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Abstract

We propose a generic workflow for the use of machine learning models to inform
decision making and to communicate modelling results with stakeholders. It in-
volves three steps: A comparative model evaluation, a decomposition of predicted
values into feature contributions, and statistical inference on feature attributions.
We use this workflow to forecast US unemployment one year ahead in a monthly
dataset and find that universal function approximators, including random forests
and neural networks, outperform conventional models. This better performance is
associated with their greater flexibility in accounting for time-varying and nonlin-
ear relationships in the data generating process. We use Shapley values to explain
the predictions of the machine learning models and to identify the economically
meaningful nonlinearities learned by the models, which allow us to make nuanced
interpretations of model workings. Shapley regressions for statistical inference on
machine learning models enable us to assess and communicate variable importance
akin to conventional econometric approaches.

1 Introduction

A machine learning model may make an investment decision, assist a human driver in
heavy traffic, suggest a movie to watch or inform the decisions of economic policy makers.
While it is desirable to understand how the models works in the first three instances, it
is essential in the last. Policy makers, such as in central banks, are accountable for their
decisions and need to be able to clearly communicate their rationale to stakeholders.

Such transparency is necessary when policy makers make decisions informed by the
output of models (George, 1999; Burgess et al., 2013; Independent Evaluation Office,
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2015). Economic policy makers see the potential merits in using machine learning in
their decision making process (Haldane, 2018) but there exists a key challenge. Whilst
these models often offer improved predictive accuracy, many nonlinear models such as
neural networks and random forests are opaque and are, as such, hard to communicate
clearly.1

We address these issues of transparency and communication by presenting a multi-
step workflow for the use of machine learning models, going from training a model to
interpreting the results and communicating them in a standardised way. Throughout the
paper, we apply the procedure to a macroeconomic case study, where we forecast changes
in unemployment on a one-year horizon—an important input for fiscal and monetary
policy decisions (Burgess et al., 2013). The presented workflow consists of three steps
which can be applied to other contexts in a straightforward manner. First, a horse race
is conducted between conventional statistical methods and machine learning models to
provide prima facie evidence of whether a machine learning approach is likely to deliver
benefits in terms of predictive accuracy. Second, the machine learning predictions are
decomposed into the contributions of the individual model variables. This allows us to
uncover the relative importance of features and understand the functional forms learned
by the machine learning models. By a comparison across models, one can gauge how ro-
bust feature decompositions are to the choice of the algorithm. Third, statistical inference
is conducted to understand which features make a statistically significant contribution to
the accuracy of a model, providing a level of confidence for our interpretations. This in-
ference uses a parametric regression analysis, allowing for a standardised communication
of statistical model results.

The present paper connects different fields, ranging from machine learning and model
interpretability to statistical inference and economic forecasting. There is a growing lit-
erature that suggests that machine learning methods can outperform more conventional
models in economic prediction problems including forecasting. For example, machine
learning methods have been shown to be better at predicting bond risk premia (Bianchi
et al., 2019), forecasting macroeconomic variables such as unemployment and inflation
(Sermpinis et al., 2014; Chen et al., 2019), recessions (Döpke et al., 2017), and finan-
cial crises (Bluwstein et al., 2020).2 However, other papers do not observe consistently
improved performance by using machine learning, instead finding that it is state or hori-
zon dependent (Kock and Teräsvirta, 2014). This mixed evidence validates our horse
race as an important first step for the workflow. We find that machine learning models
outperform econometric benchmarks in predicting 1-year changes in US unemployment.

Predicting macroeconomic dynamics is challenging. Relationships between variables
may not hold over time and shocks such as recessions or financial crises might lead to a
breakdown of previously observed relationships (Ng and Wright, 2013; Elliott and Tim-
mermann, 2008). In line with the literature, we suggest that it is the inherent nonlinearity
of nonparametric models that allows them to learn and exploit complex relationships for

1Additional barriers to the wider use of machine learning models for decision making processes are the
intertwined ethical, safety, privacy, and legal concerns about the application of opaque models (Crawford,
2013; European Union, 2016; Fuster et al., 2017), but these are not covered here.

2In these problems, several variables are used to forecast the outcome variable. In the univariate
case, when only the lagged outcome is used for prediction, evidence suggests that statistical methods or
hybrid models combining statistical and machine learning approaches outperform pure machine learning
methods, on average (Makridakis et al., 2018a,b; Parmezan et al., 2019).
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prediction (Wang and Manning, 2013). Coulombe et al. (2019) show that this advantage
of machine learning models to exploit nonlinearities in macroforecasting is enhanced at
longer horizons. However, the nonlinear relationships learned are not directly observable,
which has led to the black box critique of these models as a major challenge to their ap-
plicability to inform decisions. Therefore, model interpretability methods are necessary
for an explanation of how machine learning models make predictions.

Approaches to interpretable machine learning come from different directions: epis-
temic discussions about what it means for a model to be interpretable (Rudin, 2019),
technical approaches in machine learning research (Doshi-Velez and Kim, 2017), and
methodology in econometrics and statistics (Chernozhukov et al., 2018). This paper
primarily focuses on the latter two.

Miller (2019) analyses the psychology of explanations and suggests that humans ex-
pect explanations that are based on a limited number of causes rather than an exhaustive
account of all factors—acknowledging that the simplification of the problem risks intro-
ducing bias. Relatedly, Lipton (2016) argues that a high-dimensional linear model is not
necessarily more interpretable than a compact neural network that learns from only few
features. Also, if the linear model is trained on abstract features, for instance, obtained
by principal component analysis or an autoencoder, its parameters may not provide an
obvious economic interpretation.3

In the machine learning literature, approaches to interpretability usually focus on mea-
suring how important input variables are for prediction (Lundberg et al., 2020). Variable
attributions can be either global, by assessing the variable importance across the whole
data set or local, by measuring the importance of the variables at the level of individ-
ual observations. Global methods usually track the importance of variables by assessing
a variable’s impact on the accuracy of the model (Kazemitabar et al., 2017) while lo-
cal methods decompose individual predictions into variable contributions (Štrumbelj and
Kononenko, 2010; Ribeiro et al., 2016; Shrikumar et al., 2017; Lundberg and Lee, 2017).
Local attribution can always be summarised in a global variable attribution measure by
averaging local attributions across all observations. Popular global methods are permuta-
tion importance or Gini importance for tree-based models (Breiman, 2001). Popular local
decomposition methods are LIME4 (Ribeiro et al., 2016), DeepLIFT (Shrikumar et al.,
2017) and Shapley values (Štrumbelj and Kononenko, 2010). Lundberg and Lee (2017)
demonstrate that Shapley values offer a unified framework of LIME and DeepLIFT with
appealing properties. Most importantly, Shapley values guarantee consistency, where
a consistent measure of variable importance preserves the relative importance between
variables although, this statistical property comes at the cost of computational com-
plexity. We justify our choice of two feature attribution methods for a comparison of
machine learning model interpretability: permutation importance of features (Breiman,
2001; Fisher et al., 2019) and Shapley values (Štrumbelj and Kononenko, 2010; Lundberg
and Lee, 2017). The former is economical to compute whilst the latter has the advantage
that it allows to depict the nonlinear relationships learned by the machine learning mod-
els. To the best of our knowledge, this is the first study revealing the functional form
learned by machine learning models for macroeconomic forecasting.

3Indeed, in the forecasting literature, it is common to use many variables as predictors (Giannone
et al., 2017) or latent factors that summarise individual variables (Stock and Watson, 2002).

4Local Interpretable Model-agnostic Explanations.

3



Plumb et al. (2018) use a novel method to demonstrate how comparing global with
local interpretations helps identify limitations to each approach, which motivates why
our comparison of global and local attributions with our identification of the underlying
functional form is a key step in workflow that allows us to make nuanced interpretations
of the data generating process.

However, these global and local attribution methods are only descriptive—they ex-
plain the drivers of model predictions, but they do not assess the predictors’ statistical
significance, i.e. how certain one can be that a variable is actually important to describe
a specific outcome. We extend our interpretation of machine learning models for fore-
casting by statistically testing the predictors in a Shapley regression framework (Joseph,
2019). Shapley values and inference based on them is arguably the most general and
rigorous approach to address the issues of machine learning interpretability and model
communication. In this way, we close the gap between two traditional modelling ap-
proaches, the maximisation of predictive performance using ‘black box’ machine learning
methods and the application of statistical techniques to make inferences about the data
generating process (Breiman et al., 2001).

The remainder of this paper is structured as follows. The data and the forecasting
methodology used throughout this paper is introduced in Section 2. Forecasting results
are discussed in Section 3. Contrastive model interpretability methods and results for our
forecasting exercise are discussed in Section 4. We conclude in Section 5. The technical
appendix discusses the computation of Shapley values in a modelling context.

2 Data and experimental setup

We first introduce the necessary notation. Let y and ŷ ∈ Rm be the observed and predicted
outcome, respectively, where m is the number of observations in the time series. The
feature matrix is denoted by x ∈ Rm×n, where n is the number of features in the dataset.
The feature vector of observation i is denoted by xi. Generally, we use i to index the
point in time of the observation and k to index features.

2.1 Data

We use the FRED-MD macroeconomic database (McCracken and Ng, 2016). The data
contains monthly series of 127 macroeconomic indicators of the US between 1959 and
2019.5 Our outcome variable is unemployment and we choose nine variables as predictors,
each capturing a different macroeconomic channel. We additionally add a variable for the
slope of the yield curve (difference in interest rates for the 10-year treasury rate and the 3-
month treasury bill). We use the stationarity transformations suggested by the authors of
the dataset that include first differences, log differences and second order log differences.
Given that we predict the yearly change of unemployment, we set lag length l to 12 for
the outcome and lagged outcome (predictor) variables. For the remaining predictors, we
set l = 3 in our baseline set-up. This generally leads to the best performance (see Table
III for other choices of l). Table I shows the variables, with the respective transformations

5We do not include data from 2020 in our sample because these are likely impacted by the Covid-19
pandemic which would only be partially covered.
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Variable Transformation Name in the FRED-MD database
Unemployment changes UNRATE
3-month treasury bill changes TB3MS
Slope of the yield curve changes -
Real personal income log changes RPI
Industrial production log changes INDPRO
Consumption log changes DPCERA3M086SBEA
S&P 500 log changes S&P 500
Business loans second order log changes BUSLOANS
CPI second order log changes CPIAUCSL
Oil price second order log changes OILPRICEx
M2 Money second order log changes M2SL

Table I: Series used in the forecasting experiment. The middle column shows the trans-
formations suggested in by the authors of the FRED-MD database, the right column
shows how the series are named in that database.

and the series names in the original database. The augmented Dickey-Fuller test confirms
that all transformed series are stationary (p < 0.01).

2.2 Models

We test three families of models that can be formalised in the following way, assuming
that all variables have been transformed according to Table I.

The simple linear lag model only uses the 1-year lag of the outcome variable as a
predictor: ŷi = α + θ0yi−12.

The autoregressive model (AR) uses lagged values of the response variable as pre-
dictors: ŷi = α +∑hl=1 θiyi−l. We test AR models of different lag lengths 1 ≤ h ≤ 12, and
chose h using the Akaike information criterion.

The full information models use the 1-year lag of the outcome and 1-year lags of
the other features as independent variables: ŷt = f(yi−12;xi−12), where f is any given
predictive model. For example, if f is a linear model, f(yi, xi) = α+θ0yi−12+∑nk=1 θkxi−12,k.
To simplify notation in what follows, we include the lagged outcome in the feature matrix
x. We test five full information models: ordinary least squares regression, regularised
regression with ridge and lasso penality, and three machine learning models (random
forests (Breiman, 2001), support vector regression (Drucker et al., 1997), and artificial
neural networks (Goodfellow et al., 2016)).

2.3 Experimental procedure

We evaluate how all models predict changes in unemployment one year ahead. After
transforming the variables (see Table I), the first observation in the training set is Febru-
ary 1962. All methods are evaluated on the 359 data points of the forecasts between
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January 1990 and November 2019 using an expanding window approach. We recalibrate
the full information and simple linear lag models every 12 months such that each model
makes 12 predictions before it is updated. The autoregressive model is updated every
month. As the models predict 12-month changes, we have to create an initial gap be-
tween training and test set when making predictions to avoid a look-ahead bias. For a
model trained on observations 1 . . . i, the earliest observation in the test set that provides
a pseudo real-time 12-month forecast is i + 12. For observations i + 1, . . . , i + 11, the time
difference from the last observation in the training set i is less than one year.
All machine learning models that we test have hyperparameters. We optimise their values
using 5-fold cross validation in the training dataset.6 As this is computationally expen-
sive, we conduct the hyperparameter search every 36 months with the exception of the
computationally less costly Lasso regression whose hyperparameters are updated every
12 months.
To increase the stability of the full information models, we use bootstrap sampling. We
train 100 models on different bootstrapped samples of the training set and average their
predictions (bagging). We do not use bagging for the random forest as each individual
tree is already calibrated on a different bootstrap sample.

3 Forecasting performance

We compare the performance of the different prediction models across all observations
and at different time periods. This is the first step in the proposed workflow; the results
will indicate if the use of machine learning models is worthwhile for the application at
hand.

3.1 Baseline setting

The results of the horse race are shown in Table II. We consider three measures to assess
the forecasting performance: the correlation of the observed and predicted response, the
mean absolute error (MAE), and the root mean squared error (RMSE). The latter is the
main metric considered, as most models minimise RMSE during training. The models
are ordered by decreasing RMSE on the whole test period between 1990 and 2019. The
random forest performs best and we divide the MAE and RMSE of all models by that of
the random forest for ease of comparison.
Table II also breaks down the performance in three periods: the 1990s and the periods
before and after the global financial crisis (GFC, Sep. 2008). We statistically compare
the RMSE and MAE of the best model, the random forest, against all other models using
a Diebold-Mariano test. The asterisks indicate the p-value of the tests.7

6For the hyperparameter search, we also consider partitionings of the training set that take the
temporal dependency of our data into account (Bergmeir and Beńıtez, 2012). We use block cross-
validation (Snijders, 1988) and hv-block cross-validation (Racine, 2000). However, both methods do not
improve the forecasting accuracy.

7The horizon of the Diebold-Mariano test is set to 1 for all tests. Note however, that the horizon of
the AR model is 12 so that the p-values for this comparison are biased and thus reported in parentheses.
Setting the horizon of the Diebold-Mariano test to 12, we do not observe significant differences between
the RMSE of the random forest and AR.
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Correlation MAE RMSE (normalised by first row)

Time period 01/1990– 01/1990– 01/1990– 01/2000– 09/2008–
11/2019 11/2019 12/1999 08/2008 11/2019

Random forest 0.609 1.000 1.000 1.000 1.000 1.000
Neural network 0.555 1.009 1.049 0.969 0.941 1.114**
Linear regression 0.521 1.094*** 1.082** 1.011 0.959 1.149***
Lasso regression 0.519 1.094*** 1.083*** 1.007 0.949 1.156***
Ridge regression 0.514 1.099*** 1.087*** 1.019 0.952 1.157***
SVR 0.475 1.052 1.105** 1.000 1.033 1.169**
AR 0.383 1.082(*) 1.160(***) 1.003 1.010 1.265(***)
Linear lag model 0.242 1.163*** 1.226*** 1.027 1.057 1.352***

Table II: Forecasting performance for the different prediction models. The models are
ordered by decreasing RMSE on the whole sample with the errors of the random forest
set to one. The forest’s MAE and RMSE (full period) are 0.574 and 0.763, respectively.
The asterisks indicate the statistical significance of the Diebold-Mariano test, comparing
the performance of the random forest, with the other models, with significance levels
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Apart from the support vector regression (SVR), all machine learning models outper-
form the linear models on the whole sample. The inferior performance of the SVR is not
surprising as it does not minimise a squared error metric such as RMSE but a metric
similar to MAE which is lower for SVR than for the linear models. In the 1990 and the
periods before the global financial crisis, there are only small difference in performance
between the models, with the neural network being the most accurate model. Only after
the onset of the crisis, the random forest outperforms the other models by a large and
statistically significant margin of up to 35%.

Figure I shows the observed response variable and the predictions of the random forest,
the linear regression and the AR. The vertical dashed lines indicate the different time
periods distinguished in Table II. The predictions of the random forest are more volatile
than that of the regression and the AR.8 All models underestimate unemployment during
the global financial crisis and overestimate it during the recovery. However, the random
forest is least biased in those periods and forecasts high unemployment earliest during the
crisis. This shows that its relatively high forecast volatility can be useful in registering
negative turning points. A similar observation can be made after the burst of the dot-com
bubble in 2000.

3.2 Robustness checks

We altered several parameters in our baseline set-up to investigate their effect on the
predictive performance. The results are shown in Table III. The RMSE of alternative
specifications is again divided by the RMSE of the random forest in the baseline set-up

8The mean absolute deviance from the models’ mean prediction are 0.439, 0.356, and 0.207 for the
random forest, regression, and AR, respectively.
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Figure I: Observed and predicted 1-year change in unemployment for the whole forecasting
period.

for a clearer comparison.

Window size. In the baseline set-up, the training set grows over time (expanding
window). This can potentially improve the performance as more observations may
facilitate a better approximation of the true data generating process. On the other
hand, it may also make the model sluggish and prevents quick adaption to structural
changes. To differentiate between these two cases, we test sliding windows of 60, 120,
and 240 months. Only the simplest model, linear regression with only a lagged response,
profits from a short horizon, the remaining models perform best with the biggest possible
training set. This is not surprising for machine learning models, as they can “memorise”
different sets of information through the incorporation of multiple specification in the
same model. For instance, different paths down a tree model, or different trees in a
forest, are all different submodels, e.g. characterisations of different time periods. By
contrast, the simple linear model cannot adjust in this way and needs to fit the best
hyperplane to the current situation, explaining its improved performance for some fixed
window sizes.

Change horizon. In the baseline set-up, we use a horizon of three months, when
calculating first differences, log diffferences and second order log differences of the
predictors (see Table I). Testing lag lengths of 1, 6, 9, and 12 months, we find that
three months generally leads to the best performance of all full information models.
This is useful from a practical point of view, as quarterly changes are commonly used
for short-term economic projections.

Bootstrapped models. In the baseline set-up, we bootstrapped all full information
models except the random forest, which builds 500 bootstrapped decision trees by design.
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Random Neural Linear SVR AR Linear regression
forest network regression (lagged response)

Training set size (in months)
max (baseline) 1.000 1.049 1.082 1.105 1.160 1.226
60 1.487 1.497 1.708 1.589 2.935 1.751
120 1.183 1.163 1.184 1.248 1.568 1.257
240 1.070 1.051 1.087 1.106 1.304 1.198

Change horizon (in months)
3 (baseline) 1.000 1.049 1.082 1.105 1.160 1.226
1 1.077 1.083 1.128 1.148 - -
6 1.043 1.111 1.142 1.162 - -
9 1.216 1.321 1.251 1.344 - -
12 1.345 1.278 1.336 1.365 - -

Bootstrapped models
no 1.000 1.179 1.089 1.117 1.160 1.226
100 models - 1.049 1.082 1.105 - -

Table III: Performance for different parameter specifications. The shown metric is RMSE
divided by the RMSE of the random forest in the baseline set-up.

The linear regression, neural network and SVR all benefit from averaging the prediction
of 100 bootstrapped models. The intuition is that our relatively small dataset likely leads
to models with high variance. Bootstrap aggregation (bagging) reduces the variance and
thus the degree of overfitting. Not surprisingly, the improvement due to bootstrapping
was limited for the linear model, as it is more stable than the machine learning methods,
i.e different random samples are likely to lead to almost identical models.

Overall, machine learning models are mostly more accurate than conventally used
benchmarks. This justifies additional investments in model interpretability discussed in
the next section.

4 Model interpretability

In this section, under the second and third steps of the workflow, we compare methods
to obtain feature attributions, contrasting their different interpretations of model out-
puts, at both a local and global level, before undertaking statistical inference on model
decompositions.

4.1 Methodology

First, we introduce and compare two different methods for interpreting machine learning
models: permutation importance (Breiman, 2001; Fisher et al., 2019) and Shapley values.
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Both approaches are model-agnostic, meaning that they can be applied to any model, un-
like other approaches, such as Gini impurity (Kazemitabar et al., 2017; Friedman et al.,
2009) that are only compatible with specific machine learning methods. Both methods
allow us to understand the relative importance of model features. For permutation im-
portance, variable attribution is at the global level across all predictions whilst Shapley
values are constructed locally, i.e. for each prediction individually. We note that both
importance measures generally require column-wise independence of the features, that is,
contemporaneous independence in our forecasting experiments, an assumption that will
not hold under all contexts. Only for tree models there exists an efficient algorithm that
considers the dependencies of features (Lundberg et al., 2018).

Permutation importance

The permutation importance of a variable measures the change of model performance
when the values of that variables are randomly scrambled. If a model has learnt a strong
dependency between the model outcome and a given variable, scrambling the value of
the variable leads to very different model predictions and thus affects performance. A
variable k is said to be important in a model, if the test error e after scrambling feature k is
substantially higher than the test error when using the original value for k, i.e. epermk >> e.
The value of the permutation error epermk depends on the realisation of the permutation
and variation in its value can be large, particularly in small datasets. Therefore, it is
recommended to average epermk over several random draws for more accurate estimates
and to assess sampling variability.9

The following procedure estimates the permutation importance.

1. For each feature xk:

(a) Generate a permutation sample xpermk with the values of xk permuted across
observations.

(b) Re-evaluate the test score for xpermk , resulting in epermk .

(c) The permutation importance of xk is given by I(xk) = epermk /e. Alternatively,
the difference epermk − e can be considered.

(d) Repeat and average over Q iterations and average Ik = 1/Q∑q I(xk).

2. If Ik is based on the ratio of errors epermk /e, consider the normalised quantity Īk =
(Ik − 1)/∑k(Ik − 1) ∈ (0,1).10

Permutation importance is an intuitive measure that is relatively cheap to compute—
it only requires generating predictions on the permuted data but no model retraining.
However, this ease of use comes at some cost. For example, if two features contain sim-
ilar information, permuting either of them will not reflect the actual importance of this
feature relative to all other features. Only permuting both or excluding one would do so.
This motivates our comparison with Shapley values because they identify the individual

9At a test set of size m, where each observation havs a unique value, there are m! permutations to
consider for an exhaustive evaluation. This is intractable to compute for larger m.

10Note, Ik ≥ 1 in general. If not, there may be problems with model optimisation.
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marginal effect of a feature, accounting for its interaction with all other features. Ad-
ditionally, the computation of permutation importance requires access to true outcome
target values and in many situations, e.g. when working with models trained on sensitive
or confidential data, these may not be available.

Shapley values and regressions

Shapley values originate from game theory as a general solution to the problem of at-
tributing a pay-off obtained in a cooperative game to the individual players based on their
contribution to the game (Shapley, 1953). Štrumbelj and Kononenko (2010) introduced
the analogy between players in a cooperative game and variables in a general supervised
model. In the latter, variables jointly generate a prediction, the pay-off.

The Shapley values of a model offer a local decomposition of each model prediction,
i.e. they add up to the predicted values of a model. For an input value xi, we have

f(xi) =
n

∑
k=0

φSk (xi) , (1)

where φSk (xi) is the Shapley value associated with predictor k and φS0 an intercept, usu-
ally the model mean prediction. Shapley values come with a host of appealing analytical
properties which are inherited from their game theoretic origins. Moreover, the decom-
position in Equation 1 does not need to refer to single variables but can also include
interactions or even higher-order terms of interest. This flexibility comes at the cost of
computing Shapley values, which is discussed in a technical appendix.

We next formulate an inference framework—Shapley regression—to analyse the sta-
tistical significance of Shapley value components (Joseph, 2019),

yi = φS0 +
n

∑
k=1

φSk (f, xi)βSk + εi ≡ ΦS
i β

S + ε, (2)

where ΦS[f(xi)] is the Shapley decomposition of model f and ε̂i ∼ N (0, σ2
ε ). The right-

most term uses inner product notation with βS0 ≡ 1. The surrogate coefficients βSk , k > 0
are tested against the null hypothesis

Hk0(Ω) ∶ {βSk ≤ 0 ∣Ω} , (3)

with Ω ∈ Rn as (a region of) the model input space. The intuition behind this approach
is to test the alignment of Shapley components with the target variable. This can be
seen when assuming that the vector βS ≈ 1,11 in which case the Shapley components of a
model vary one-for-one with the target up to the random component ε. However, when
the null hypothesis cannot be rejected, there is no significant co-movement between
variable Shapley components and the target, in line with non-significance of a variable
in a conventional regression analysis.

A key difference to the linear case is the regional dependence on Ω of inference
results. We can only make local statements about the contributions of a variable, i.e.

11This is also the asymptotic value of βS assuming that each predictor contains some information for
predicting y. See Joseph (2019) for details.
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on those regions where it is tested against H0. This is appropriate in the context of
potential nonlinearity, where the model plane in the original input-target space may be
curved, such that variables are only related to the target functions for subsets of the
input space.

The Shapley value decomposition (Equation 1) absorbs the sign of variable attri-
butions, such that only positive coefficient values indicate significance. When negative
values occur, it indicates that a model has poorly learned from a variable and H0 can not
be rejected.
Finally, the coefficients βS are only informative about alignment, not the magnitude of
importance of a variable, which is captured by the Shapley decomposition (1). Both
together can be summarised by Shapley share coefficients,

ΓSk (f,Ω) ≡
⎡⎢⎢⎢⎢⎣
sign(βlink ) ⟨

∣φSk (f)∣
∑nl=1 ∣φSl (f)∣

⟩
Ω

⎤⎥⎥⎥⎥⎦

(∗)

∈ [−1,1] , (4)

f(x)=xβlin

= β
lin(∗)
k ⟨ ∣(xk − ⟨xk⟩)∣

∑nl=1 ∣βk(xl − ⟨xl⟩)∣
⟩

Ω

, (5)

where ⟨⋅⟩Ω stands for the average across Ω. The Shapley share coefficient ΓSk (f,Ω) is
a summary statistic for the contribution of xk to the model over a region Ω ⊂ Rn for
modelling y.
It consist of three parts. The first is the sign, which is the sign of the corresponding linear
model. The motivation for this is to indicate the direction of alignment of a variable with
the target y. The second part is the coefficient size. It is defined as the fraction of absolute
variable attribution allotted to xk across Ω and measures how much of the model output
is explained by xk. The sum of the absolute value of Shapley share coefficients is one
by construction.12 The last component (∗) is used to indicate the significance level of
Shapley attributions from xk against the null hypothesis (Equation 3) and, thus, the
confidence one can have in information derived from that variable.
Equation 5 provides the explicit form for the linear model, where an analytical form
exists. The only difference to the conventional case is the normalising factor.

4.2 Interpretation of results

We explain the predictions of the machine learning models and the linear regression as
calibrated in our basline set-up. Our focus is largely on explaining forecast predictions
in a pseudo real-world setting where the model is trained on earlier observations that
predate the predictions. However, in some cases it can be instructive to explain the
predictions of a model that was trained on observations across the whole time period.
For that, we train the model on a bootstrapped sample of the whole time series and make
predictions for those observations not in a bootstrapped training sample. This out-of-bag
analysis is subject to look-ahead bias, as we use future data to predict the past, but it
allows us to evaluate a model for the whole time series.

12The normalisation is not needed in binary classification problems where the model output is a
probability. Here, the a Shapley contribution relative to a base rate can be interpreted as the expected
change in probability due to that variable.
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Feature importance

We first analyse our two methods of model interpretation at a global level. Figure II
compares Shapley shares ∣ΓS ∣ (left panel) with permutation importance Ī (middle panel).
The variables are sorted by the Shapley shares of the best performing model, the random
forest. Vertical lines connect the lowest and highest share across models for each feature
to highlight the disagreement between models.

We use two different methods to compute Shapley values for the random forest model
(Lundberg and Lee, 2017). The first method (blue squares) computes Shapley values
under feature dependence and the second method (blue crosses) assumes variable inde-
pendence (see the technical appendix). The difference in Shapley shares obtained by
the two methods is negligible, indicating that the independence assumption which con-
siderably facilitates the computation of Shapley values, should not bias our measures of
feature importance.

The two importance measures, permutation importance and Shapley values, only
roughly agree in their ranking of feature importance. For instance, using a random forest
model, past unemployment seems to be a key indicator according to permutation impor-
tance but less important according to Shapley calculations. The permutation importance
shown is based on the forecasting error. It is a measure of a feature’s influence on the
accuracy of the model and thus affected by how the relationship between outcome and
features changes over time. In contrast, Shapley values reflect a variable’s influence on
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Figure II: Variable importance according to different measures. The left panel shows
the importance according to the Shapley shares ∣ΓS ∣ and the middle panel shows the
variable importance according to permutation importance. The right panel shows an
altered metric of permutation importance that measures the effect of permutation on the
predicted value rather than prediction error. Only the Shapley values of random forest
(D) are based on a decomposition that takes the features dependence into account. The
other Shapley values shown assume feature independence.
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Figure III: Functional form learned by the random forest (left panel) and linear regression.
The lines shows a polynomial fitted to the data. The Shapley values are computed on
the out-of-bag predictions and are therefore subject to look-ahead bias. Extreme input
values (below 2.5% and above 97.5% quantile) are excluded.

the predicted value, independent of that value’s accuracy. The right panel of Figure II
shows an altered measure of permutation importance. Instead of measuring the change
in the error due to permutations, we measure the change in the predicted value.13 We see
that this importance measure is more closely aligned with Shapley values. Further, when
we evaluate permutation importance using predictions based on the out-of-bag analysis,
we find a strong alignment with Shapley values (not shown) as the relationship between
variables is not affected by the changes between the training and test set.

The different prediction models have a similar importance ranking of the features.
There are, however some notable differences such as the difference of the forest and the
linear regression in the unemployment and yield curve slope predictors.

The preceding global analysis only shows which variables are important, it does not
reveal the functional form learned by the model. Figure III demonstrates how local
Shapley decompositions uncover nonlinearities machine learning models have learned from
the data. It plots local Shapley values (based on the out-of-bag analysis) attributed to the
S&P 500 (vertical axis) against its input values (horizontal axis) for the linear regression
(left panel) and the random forest (right panel). The approximate functional forms
learned by both models are traced out by best-fit first and third-degree polynomials,
respectively. We exclude extreme input values (below 2.5% and above 97.5% quantile) to
avoid this fit being driven by outliers on the edges. The linear regression learns a steep

13This metric computes the mean absolute difference between the observed predicted values and the
predicted values after permuting feature k ∶ 1

m ∑m
i=1 ∣ŷi − ŷpermi(k) ∣. The higher this difference, the higher

the importance of the feature k (see Lemaire et al. (2008) and Robnik-Šikonja and Kononenko (2008)
for similar approaches to measure variable importance).
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Figure IV: Functional form of lagged unemployment change learned by the random forest
(left panel) and linear regression (middle panel) for three models trained up to different
points in time. The right panel shows the functional form across all observations when
the model was trained at the latest point in time. The lines show polynomials fitted
to the data. The Shapley values are computed on the out-of-bag predictions and are
therefore subject to look-ahead bias.

negative slope, i.e. higher stock market values are associated with lower unemployment
one year ahead. This makes economic sense. However, we can make more nuanced
statements when looking at the random forest. The model learns a saturation effect for
high market valuations. Changes beyond a certain point do not suggest further drops in
unemployment as the line flattens.14

Our forecasting models gradually change over time as the training set grows. To in-
vestigate this model drift, we consider the out-of-bag predictions of the models trained
up to three different points in time. Figure IV shows the functional form for the lagged
unemployment change variable. The linear regression models (left panel) trained up to
the periods 2000 and 2008 find no predictive power for lagged unemployment. It is only
after the onset of the global financial crisis that the linear regression learns a positive
relationship—an increase of unemployment increase the predicted increase unemployment
one year ahead. However, this is simply reflective of the trend—the 1-year unemployment
change was high for a prolonged period following the financial crisis: it was persistently
larger than 1 percentage point for 21 consecutive months (July 2008–March 2010). In
contrast, the functional form of the random forest (middle panel) is rather stable. Across
the three time periods it learns a non-monotonic but intuitive relationship where a high
increase in the unemployment makes future increases in unemployment less likely com-
pared to a medium increase. The right panel of Figure IV directly compares the functional
form learned by latest regression and random forest across all data points between 1990–
2019. The other machine learning models learn the same quadratic relationship. This
also explains why the Shapley share of lagged unemployment is much lower for the linear
regression compared to the other models (Figure II). Its contribution up the crisis was
close to zero.

To better understand the non-monotonic function of lagged unemployment change

14Similar nonlinearities are learned by the SVR and the neural network.
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Figure V: Interaction between unemployment changes and recessions as learned by a
random forest. The left panel shows the functional form of lagged unemployment changes
when the model is trained on the baseline features without a recession indicator (as in
Figure IV). The right panel shows the Shapley values of the interaction when the model
was trained with a recession indicator. The Shapley values are computed on the out-of-
bag predictions.

learned by the random forest, we look into the role of recessions in our model.15 Figure V
(left) again shows the functional form of lagged unemployment as learned by the random
forest in the out-of-bag set-up. But now recession observations in the input space are
marked in red and extreme values are not excluded. Even though we did not include
recessions as an indicator the model could learn from, these account for a large share of
the downwards sloping part at high values of positive unemployment change. We further
elaborate on this observation by including a recession dummy in our models and compute
the Shapley-Taylor index (Agarwal et al., 2019) to decompose the predictions into the
main effects of the predictors and interactions.16

The interaction (Figure V, right panel) shows two distinct functional forms that cross
and confirms that an increase of unemployment during a recession predicts a decrease of
future unemployment. When computing the Shapley shares ∣ΓS ∣ of the main effects of
variables (as in Figure II) and their two and three way interactions, the interaction shown
here obtains the second highest score. It is higher than the main effect of all variables
except the recession indicator. While including the recession indicator improves the
interpretation of the results, the predictive accuracy of random forest does not increase.
Instead the model learned the role of recession periods implicitly from the other variables
implicitly incorporating two different regimes, normal times and recessions.

15We use the definition of recessions provided by the Federal Reserve Bank of St. Louis (Federal Reserve
Bank of St. Louis, 2020).

16Generally, each model prediction can be decomposed in variable main effects (first order terms) and
interactions of variables of order two or higher.
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Random forest Linear regression
βS p-value ΓS βS p-value ΓS

Industrial production 0.626 0.000 −0.228*** 0.782 0.000 −0.163***
S&P 500 0.671 0.000 −0.177*** 0.622 0.000 −0.251***
Consumption 1.314 0.000 −0.177*** 2.004 0.000 −0.115***
Unemployment (lagged) 1.394 0.000 +0.112*** 2.600 0.010 +0.033***
Business loans 2.195 0.000 −0.068*** 2.371 0.024 −0.031**
3-month treasury bill 1.451 0.008 −0.066*** -1.579 1.000 −0.102
Personal income -0.320 0.749 +0.044 -0.244 0.730 +0.089
Oil price 1.589 0.018 −0.040** -0.246 0.624 −0.052
M2 Money 0.168 0.363 −0.034 -4.961 0.951 −0.011
Yield curve slope 1.952 0.055 +0.029* 0.255 0.171 +0.132
CPI 0.245 0.419 −0.024 -0.790 0.673 −0.022

Table IV: Shapley regression of random forest (left) and linear regression (right) for
the forecasting predictions between 1990–2019. Significance levels: ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.

Statistical inference with Shapley regressions

Shapley value-based inference (Equation 2) allows us to communicate machine learning
models analogously to a linear regression analysis. We summarise the Shapley regression
on the forecasting predictions (1990–2019) of the random forest and linear regression in
Table IV.

As mentioned above, the coefficients βS measure the alignment of a variable with the
target. Values close to one indicate perfect alignment and convergence of the learning
process. Values larger than one indicate that a model underestimates the effect of a
variable on the outcome. And the opposite is the case for values smaller than one. This
can intuitively be understood as the model hyperplane of the Shapley regression either
tilting more towards a Shapley component from a variable (underestimation, βSk > 1)
or away from it (overestimation, βSk < 1). Significance decreases as the βSk approaches zero.

Variables with higher Shapley shares ∣ΓS ∣ (same as in Figure II) tend to have lower
p-values. This is intuitive, demonstrating that the model learns to rely more on features
that are important for predicting the target variable. However this does not hold by con-
struction. This is especially so in a forecasting setting where the relationships between
variables changes over time, any statistical significance may disappear in the test set,
even for features with high Shapley shares.
More variables are statistically significant for the random forest than for the linear re-
gression model. This is expected given the greater flexibility of machine learning models.
It also provides further evidence of how non-parametric models, like random forests or
other machine learning models, exploit nonlinear relationships that linear regression mod-
els cannot account for (as in Figure III in below).
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5 Conclusion

This paper presents a workflow for using machine learning to inform decision making in
situations where transparency and ease of communicating results are key. The three steps
of the workflow are: a horse race between model types, a decomposition of predictions
into feature contributions, and statistical inference on model results.

In the first step of our case study, we found a significantly better performance of
machine learning models for forecasting yearly changes in US unemployment compared
to linear benchmarks. For the second step, we observe pronounced nonlinearities learned
by the machine learning models and which also have clear economic interpretations. In
the third step of the workflow, we use the Shapley regression framework to show that
a larger number of variables are statistically significant predictors for machine learning
models than for the linear benchmark. This is line with the former exploiting meaningful
nonlinear relationships in the data.

Machine learning methods are increasingly used in economic and social science re-
search. However, most studies using machine learning focus on maximising predictive
accuracy and accept the black box nature of the models. Research that does attempt
statistical inference on machine learning models often uses controlled and usually less
volatile data, for instance from randomised controls trials. Our study shows that the use
of machine learning models and statistical inference can be combined to answer real-world
problems.

Many decision makers may not be familiar with machine learning methods but we be-
lieve that their increased predictive accuracy and ability to detect richer, more nuanced
signals in the data justify their use to inform policy decisions. With our workflow, model
results can be communicated analogously to familiar and well-understood regression re-
sults. Further, we show that our workflow can also be used to identify structural breaks
in the data generating process. Future work could directly compare our approach with
the respective state-of-the-art techniques in the econometric literature.

A general caveat to using the Shapley regression framework to interpret model results
is that potentially complex and nonlinear functional forms cannot be fully communicated
by a single statistic, such as Shapley share coefficients. However, we believe that the
combination of evidence for learned functional forms and statistical inference on fea-
ture attributions well justifies the use of our machine learning workflow to inform policy
decisions.

Machine learning approaches often provide more accurate predictions than standard
linear models. In this case, our workflow helps decision makers to profit both from more
accurate predictions and a better understanding of the data generating process—instead
of trading off interpretability for accuracy when treating the machine learning model as
a black box.
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Technical Appendix: Model Shapley values

The Shapley attribution φSk (xi; f) for variable k in observation xi and model f in (1) is

given by

φSk (xi; f) = ∑
x′ ⊆C(x)∖{k}

∣x′∣!(n − ∣x′∣ − 1)!
n!

[f(xi∣x′ ∪ {k}) − f(xi∣x′)] , (6)

= ∑
x′ ⊆C(x)∖{k}

ωx′[Eb[f(xi)∣x′ ∪ {k}] −Eb[f(xi)∣x′]] , (7)

with Eb[f(xi)∣x′] ≡ ∫ f(xi)db(x̄′) = 1

∣b∣∑b
f(xi∣x̄′) . (8)

Here, C(x) ∖ {k} is the set of all possible variable combinations (coalitions) when

excluding variable k and ∣x′∣ denotes the number of variables included in that coalition,

ωx′ ≡ ∣x′∣!(n − ∣x′∣ − 1)!/n! is a combinatorial weighting factor summing to one over all

possible coalitions, b is a background dataset and x̄′ stands for the set of variables not

included in x′.

Equation 6 is the weighted sum of marginal contributions of variable k to all possible

variable coalitions.17 It usually is not possible to just exclude a variable from a model

to form the coalition set x′. Instead, the contributions from features not included in x′

are integrated out over a suitable background dataset b accroding to Equation 8. Here,

{xi∣x̄′} is the set of points with variables not in x′ being replaced by their corresponding

values in b along these dimensions. A reasonable choice for the background data is the

training dataset (or a subset or summary thereof) incorporating all information the model

has learned from. The background data should provide an informative reference point by

determining the intercept φS0 .

Shapley variable attributions inherit many appealing analytical properties from their

game theoretic origins. Particularly, they are the only variable attribution scheme which

is local, exact, linear and consistent (see Young (1985); Štrumbelj and Kononenko (2010);

Lundberg and Lee (2017) for details). However, the above computation of Shapley values

based on conditional expectations also poses some challenges which we briefly discuss

here:

17For example, assuming we have three players (variables) {A,B,C}, the Shapley value of player C
would be φSC(f) = 1/3[f({A,B,C})−f({A,B})]+1/6[f({A,C})−f({A})]+1/6[f({B,C})−f({B})]+
1/3[f({C}) − f({∅})].
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1. Computational complexity: The time to evaluate the above expressions grows expo-

nentially in the number of features, which makes it intractable for already moderate

feature sets and dataset sizes. Two possible solutions are either to sample coalitions

x′ from C(x), as implemented in the SHAP package by Lundberg and Lee (2017),

or to group those features that are not of interest in a single group “others” (see

Joseph (2019)). The latter has the advantage that computation is still exact.

2. Feature dependence: The evaluation of conditional expectations (Equation 8) makes

the implicit assumption of feature independence which may be violated in real-world

applications. There are again two ways to address this. First, one can estimate

Shapley values of tree-based models for which there exists an efficient algorithm

that accounts for feature dependence Lundberg et al. (2018). By comparing Shap-

ley values when respecting or ignoring feature dependence, one can gauge the im-

portance of the dependencies. However, caution is warranted when transferring the

findings to other model families, e.g. artificial neural networks. Second, one can net

out the effect of higher-order feature interactions using the Shapley-Taylor index

(Agarwal et al., 2019) to understand dependencies between features.

3. Expectation consistency: As shown by Sundararajan and Najmi (2019), attribution

consistency which, casually put, avoids contradictions in feature attribution, can be

violated when using conditional expectation for the computation of Shapley values,

and a single reference value is advocated for. However, this discards much of the

potentially rich information a model has learned, such as nonlinearities. A solution

to this is provided in Joseph (2019) in the form of an additional condition when

comparing different models against a common background. The models’ expected

values over the background data b need to coincide leading to the same reference

φS0 (b). This is fulfilled in many practical situations where models optimise the same

objective functions, like the mean squared error.

None of the above challenges is fatal for the application of Shapley values for model

interpretability. However, one has to be aware of the possible pitfalls and consequences

of approximations and their consequences for model interpretations and any decisions

based on them.
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Robnik-Šikonja, Marko and Igor Kononenko (2008) “Explaining classifications for individual

instances”, IEEE Transactions on Knowledge and Data Engineering, Vol. 20, No. 5, pp.

589–600.

Rudin, Cynthia (2019) “Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead”, Nature Machine Intelligence, Vol. 1, No. 5,

pp. 206–215.

Sermpinis, Georgios, Charalampos Stasinakis, Konstantinos Theofilatos, and Andreas

Karathanasopoulos (2014) “Inflation and unemployment forecasting with genetic support

vector regression”, Journal of Forecasting, Vol. 33, No. 6, pp. 471–487.

24



Shapley, Lloyd (1953) “A value for n-person games”, Contributions to the Theory of Games,

Vol. 2, pp. 307–317.

Shrikumar, Avanti, Peyton Greenside, and Kundaje Anshul (2017) “Learning important features

through propagating activation differences”, ArXiv e-prints, Vol. 1704.02685.

Snijders, Tom A. B. (1988) “On cross-validation for predictor evaluation in time series”, in

Theo K. Dijkstra ed. On model uncertainty and its statistical implications: Springer, pp.

56–69.

Stock, James H and Mark W Watson (2002) “Forecasting using principal components from a

large number of predictors”, Journal of the American Statistical Association, Vol. 97, No.

460, pp. 1167–1179.
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