Beliefs and Portfolios: Causal Evidence

Johannes Beutel Deutsche Bundesbank

Michael Weber University of Chicago and NBER

November 12, 2021

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily coincide with the views of the Deutsche Bundesbank, or the Eurosystem.

Motivation

Low interest rate environment and elevated asset valuations

- How does monetary policy affect asset prices?
- Are there financial stability risks from asset price bubbles?
- How do risky assets affect households' wealth?
- Competing asset pricing models give different answers
 Campbell and Cochrane (1999); Adam et al. (2017); Myers and De La O (2020)
- Example: Effect of interest rate shock on asset prices Williams (2014)
 - Rational expectations: one-time adjustment of valuations.
 - Extrapolative expectations: belief-driven bubble.
- \rightarrow Expectation formation is key! Brunnermeier et al. (2021)
 - Households matter: tight investment mandates and inelasticity Koijen and Yogo (2019); Gabaix and Koijen (2021)

This paper

Which mechanism is *causally* shaping households' stock market expectations and *why*?

- Identify causal effects via RCT
- Test leading asset pricing theories jointly

Main findings:

- Causal evidence for extrapolation of returns and earnings
 Greenwood and Shleifer (2014); Myers and De La O (2020); Bordalo et al. (2020); Laudenbach et al. (2021)
- Info preference effect: heterogenous mental models
 Fuster et al. (2019); Andre et al. (2019)
- Beliefs *causally* affect portfolios, resolve puzzle
 Giglio et al. (2021)

Asset Pricing and Expectations Campbell and Shiller (1988)

$$p_t/d_t = c + \sum_{j=0}^{\infty} \rho^j \left(\Delta d_{t+1+j} - r_{t+1+j} \right)$$
 (1)

- **Data:** Higher P/D followed by lower returns.
- **Rational Expectations:** Higher $P/D \rightarrow lower$ expected returns. Campbell and Cochrane (1999); Bansal and Yaron (2004); Barro (2006)
- Extrapolative returns: High past returns (high P/D) \rightarrow high expected returns. Greenwood and Shleifer (2014); Adam et al. (2017)
- Extrapolative earnings growth: High past earnings growth \rightarrow high expected earnings growth. Myers and De La O (2020); Bordalo et al. (2020)
- ightarrow Test predictions in representative survey of 4,000 German households

RCT

Information Treatments

(translated, shortened, re-ordered)

T1 (Rational Expectations)

Current price-earnings ratio of DAX is 23. Long-term average is 15.

• Prior P/E = 10

 $\rightarrow\,$ RE prediction: downward revision of expected return

T2 (Extrapolative returns)

DAX has increased by around 9% over past twelve months.

• Prior R = 5%

 \rightarrow Extrapolation: *upward* revision of expected return

T3 (Extrapolative earnings)

Earnings of DAX companies decreased by 20% over past twelve months.

• Prior earnings growth = 4%

 \rightarrow Extrapolation: *downward* revision

■ T6 (Placebo)

. . .

Harvest yield of winter rapeseed increased by around 10% in 2019.

Econometric Approach (Baseline)

Coibion et al. 2021

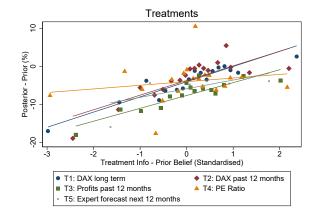
$$E[X]_{i}^{post} = \alpha + \sum_{k=1}^{K-1} \beta_k T_i^k + \sum_{k=1}^{K-1} \gamma_k T_i^k E[X]_i^{pre} + \delta E[X]_i^{pre} + \mathbf{W}_i \phi + \epsilon_i$$
(2)

Example ($\gamma = 0$, $\delta = 1$, $\phi = 0$, $\epsilon_i = 0$):

- Revision control group: $\Delta_c \equiv E[X]_K^{post} E[X]_K^{pre} = \alpha$
- Revision treatment group: $\Delta_{t,k} \equiv E[X]_{k=1}^{post} E[X]_{k=1}^{pre} = \alpha + \beta_k$

• Diff-in-diff:
$$\Delta_{t,k} - \Delta_c = \beta_k$$

- $\rightarrow \beta_k$ measures causal effect of treatment
- $\rightarrow \gamma \neq$ 0, $\delta \neq$ 1 revisions may depend on prior expectations $\rightarrow \phi \neq$ 0 control for imperfect randomization


Treatment Effects (Baseline)

$E[R_{t+1y}]$
0.78
(0.48)
1.93***
(0.44)
-3.19***
(0.44)
1.57***
(0.45)
0.40
(0.41)
3,419

- \rightarrow *No* response to P/E information
- $\rightarrow\,$ Extrapolation of returns and earnings growth

Learning Rates

Normalize treatment effects by prior perception gaps

- \rightarrow Exceptionally low learning rate for P/E information
- \rightarrow Incomplete information and non-RE information processing

Measuring the Information Preference Effect

- Real life: individuals choose information
- Do individuals who prefer an information react more or less to it?
 - less: might have smaller perception gap
 - more: might process the information differently

$$E[X]_{i}^{post} = \alpha + \sum_{k=1}^{K-1} \left(\beta_{k} T_{i}^{k} + \psi_{k} P_{i}^{k} + \xi_{k} T_{i}^{k} P_{i}^{k} \right) + \dots$$
$$\sum_{j=1}^{J} \left(\sum_{k=1}^{K-1} \gamma_{k,j} T_{i}^{k} Z_{i,j} + \delta_{j} Z_{i,j} \right) + \mathbf{W}_{i} \phi + \epsilon_{i}$$
(3)

- ξ_k measures the information preference effect
- \rightarrow ξ_k = Treatment effect if info preferred treatment effect otherwise

Information Preference Effect (2nd wave)

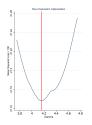
	$E[R_{1y}]$	$E[R_{5y}]$	$E[\Delta D_{1y}]$	$E[\Delta D_{5y}]$
T1(RE)*P1	-2.81**	-4.86**	-1.75	-2.58
	(1.32)	(2.07)	(2.09)	(2.23)
T2(Extrap. R)*P2	-0.93	-1.84	0.81	-2.71
	(1.21)	(1.66)	(1.68)	(1.86)
T3(Extrap. Earn.)*P3	-3.36**	-3.87*	-5.22***	-6.17***
	(1.62)	(2.26)	(1.97)	(2.19)
Ν	3183	3183	3128	3128

Individuals who prefer ...

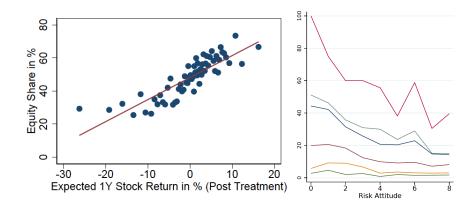
- ... price-earnings ratio information (T1) respond in line with RE.
- ... earnings information in line with learning about fundamentals.
- ⇒ Heterogeneity in mental model of the economy affects information acquisition and processing Dominitz and Manski (2011)

Risky Portfolio Share Puzzle

■ Test Merton (1969):


$$EquityShare_{i}^{post} = \alpha + \beta \frac{E[R]_{i}^{\widehat{post}} - R_{f}}{Var[R]_{i}^{post}} + \mathbf{X_{i}d} + w_{i}$$
(4)

$$\Rightarrow$$
 Prediction: $lpha=$ 0, $eta=rac{1}{\gamma}$ (risk aversion)


- \blacksquare Estimate based on first moments: $\gamma=50$ $_{\rm Giglio\ et\ al.\ (2021)}$
- \blacksquare Estimate based on first and second moments: $\gamma=$ 909 $_{\rm (own \; estimate)}$
- \Rightarrow Estimated risk aversion, γ , outside plausible range (of 3-10)
- \Rightarrow Subjective second moments exacerbate puzzle

Solving the Puzzle

- \blacksquare OLS estimate of γ large because:
 - Optimal portfolio share: unbounded
 - Actual portfolio share: bounded
- Impose leverage constraint: EquityShare ≤ 100%
- Estimate via non-linear least squares (NLLS)
- Result: $\gamma = 4.2$!
- \Rightarrow Imposing leverage constraint and using NLLS solves the puzzle!

Suggestive Evidence

- Portfolio shares positively correlated with expected returns
- \blacksquare Implied γ smaller for higher willigness-to-take-risks

Conclusion

- Individuals do not understand valuations and returns
- Causal evidence for extrapolation of returns and earnings
- $\rightarrow\,$ Frictions in information acquisition and processing
- $\rightarrow\,$ Heterogeneity matters: mental models
 - Conditional on beliefs, households invest rationally
- ightarrow Information interventions to mitigate bubbles and re-distribution (?)

References I

- Adam, K., A. Marcet, and J. Beutel (2017). Stock price booms and expected capital gains. *American Economic Review 107*(8), 2352–2408.
- Andre, P., C. Pizzinelli, C. Roth, and J. Wohlfart (2019). Subjective models of the macroeconomy: Evidence from experts and a representative sample. SSRN Discussion Paper..
- Bansal, R. and A. Yaron (2004). Risks for the long run: A potential resolution of asset pricing puzzles. *Journal of Finance 59*(4), 1481–1509.
- Barro, R. J. (2006). Rare disasters and asset markets in the twentieth century. *The Quarterly Journal of Economics* 121(3), 823–866.
- Bordalo, P., N. Gennaioli, R. L. Porta, and A. Shleifer (2020). Expectations of fundamentals and stock market puzzles. Technical report, National Bureau of Economic Research.
- Brunnermeier, M., E. Farhi, R. S. Koijen, A. Krishnamurthy, S. C. Ludvigson, H. Lustig, S. Nagel, and M. Piazzesi (2021). Perspectives on the future of asset pricing. *The Review of Financial Studies*.
- Campbell, J. Y. and J. H. Cochrane (1999). By force of habit: A consumption-based explanation of aggregate stock market behavior. *Journal of political Economy* 107(2), 205–251.
- Campbell, J. Y. and R. J. Shiller (1988). The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors. *Review of Financial Studies* 1(3), 195–228.
- Coibion, O., Y. Gorodnichenko, and M. Weber (2021). Monetary policy communications and their effects on household inflation expectations. *Journal of Political Economy (forthcoming)*.

References II

- Dominitz, J. and C. F. Manski (2011). Measuring and interpreting expectations of equity returns. *Journal of Applied Econometrics* 26(3), 352–370.
- Fuster, A., R. Perez-Truglia, M. Wiederholt, and B. Zafar (2019). Expectations with Endogenous Information Acquisition: An Experimental Investigation. Technical Report 24767, NBER Working Paper.
- Gabaix, X. and R. S. Koijen (2021). In search of the origins of financial fluctuations: The inelastic markets hypothesis. Technical report, National Bureau of Economic Research.
- Giglio, S., M. Maggiori, J. Stroebel, and S. Utkus (2021). Five facts about beliefs and portfolios. *American Economic Review*.
- Greenwood, R. and A. Shleifer (2014). Expectations of returns and expected returns. *The Review of Financial Studies* 27(3), 714–746.
- Koijen, R. S. and M. Yogo (2019). A demand system approach to asset pricing. Journal of Political Economy 127(4), 1475–1515.
- Laudenbach, C., A. Weber, and J. Wohlfart (2021). Beliefs about the stock market and investment choices: Evidence from a field experiment. *Available at SSRN 3812346*.
- Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. The review of Economics and Statistics, 247–257.
- Myers, S. and R. De La O (2020). Subjective cash flow and discount rate expectations. *Journal* of *Finance forthcoming*.
- Williams, J. C. (2014). Financial Stability and Monetary Policy: Happy Marriage or Untenable Union? Speech, Eltville, Germany, June 5, 2014.