

Panel: Inflation objective, structural forces, central bank communication

Volker Wieland GCEE and IMFS, Goethe University Frankfurt

2020 ECB Forum on Central Banking Central banks in a shifting world Wednesday, November 11, 2020

President Lagarde, ECB Watchers conference, September 30, 2020

"Most importantly, the last decade has been defined by a **persistent decline in inflation** among advanced economies. In the euro area, annual inflation **averaged 2.3% from 1999** to the eve of the great financial crisis in August 2008, but only 1.2% from then until the end of 2019.

We need to thoroughly analyse the **forces that are driving inflation dynamics** today, and consider whether and how we should **adjust our policy strategy** in response."

<u>Inflation averages</u> – 3 periods: Pre-financial-crisis decade, double recession & recovery

Inflation measures % growth rates	1999 Q1 - 2009 Q1 Up to GFC recession	2009 Q2 - 2013 Q1 Double recession	2013 Q2 – 2020 Q1 Recovery
HICP: Harmonized Index of Consumer Prices in the euro area	2.2	1.8	0.9
GDP Deflator: Prices of all goods & services produced in the euro area	2.0	1.0	1.3
Import Price Deflator: Prices of imported goods & services.	1.6	2.1	-0.3

Domestic price inflation reached 1.8 % end of 2019

Sources: ECB, Eurostat

very similar from 1998 to mid 2007.

HICP & GDP deflator

- HICP more variable in double recession.
- GDP deflator trends up with recovery.

Bletzinger-Wieland ECB target estimate from reaction function: 1.74%

Cost of housing under-represented in HICP, only rental cost while owner-occupied housing is not included.

Actual rentals for housing and HICP excluding energy: Euro area

1 - Working day and seasonally adjusted. 2 - Not seasonally adjusted.

Sources: ECB, Eurostat, own calculations

- Cost for housing under-represented in HICP.
- Low weights of rental cost.
- Rental cost inflation smoother higher than HICP inflation in low inflation periods.

© Sachverständigenrat | 20-582

Owner-occupied housing index increased in Germany, quite variable, partly asset price of land.

France

- HICP excluding energy (not seasonally adjusted)
- Actual rentals for housing in HICP (not seasonally adjusted)
- OOHPI (not seasonally adjusted, quarterly)

Anticipated increase of HICP inflation due to CO² Pricing for heating and mobility in Germany

Effects of German national emissions trading system on HICP between 2021 und 2026

Contribution to euro area HICP roughly 0.34 pp (0.17 direct effect) in 2021.

Possibly more like a cost-push shock.

Contribution to German HICP by other goods and services

Contribution to HICP

Sources: Eurostat, Federal Statistical Office, RDC of the Federal Statistical Office and Statistical Offices of the Länder, Einkommens- und Verbrauchsstichprobe 2013 Grundfile 5 (HB), own calculations

© Sachverständigenrat | 20-584

Policy at the ELB: Switching from interest rate to QE, while QE effects are uncertain.

 π : inflation, π^* : target, i: nominal interest rate, *i**: nominal equilibrium rate, q: quantitative policy, e: shock, σ : variances.

(1)
$$\pi_t = -a(i_t - i_*) + bq_t + \pi_{t-1} + e_t \qquad b \sim N(\overline{b}, \sigma_b), e_t \sim N(0, \sigma_e)$$

(2)
$$\max_{i,q} E[-(\pi_t - \pi^*)^2] \iff \max_{i,q} (-(E\pi_t - \pi^*)^2 - V\pi_t)$$

(3) if
$$i_t \ge i^{LB} \implies i_t = i^* + \frac{1}{a}(\pi_{t-1} - \pi^*)$$
, $q_t = 0$ $E_t \pi_t = \pi^*$

At ELB it may be optimal to have inflation converge more slowly to target from below, because of uncertainty ...

π: inflation, $π^*$: target, i: nominal interest rate, *i**: nominal equilibrium rate, q: quantitative policy, e: shock, σ: variances.

(4) if
$$\pi_{t-1} < \pi^* + a(i^{LB} - i^*)$$

 $i_t = i^{LB}$, $q_t = -\frac{\overline{b}}{(\overline{b}^2 + \sigma_b)}(\pi_{t-1} - a(i^{LB} - i^*) - \pi^*)$
 $\Rightarrow E\pi_t < \pi^*$

Brainard (1967) on policy attenuation under multiplicative uncertainy and Orphanides & Wieland (2000) on optimal quantitative easing under uncertainty.

..., or because of the risk of side effects of QE,

z: side effects of QE, s: shock, σ : variances.

(5)
$$z_t = cq_t + s_t$$
 $c \sim N(0, \sigma_c), s_t \sim N(0, \sigma_s)$

(6)
$$\max_{i,q} E[-(\pi_t - \pi^*)^2 - \lambda z^2]$$

(7)
$$i_t = i^{LB}$$
, $q_t = -\frac{\overline{b}}{(\overline{b}^2 + \sigma_b + \lambda \sigma_c)} (\pi_{t-1} - a(i^{LB} - i^*) - \pi^*)$
 $\Rightarrow E\pi_t < \pi^*$

Factors that influence the constraint on interest rate policy.

(8)
$$[i_t - i^{LB}]_+ = \left[r^* + \pi^* + \frac{1}{a}(\pi_{t-1} - \pi^*) - i^{LB}\right]_+$$

$$r^* \downarrow \Rightarrow$$
 Interest rate policy more constrained.

 $\pi^* \uparrow \Rightarrow$ Depends! When at ELB it widens the distance to cover and requires even easier policy.

 $i^{LB} \downarrow \Rightarrow$ Interest rate policy less constrained.

 π_{t-1} measurement $\uparrow \Rightarrow$ Interest rate policy less constrained.

➔ Some conclusions for strategy

- Consider inflation more broadly in policy communication, not just HICP.
- Range as in "below but close to 2%" offers flexibility to include other measures in policy communication.
- At ELB it may be optimal to have inflation return to target more slowly due to uncertainty and side effects of QE.
- Raising inflation target when at ELB is tricky. Greater distance to target, requires easing policy further.
- Negative effect of lower r* at ELB may be offset by exploring potentially lower i^{LB} .