,0(Xn)) tests the null hypothesis that the
judgmental decision ãn is optimal according to (2), rather than (1). Define
the optimal action in population according to (1) as:

a0
t ≡ arg minLt(at|Ft) (11)

Define also a∗t ≡ arg minLt(θ∗, at), the optimal action in population accord-
ing to (2). Under model misspecification, it will generally be the case that
a0
n 6= a∗n and therefore the probability of rejecting the nullH0 : ∇aLn(ãn|Fn) =

0 when ãn = a0
n under the chosen parametric specification fn(Xn, θ) and crit-

ical value cα is different from α, since H0 : ∇aLn(θ∗, ãn) = c 6= 0.
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The confidence level α reflects the degree of statistical risk aversion of the
decision maker, as illustrated by figure 1 of Manganelli (2018): A decision
maker is willing to abandon her judgmental decision ãn for a statistical pro-
cedure only if the probability that the statistical procedure will result in an
action worse than ãn is less or equal than α. Under model misspecification,
this guarantee cannot be given. Searching through many model specifications
to find the least misspecified model will help alleviating this problem. How-
ever, if one takes the view that any model is inherently misspecified, there
will remain an irreducible level of uncertainty about α (which one could refer
to as ‘uncertainty about the level of uncertainty’), which any decision maker
engaging in statistical decision making has to live with, as it will be made
clear in the next subsection.

2.4 Selecting the least misspecified model

Suppose now that the decision maker can choose from M alternative sta-
tistical models. Denote with θm ∈ Rpm , pm ∈ N, m ∈ M ≡ {1, . . . ,M},
the parameterization of the alternative models, with fmt (xt, θm) the model m
specification and with δmt (xn) the related decision incorporating judgment.
Define the following distance in the loss space:

Πn(a0 : δm) ≡ n−1
n∑
t=1

(Lt(δmt (xn)|Ft)− Lt(a0
t |Ft)) (12)

where a0
t is defined in (11). Like the Kullback-Leibler Information Criterion,

Πn(a0 : δm) ≥ 0 and is equal to 0 if and only if δmt (xn) = a0
t , for all t =

1, . . . , n.
The model with the lowest empirical in sample loss will asymptotically

converge to the model minimizing Πn(a0 : δm), as stated in the following
theorem.

Theorem 2.1 (Consistent Model Selection). Assume the conditions of
Corollary 2.1 are satisfied and that the process {L (Yt,h, ·)} obeys the Uni-
form Law of Large Numbers. Then, if model m∗ ∈ M minimizes plimL̂nm,
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where L̂mn ≡ n−1∑n
t=1 L (Yt,h, δmt (xn)), it also minimizes limn→∞Πn(a0 : δm),

for all m ∈ M . If model m∗ is correctly specified, plimL̂m∗
n = limn→∞

n−1∑n
t=1 Lt(a0

t |Ft).

Proof — See Appendix.

According to theorem 2.1, choosing the model with lowest empirical in
sample loss ensures that the decision maker eventually selects the decision
rule which is closest to the optimal one in population, according to the
Kullback-Leibler-type Information Criterion Πn(a0 : δm).

Here again it is important to pay attention to what is random and what
is not in the asymptotic argument. The proof of the theorem makes clear
that the loss function L (Yt,h, δmt (xn)) depends on the random variable Yt,h
for the given decision rule δmt (xn). The asymptotic thought experiment is to
evaluate the given decision rule over repeated draws of Yt,h, according to the
loss function L . Since we are interested in the performance of δmt (xn) for
the observed sample realization xn, it does not make sense to average also
other potential decision rules δmt (Xn) which are not relevant for the current
decision problem.

If the confidence level α = 1, the forecast horizon h = 1 and the loss
function is quadratic, this selection criterion is equivalent to the one-step
ahead in sample mean squared error. In finite samples, it will by construc-
tion select the largest model, in the case all models in M are nested. This
should come as no surprise, since a decision maker with α = 1 does not care
about the probability that the statistical decision rule might underperform
her judgmental decision. However, when α < 1, this is not necessarily the
case, as the choice is restricted to decision rules which satisfy the condition
that P (L(θ∗m, δmn (Xn)) > L(θ∗m, a0

n)) < α. Among the decision rules sat-
isfying this condition, the one associated with the largest model does not
necessarily provide the best in sample fit.

Even though theorem 2.1 ensures consistency of the proposed model selec-
tion procedure, for any finite sample the model m∗ with the lowest empirical
loss is not necessarily the best model. As originally pointed out by Diebold
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and Mariano (1995), for any particular realization one should take into ac-
count the statistical uncertainty associated with the empirical loss functions
of the various decision rules.

Under the conditions of theorem 2.1:
√
n(L̂m∗

n − µm
∗) A∼ N(0, σ2) (13)

where µm∗ = plimL̂m∗
n ≥ plimL̂0

n ≡ µ0, L̂0
n ≡ n−1∑n

t=1 L (Yt,h, a0
t ), and the

variance term can be consistently estimated by

σ̂2
n ≡ n−1

n∑
t=1

(L (Yt,h, δm
∗

t (xn))− L̂m∗

n )2 (14)

For any finite sample size, it may therefore happen that L̂m∗
n < L̂0

n even if
δm

∗
t (xn) 6= a0

t for some t. Since for any given finite sample it is impossible
to know whether a given value of L̂mn is low because of luck or because it
represents a draw from the true DGP, it makes sense to average across the
different decision rules. The proposed averaging is based on the p-value
associated with the null hypothesis H0 : µm = µm

∗ for all m 6= m∗.

Theorem 2.2 (Consistent Model Averaging). Let

ωmn ≡ Φ(
√
n(L̂mn − L̂m

∗

n )/σ̂n) (15)

where m∗ is the model with lowest L̂mn , m ∈M , and Φ(·) denotes the cdf of
the standard normal distribution. Under the conditions of Theorem 2.1, the
decision rule

δ̄ ≡ (
M∑
m=1

ωmn δ
m)/

M∑
m=1

ωmn (16)

converges in probability to the decision rule(s) with lowest µm, m ∈ M .
Letting J = {1, . . . , J} denote the set of models associated with such decision
rules, the asymptotic weight of decision rule δi, i ∈M \J , is 0.

Furthermore, limn→∞Πn(a0 : δ̄) ≤ limn→∞Πn(a0 : δm), for all m ∈M .

Proof — See Appendix.
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The decision rule δ̄ is a weighted average of all decision rules δm, with
weights given by ωmn /

∑M
m=1 ω

m
n . The weight is proportional to the cdf of the

standard normal distribution evaluated at
√
n(L̂mn − L̂m

∗
n )/σ̂n, so that it will

give higher weights to realizations closest to zero. Eventually, realizations
from correctly specified models will converge in probability to µ0 and the
associated decision rules will be the only ones to receive positive weight.
Misspecified models m, on the other hand, will converge in probability to
µm > µ0 and will asymptotically receive zero weights. If all models are
misspecified, positive weights are given only to the models with lowest µm.

The second part of the theorem says that the weighted average of the
asymptotically best decision rules is a decision rule which is weakly better
than the single best decision rule. In case the best decision rules come from
nested models, averaging does not provide any asymptotic improvement, as
all decision rules converge to the same rule. If, however, the best decision
rules are derived from non-nested models, the convexity of the loss function
implies that averaging among these rules provides a strictly lower asymptotic
loss than the one associated with the individual rules.

3 Inflation Forecasting Models

The implementation of the theory developed in the previous section requires
the econometrician to take a stance on three key ingredients of the forecasting
process:

1. The loss function and the judgment of the decision maker

2. The data used in the forecasting model

3. The functional form of the asymptotic approximation

This section reviews each of these elements.
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3.1 Loss Function and Judgment

The loss function and judgment are both personal choices of the decision
maker. It will therefore vary from decision maker to decision maker. I take
here my personal perspective on the problem of inflation forecasting.

I assume a standard quadratic loss function:

L (Yn,h, an) = 0.5(Y h
n − an)2 (17)

The term Y h
n is a function of the forecast horizon h and future inflation

realizations.
I form my judgment about inflation by appealing to the statutory man-

date of the European Central Bank. According to the Article 127 of the
Treaty on the Functioning of the European Union ‘the primary objective
of the European System of Central Banks [...] shall be to maintain price
stability.’ The Governing Council of the European Central Bank has subse-
quently provided the following quantitative definition: ‘Price stability shall
be defined as a year-on-year increase in the Harmonised Index of Consumer
Prices (HICP) for the euro area of below, but close to, 2% over the medium
term’ (ECB, 2011, p. 64). This is still not sufficient to arrive at a precise
quantitative definition. I therefore take my personal definition of ‘below, but
close to, 2%’ as 1.9% and of ‘medium term’ as 24 months. Of course other
interpretations of the ECB definition could be justified.

Trusting that the ECB will deliver on its mandate, the above definition
of price stability implies:

Y 24
n = 24−1

24∑
i=1

Yn+i (18)

ãn,24 = E(Y 24
n |xn) = 1.9% (19)

that is, my judgmental forecast is that the annualized monthly inflation over
the next two years will average 1.9%. Although this looks like a reason-
able judgment when facing a credible central bank with an explicitly defined
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inflation objective, this information is rarely incorporated in empirical appli-
cations of inflation forecasting. One exception is Diron and Mojon (2008).
They argue that a major advantage of quantified inflation objectives is to
anchor inflation expectations. Since economic agents usually set prices and
wages over some horizon, it is reasonable to expect that when taking these
decisions they take into account their own expectations of the evolution of
inflation. When facing a credible central bank, the official inflation objec-
tive may act as anchor to the expectations of the economic agents. The
coordination of all expectations around the official inflation objective should
by itself help to deliver realized inflation close to the objective. Setting the
judgmental decision as in (19) may therefore prove quite a good forecasting
decision. In fact, the quantitative results of Diron and Mojon (2008) reveal
that such a simple rule of thumb yields smaller forecast errors than widely
used forecasting models.

3.2 Data

Given the ECB definition of price stability, one necessary variable of the
forecasting model is euro area HICP. The application of this paper considers
the annual rate of change of the overall index in changing composition, as
provided by Eurostat.4 Given the short term volatility of headline inflation,
many central banks monitor other measures of underlying inflation, which
may give a better sense of the trends in inflation and its likely evolution
in the medium term. Many different proxies for underlying inflation exist.
I use here the euro area HICP excluding energy and unprocessed food. I
also consider real economic variables, such as unemployment and industrial
production, because as suggested by the Phillips curve there may be an
inverse relationship between inflation and the level of economic activity. All
data are monthly, ranging from January 1999 (when the euro was introduced)
to February 2018.

4All data have been downloaded from the ECB database, http://sdw.ecb.europa.eu
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Table 1: Summary statistics

HICP HICPX UN IP
Mean 1.70 1.50 9.55 102

Std Dev 0.96 0.55 1.26 4.83
Min -0.70 0.60 7.28 92
Max 4.10 2.70 12.09 115

n 231

Note: Summary statistics for the time series used in the forecasting models. HICP is
the headline inflation, HICPX is core inflation, UN is the unemployment rate, IP is the
industrial production. n is the length of the time series. See the notes of the figures for
more details.

Source: Eurostat, http://sdw.ecb.europa.eu

The time series behavior of the four variables is reported in figures 1, 2
and 3. Key summary statistics are reported in table 1.

3.3 Models

The last ingredient of the forecasting process is to choose the functional
form of ft, the building block of the quasi-log-likelihood function introduced
in section 2.1. For simplicity, I limit myself to the class of VAR(p) models:

Yt = c+
p∑
i=1

CiYt−i + Ut

where Yt = (HICP,HICPX,UN, IP )′, c is a 4 × 1 vector, Ci are 4 × 4
matrices of coefficients, and Ut is a 4 × 1 vector of residuals. For a given p,
I allow for any possible combination of lags. Since the algebra is conceptu-
ally straightforward, but rather cumbersome, I refer to the Appendix 2 for
detailed derivations, which build on Lütkepohl (2005). In this case, ft takes
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Figure 1: Headline and core inflation in the euro area
Note: HICP - Overall index, annual rate of change, euro area (changing composition),
neither seasonally nor working day adjusted.
HICPX - All-items excluding energy and unprocessed food, annual rate of change, euro
area (changing composition), neither seasonally nor working day adjusted.
Source: Eurostat, http://sdw.ecb.europa.eu
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Figure 2: Unemployment in the euro area
Note: UN - Standardized unemployment, rate, euro area 19 (fixed composition), total (all
ages), total (male and female), seasonally adjusted, not working day adjusted, percentage
of civilian workforce.
Source: Eurostat, http://sdw.ecb.europa.eu
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Figure 3: Industrial production in the euro area
Note: IP - Industrial production index, total industry, euro area 19 (fixed composition),
working day and seasonally adjusted.
Source: Eurostat, http://sdw.ecb.europa.eu
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the following functional form:

ft(X t, θ) = exp(−0.5u′tΣ−1
u ut) (20)

where ut is a suitably defined vector of residuals and Σu the associated vari-
ance covariance matrix. This is the VAR equivalent of a Generalised Least
Squares estimator.

Estimation of asymptotic variance-covariance matrices follows the proce-
dure detailed in section 2. See again Appendix 2 for technical details.

3.4 A Few More Arbitrary Choices

The actual implementation of the forecasting process still requires the econo-
metrician to specify some more parameters. In theory, each of these param-
eters would give rise to potentially different models and therefore could be
optimized using the model selection procedure described in this paper. In
practice, time and computing power limitations usually require the econo-
metrician to take some shortcuts.

The first arbitrary choice is obviously the functional form of the econo-
metric model. In the case of a VAR(p) model, I have arbitrarily chosen the
length of the vector Yt to be 4 and the other variables to be core inflation,
unemployment and industrial production. Other options for the functional
form could be factor models, DSGE models or deep neural nets from the ma-
chine learning literature (see, for instance, Faust and Wright (2013) for an
exhaustive list of the most common methods used for forecasting inflation).
As long as the assumptions about ft are satisfied, any of these alternative
models fits the same conceptual framework. In fact, the framework of this
paper can be used to choose among these alternative modelling strategies.

The second arbitrary choice is the maximum number of possible lags, p.
I set this to 12, which corresponds to one year of possible monthly lags.

The third arbitrary choice is how many regressors to include in the model.
Recall that the arguments of section 2 rely on the asymptotic approximation
being valid. The ratio between number of observations (which is given by the
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number of time series in the VAR times their length) and parameters to be
estimated cannot therefore be too small. I arbitrary choose this ratio to be
50, that is each model parameter is estimated, on average, with at least 50
observations. One could run a Monte Carlo experiment to test the validity
of this choice.

The fourth arbitrary choice is the initialization of the VAR model. I
simply put the pre-sample values equal to their full sample averages. Other
choices are possible, including treating the pre-sample values as parameters
to be estimated. I also discard all non stationary QMLE estimates, in line
with the stationarity assumption imposed in section 2.1.

Even with these simplifications, a VAR model with p = 12 lags, g = 4
dependent variables and MR = 18 maximum number of regressors can be
combined in

MR

different possible ways. Even the fastest computer cannot cope with a com-
plete grid search. I use, instead, an integer optimization algorithm to choose
among all the possible models. The logic is the following. Let ϑ be a (g+g2p)-
vector of 0s and 1s and let θm be the vector of parameters to be estimated
corresponding to the 1s in ϑ. To each combination of ϑ corresponds exactly
one model identified by θm and for each θm it is possible to compute the as-
sociated loss L̂m. Figure 4 provides an example of a possible model. Model
selection can now be framed as the following integer optimization program:

min
ϑ
L̂m = n−1

n∑
t=1

0.5(δmt (xn)− Y h
n )2 (21)

s.t. ||ϑ||2 ≤MR

The genetic algorithm of Matlab has specific options for solving optimization
problems for integer-valued variables. I found, however, that it is rather in-
efficient and time consuming. A better alternative seems to be the algorithm
patternsearch, which, even though not specifically designed to solve integer

∑
i=1

(
g + g2p

i

)
≈ 1.46 · 1025
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Figure 4: Example of model specification
Note: The figure reports an example of a possible VAR model specification, with 12 lags, 4
variables and 18 regressors. The entries with 1s represent the parameters to be estimated.
The entries with zeros represent variables which are excluded from the model. The number
under each autoregressive block is the sum of parameters estimated for each block. The
numbers in the last column represent how many variables from each of the VAR equations
are included in the model.
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optimization problems, under suitable choices of its otpions can be tricked
into solving this type of problems. I refer to my codes for details.5 In my
experience, the algorithm seems to be quite sensitive to the user supplied
initial conditions, suggesting that the global optimum is difficult to find. I
have provided as initial conditions the models with only the constants, with
the first MR regressors, and three models selected with lasso techniques. I
note, in passing, that models selected with lasso are usually very far from
the best ones.

4 Inflation Forecasts for the Euro Area

Figure 5 reports the forecasts associated with the best models selected using
the implementation details described in the previous section. The single best
model for forecasting average 24-month inflation as of February 2018, that
is the one delivering the lowest in sample loss as prescribed by Theorem 2.1,
is the one reported in figure 4. The horizontal axis reports the forecasting
horizon measured in months. The vertical axis measures the forecast of
the average annualized inflation, where the average is taken as in equation
(18) over the months indicated on the horizontal axis. The top line is the
forecast associated with a 24-month judgmental forecast of 1.9%, and it is the
forecast that I would choose if forced to bet on one number. The 24-month
inflation forecast is exactly 1.9%. In other words, the null hypothesis that
my judgmental forecast of inflation is correct cannot be rejected at a 10%
confidence level. The three-year forecast is 1.93%.

One subtle point to notice is that even though I express my judgment in
terms of the average inflation over 24 months being equal to 1.9%, I map
this judgment over any forecasting horizon. That is, the inflation forecast at
the 1-month horizon incorporates my judgment expressed at the 24-month
horizon. This is accomplished by using the constrained parameter estimates
θ̃(xn) obtained from the QMLE solving maxθ `n(Xn, θ) s.t. Y 24

n (θ) = ãn, to
5Codes and data can be downloaded from www.simonemanganelli.org.
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compute the forecast at any horizon of interest.
The bottom line of the figure is the forecast associated with an alternative

24-month judgmental forecast, in this case set equal to 0%. While asymp-
totically the two lines would coincide (judgment is irrelevant with an infinite
sample size, as the model parameters would converge to their QMLE value),
with finite samples forecasts associated with different judgments may differ.
By construction, the bottom line will never lie above the top line, as the
best forecast is identified by the closest bound of the confidence interval. It
is interesting to note that in this case inflation forecasts do not seem overly
sensitive to drastically different judgments.

For comparison, figure 6 reports the best forecast derived from a model
selection based only on an autoregressive process for the euro area inflation.
Two interesting observations are in order. First, while the very short term
forecasts are all very close to each other, the forecasts at longer horizons
are quite different, with the two-year forecast standing at 1.7%. Second, the
distance between the forecasts associated with the two alternative judgments
is much larger than in the case of a VAR model with four variables.

To highlight the differences in performance of the various models, fig-
ure 7 reports the average in sample loss at different horizons for the best
models selected from four different sets, the univariate AR model and the
VAR models with 2, 3 and 4 endogenous variables. The VAR models with
two variables contains HICP and HICPX, while the VAR model with three
variables includes also unemployment (but no industrial production). Since
the larger set of models from which to choose always contains the smaller
set, the corresponding average in sample loss cannot increase: it would al-
ways be possible to choose the best model from the smaller set. At short
horizons, the performance of all the models is similar. Significant differences
start to emerge only as the forecasting horizon increases. Two interesting
findings emerge from this figure. The first one is that core inflation does not
seem to help much in forecasting inflation at longer horizons, as the differ-
ence between the performance of the AR and the 2-variable VAR is small.
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Figure 5: Forecasts of the euro area inflation
Note: The figure exhibits the best euro area inflation forecast at different horizons, with
information available as of February 2018. The horizontal axis reports the forecasting
horizon measured in months. The vertical axis measures the forecast of the average an-
nualized inflation, where the average is taken over the months indicated on the horizontal
axis. The top line is the forecast associated with a 24-month judgmental forecast of 1.9%.
The bottom line is the forecast associated with a 24-month judgmental forecast of 0%.
The horizontal lines at 0% and 2% are reported as reference points.
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Figure 6: Forecasts of the euro area inflation based on AR model
Note: Best euro area inflation forecast based on model selection from a simple autoregres-
sive model. See the notes of figure 5 for explanatory details.
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Figure 7: Performance of the best models
Note: Average in sample loss when the best forecast model is chosen from different sets.

The short term volatility induced by the items excluded in core inflation is
averaged out as the forecasting horizon increases and becomes less relevant.
The second interesting finding is that including unemployment significantly
improves the forecasting performance of the VAR model.6 Even though this
is only evidence that unemployment Granger causes medium term inflation
and no structural interpretation can yet be given to this finding, this result
may usefully inform the debate about the relevance of the Phillips curve.

Finally, figure 8 reports the in sample, time series performance of the
6Running a similar three-variable VAR with industrial production in place of unem-

ployment produces much lower improvement.

ECB Working Paper Series No 2188 / October 2018 29



best models selected from the sets of AR and four-variable VAR models. The
smooth blue line is the backward 36-month moving average of HICP. The red
dashed line is the four-variable VAR best model forecast at the beginning of
the 36-month forecasting window (but using the parameter estimates from
the full sample). The dashdot line if the best forecast associated with the
AR model. The average in sample loss reported in the previous figure is
simply the average of the square difference between these two lines and the
smooth blue lines. It is clear from the figures that, unlike the four-variable
VAR, the simple AR model does not contain sufficient dynamics to describe
the stochastic process represented by three-year inflation.

5 Conclusion

An econometrician is asked to provide a statistical decision rule which does
not perform worse than a judgmental decision with a given confidence level
provided by the decision maker. If the statistical model is correctly specified
and the distribution of the estimator is known, the econometrician can con-
struct a confidence interval around the maximum likelihood decision. The
best decision is given by the decision associated with the boundary of the
confidence interval which is closest to the judgmental decision. In most real
world situations, the econometrician does not know the correctly specified
model, but must choose from a given class of probability distributions. One
important consequence of model misspecification is that the econometrician
can no longer guarantee that the proposed statistical decision rule has the
chosen bounded probability of underperforming the given judgmental deci-
sion. Searching for the least misspecified model alleviates this problem, but
since any statistical model is likely to be misspecified, a decision maker en-
gaging in statistical decision making has to live with this additional level
of uncertainty. The least misspecified model is the one associated with the
decision rule with lowest in sample empirical loss. If the class of models con-
sidered by the econometrician contains the true model, this model selection
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Figure 8: Performance of the best AR model
Note: Backward 36-month moving average inflation, together with the best in sample
forecasts from the set of all possible AR or four-variable VAR models.
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criterion asymptotically selects the true model with probability one. Averag-
ing decision rules according to their asymptotic performance provides a new
decision rule which is weakly better than the single best decision rule. If the
best decision rules come from nested models, averaging does not provide any
asymptotic improvement, as all rules converge asymptotically to the same
rule. If, however, there are two or more asymptotically equivalent best deci-
sion rules derived from non-nested misspecified models, the convexity of the
loss function implies that their average results in a new decision rule which
is strictly better than any of the individual rules.
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A Appendix — Proofs

Proof of Corollary 2.1 — The derivation of (9) is based on the following
mean value expansion:

k̂n,λ = k∗n,λ + K̄n,λ(θ(Xn)− θ∗)

where k∗n,λ ≡ ∇aLt,h(θ∗, at(λ)) and K̄n,λ ≡ ∇a,θLt,h(θ̄(Xn), at(λ)), for θ̄(Xn)
denoting a mean value vector between θ∗ and θ(Xn).

Defining Zλ ≡
√
n(K̂n,λÂ

−1
n B̂nÂ

−1
n K̂ ′n,λ)−1/2k̂n,λ, under the null that at(λ)

is optimal k∗n,λ = 0 and Zλ
A∼ N(0, 1). Since Wn,λ(Xn) = Z ′λZλ, to every

critical value associated with zλ corresponds one and only one critical value
associated withWn,λ(xn). We are therefore in the same decision environment
of Theorem 2.1 of Manganelli (2018), except for the fact that the loss function
is now generically convex and continuously differentiable.

It remains to determine the action to be taken in case the test statistic
ψ(Wn,0(xn)) = 1. Following the same logic as the proof of Theorem 2.1
of Manganelli (2018), rejection of the null hypothesis implies that marginal
moves away from at(0) in the direction of at(1) increase the loss function with
probability less than α. Given her confidence level α, the decision maker is
willing to take this marginal move until one reaches the action at(λ̂) where the
null is no longer rejected. This action is implicitly defined by Wt,λ̂(xn) = cα.
Given the convexity and continuity assumptions on L , this value exists and
is unique. �

Proof of Theorem 2.1 — If model m∗ minimizes

plim n−1
n∑
t=1

L (Yt,h, δmt (xn))
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it will also minimize:

plim n−1
n∑
t=1

(
L (Yt,h, δmt (xn))− Lt(a0

t |Ft)
)

=

= plim n−1
n∑
t=1

L (Yt,h, δmt (xn))− E(L (Yt,h, δmt (xn)))+

+ E(L (Yt,h, δmt (xn)))− E(L (Yt,h, δmt (xn)|Xt))+

+ E(L (Yt,h, δmt (xn)|Xt))− Lt(a0
t |Ft)

)

By the law of large numbers:

plim n−1
n∑
t=1

(
L (Yt,h, δmt (xn))− E(L (Yt,h, δmt (xn)))

)
= 0

and by the law of iterated expectations:

plim n−1
n∑
t=1

(
L (Yt,h, δmt (xn))− E(L (Yt,h, δmt (xn)|Xt))

)
= 0

and the first result follows.
Furthermore, since plimδmt (Xn) = a∗mt , if model m∗ is correctly specified:

a∗m
∗

t = arg min
a
Lt(θ∗m

∗
, at)

= arg min
a
Lt(at|Ft)

= a0
t

�

Proof of Theorem 2.2 — The weight associated with decision δi is
given by ωin/

∑
j ω

j
n. Since plim (L̂in − L̂m

∗
n )/σ̂n = (µi − µm∗)/σm), it follows

that ωin
p→ 0 if µi − µm∗

> 0.
For the second part of the theorem, the convexity of L (Yt,h, ·) implies
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that:

lim
n→∞

(Πn(a0 : δ̄)− Πn(a0 : δm))

= lim
n→∞

n−1
n∑
t=1

(Lt(δ̄t(xn)|Ft)− Lt(δmt (xn)|Ft))

≤ lim
n→∞

n−1
n∑
t=1

(
∑
j

wjLt(δjt (xn)|Ft)− Lt(δmt (xn)|Ft))

= lim
n→∞

n−1
n∑
t=1

(Lt(δit(xn)|Ft)− Lt(δmt (xn)|Ft))

∀i ∈J and ∀m ∈M . �
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B Appendix 2 — Technical Derivations for
the VAR model

NOTATION: For vector and matrix differentiation I follow the conventions
of Lütkepohl (2005), except that to simplify notation I use the symbol ∇ to
indicate derivatives.

In particular, if f(θ) is a scalar function that depends on the (m × 1)
vector θ = (θ1, · · · , θm)′, I define the following derivatives:

∇f ≡ ∂f

∂θ
≡


∂f
∂θ1...
∂f
∂θm

 ∇′f ≡ ∂f

∂θ′
≡
[
∂f

∂θ1
, · · · , ∂f

∂θm

]

and

∇2f ≡ ∂2f

∂θ∂θ′
≡
[
∂2f

∂θi∂θj

]
=


∂2f

∂θ1∂θ1
· · · ∂2f

∂θ1∂θm... . . . ...
∂2f

∂θm∂θ1
· · · ∂2f

∂θm∂θm


Application of the rules for matrix differentiation follows appendix A.13

of Lütkepohl (2005).
I follow closely the setup of chapter 5 of Lütkepohl (2005). Consider the

following general specification of a VAR(p) model:

yt
(g×1)

= ν
(g×1)

+ A1
(g×g)

yt−1 + ...+ Apyt−p + ut
(g×1)

ut ∼ i.i.d.(0, Σu
(g×g)

) (22)

for t = 1, ..., n. The model can be rewritten as:

Y
(g×n)

= C
(g×1+gp)

Z
(1+gp×n)

+ U
(g×n)

(23)

where

Y ≡ [y1, ..., yn] C ≡ [ν,A1, ..., Ap]
Zt

(1+gp×1)
≡ [1, y′t, ..., y′t−p+1]′ Z ≡ [Z0, ..., Zn−1]

U ≡ [u1, ..., un]
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Any subset VAR model of the general model above can be obtained by
imposing appropriate zero constraints on the coefficients:

β ≡ vec(C) = R
(g(1+gp)×q)

θ
(q×1)

(24)

where q is the number of regressors (including constants) in the subset VAR
model under consideration.

The matrix R can be easily constructed as follows. Let W ∈ Nq denote
a vector indicating the position of θ relative to the full vector of coefficients
β. Then the matrix R can be constructed from a (g(1 + gp) × q) matrix of
zeros with 1 in the (W (i), i) position, for i = 1, ..., q.

The model can be further rewritten as:

y
(gn×1)

≡ vec(Y ) (25)

= (Z ′ ⊗ Ig)vec(C) + vec(U)
≡ (Z ′ ⊗ Ig)Rθ + u

B.1 The quasi-likelihood function and its first and sec-
ond derivatives

Define

ft(X t, θ) ≡ exp(−0.5u′tΣ−1
u ut) (26)

where ut = yt − (Z ′t ⊗ Ig)Rθ, so that the quasi log-likelihood function is

`n(Xn, θ) = −0.5n−1
n∑
t=1

u′tΣ−1
u ut (27)

= −0.5n−1u′(In ⊗ Σ−1
u )u

Solving the first order conditions with respect to θ gives the QMLE:

θ̂ = (R′(ZZ ′ ⊗ Σ̂−1
u )R)−1R′(Z ⊗ Σ̂−1

u )y (28)
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The matrix Σ̂u is unknown. Under the assumption that the residuals ut
are normally distributed, the variance covariance matrix could be efficiently
estimated by maximum likelihood. For the purpose of this paper, this could
be computationally expensive. I therefore estimate it as:

Σ̂u = n−1(Y − ˆ̂
CZ)(Y − ˆ̂

CZ)′ (29)

where

vec( ˆ̂
C) = ˆ̂

β

ˆ̂
β = R

ˆ̂
θ

ˆ̂
θ = (R′(ZZ ′ ⊗ Ig)R)−1R′(Z ⊗ Ig)y

See the discussion in chapter 5 of Lütkepohl (2005) for alternative strategies
to estimate Σ̂u.

To obtain the QMLE variance-covariance matrix estimate, the first and
second derivatives of the elements of the log-likelihood are needed.

The first derivative is:

∇′ log ft(X t, θ) = u′tΣ̂−1
u (Z ′t ⊗ Ig)R (30)

and its transpose is

∇ log ft(X t, θ) = R′(Zt ⊗ Ig)Σ̂−1
u ut (31)

The second derivative is

∇2 log ft(X t, θ) = −R′(Zt ⊗ Ig)Σ̂−1
u (Z ′t ⊗ Ig)R

= −R′(ZtZ ′t ⊗ Σ̂−1
u )R (32)

Therefore

Ân = −n−1
n∑
t=1

R′(ZtZ ′t ⊗ Σ̂−1
u )R

= −n−1R′((
n∑
t=1

ZtZ
′
t)⊗ Σ̂−1

u )R

= −n−1R′(ZZ ′ ⊗ Σ̂−1
u )R (33)
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and

B̂n = n−1
n∑
t=1

R′(Zt ⊗ Ig)Σ̂−1
u utu

′
tΣ̂−1

u (Z ′t ⊗ Ig)R

= n−1R′(Z ⊗ Σ̂−1
u )diag(U)diag(U ′)(Z ′ ⊗ Σ̂−1

u )R (34)

where diag(U) is a block diagonal matrix with its columns along the diagonal.

B.2 Forecasting

The objective is to forecast the average inflation h periods ahead:

ŷt,h = h−1
h∑
i=1

ŷt+i (35)

Following closely Lütkepohl (2005), page 96:

ŷt+i = JC̄iZt (36)

where

C̄
(1+gp×1+gp)

≡


1 01,g(p−1) · · · 01,g

C

0g(p−1),1 Ig(p−1) 0g(p−1),g

 (37)

J
(g×1+gp)

≡ [ 0
(g×1)

, Ig, 0, · · · ,0
(g×g(p−1))

] (38)

Consider the following mean value expansion:

ŷt,h ≡ yt,h(β̂)
= yt,h(β) +∇yt,h(β̄)(β̂ − β)
= yt,h(Rθ) +∇yt,h(Rθ̄)R(θ̂ − θ)

where θ̄ is a mean value which lies between θ and θ̂ and I have imposed the
constraint (24). It follows that:

√
n(ŷt,h − yt,h) ∼ N(0,∇yt,hRA−1BA−1R′∇′yt,h) (39)
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It remains to compute ∇yt,h = h−1∑h
i=1∇yt+i:

∇yt+i =
i−1

j

∑
=0
Zt
′(C̄ ′)i−1−j ⊗ JC̄jJ ′ (40)

B.3 Constructing the decision with judgment

The decision with judgment is constructed in two steps. First, one tests
whether the gradient of the loss function evaluated at the judgmental decision
is statistically different from zero. Second, if the test does not reject, the
judgmental decision is retained as optimal one, and if the test rejects, the
optimal decision is at the closest boundary of the confience interval.

To construct the test, notice first that the empirical gradient for the
quadratic loss function is:

∇aLn(θ(Xn), ãn) = −e1yn,h(θ(Xn)) + ãn (41)

where e1 is a g vector of zeros with 1 in the first position, yn,h(θ(Xn)) ≡
ŷn,h, and Xn represents the information set over which the parameter θ is
estimated, following the convention of section 2. As usual, random variables
depend on Xn and their realizations on xn.

Exploiting the result (39) of the previous subsection, under the null H0 :
−e1yn,h(θ∗) + ãn = 0:

√
nσ−1(−e1yn,h(θ(Xn)) + ãn) ∼ N(0, 1) (42)

where σ2 ≡ e1∇yn,hRA−1BA−1R′∇′yn,he1
′ can be consisently estimated with

standard plug-in estimators.
Denoting wiht cα the α percentile of the standard normal and defining

T (xn) ≡
√
nσ−1(−e1yn,h(θ(xn)) + ãn), the optimal decision of equation (10)

can be rewritten as:

δn(xn) =ãnI(cα/2 ≤ T (xn) ≤ c1−α/2)+ (43)
+ (e1yn,h(θ(xn)) + σ̂cα/2/

√
n)I(T (xn) < cα/2)+

+ (e1yn,h(θ(xn)) + σ̂c1−α/2/
√
n)I(T (xn) > c1−α/2)
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B.4 Model selection

Implementation of the model selection procedure requires the construction
of the in sample average loss for each model m:

L̂mn = 0.5(n− h)−1
n−h∑
t=1

(h−1
h∑
i=1

e1yt+i − δmt (xn))2 (44)

This in turn requires the construction of the in sample optimal decision
δmt (xn). The only missing element to construct δmt (xn) from (43) is ãt, that
is the equivalent at time t of the judgmental decision expressed at time n.
This can be reconstructed using the estimated coefficients from the following
constrained optimization problem:

max
θ
`n(xn, θ) (45)

s.t. yn,h(θ(xn)) = ãn

where `n(xn, θ) was defined in (27). Denoting with θ̃(xn) the constrained
parameter vector:

ãt = yt,h(θ̃(xn)) (46)

Denote with M the set of models considered in the selection procedure
and with m∗ ∈M the model with lowest in sample loss L̂mn .

The last and final step is the construction of the weights for model aver-
aging. The asymptotic variance of L̂m∗

n can be estimated as:

(σ̂m∗)2 = (n− h)−1
n−h∑
t=1

(
(h−1

h∑
i=1

e1yt+i − δm
∗

t (xn))2 − L̂m∗

n

)2
(47)

It is now possible to construct the model weights ωmn given in (15) and
the model averaging decision rule δ̄ given in (16).
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