Comments on Gali's "Hysteresis and the European Unemployment Problem Revised"

Robert J. Gordon
Northwestern University, NBER, CEPR
ECB Forum on Central Banking,
Sintra, Portugal, May 22, 2015

Starting Point: Euro Unemployment Rate Behaves Differently Than US

- US: Substantial cyclicality with consistent reversion toward a roughly constant mean.
- Euro area unemployment:
 - Wanders around an upward trend
 - Can't reject a UNIT ROOT
 - Movements less volatile than US
 - Movements more persistent than US
 - No tendency to gravitate toward a long-run equilibrium value

My Discussion Raises More Questions than Answers

- Questions about the Unit Root characterization
 - Euro Unemployment similarities to US
- Similarities US vs. Euro inflation process
- Reasons to study inflation behavior in preference to wage change behavior
- Brief update: Econometric model for US inflation
- How close can we come to using that model on Euro-area inflation?
- Brief comments on the paper's three models

Indeed Euro and US Unemployment Series are Very Different, 1970-2014

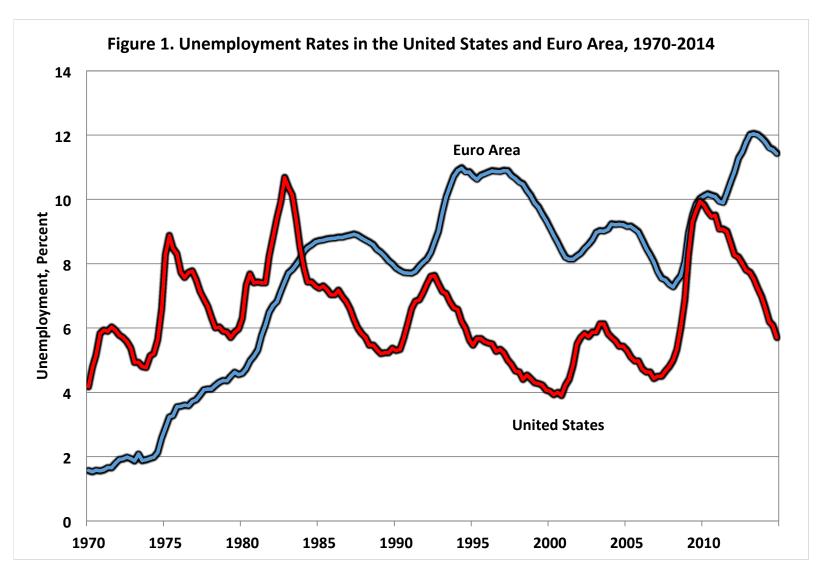
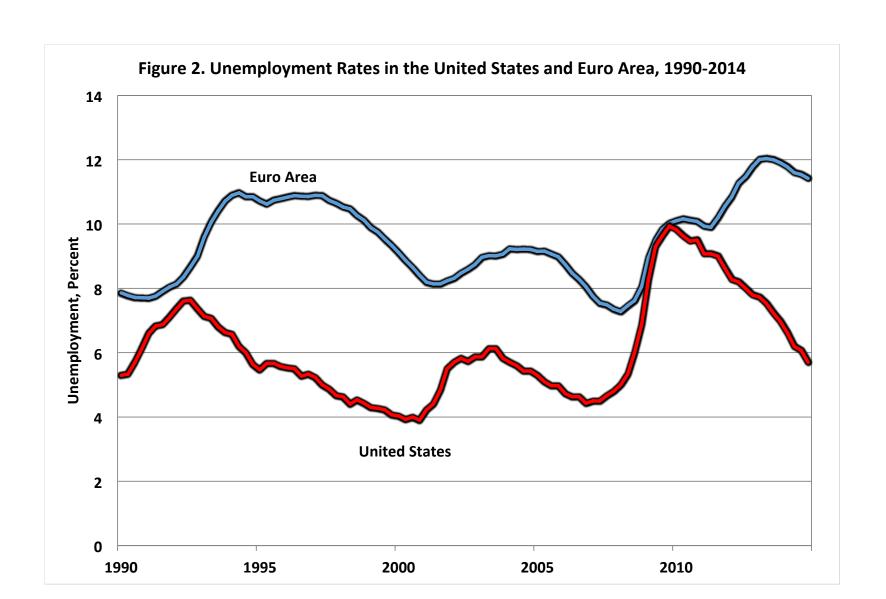
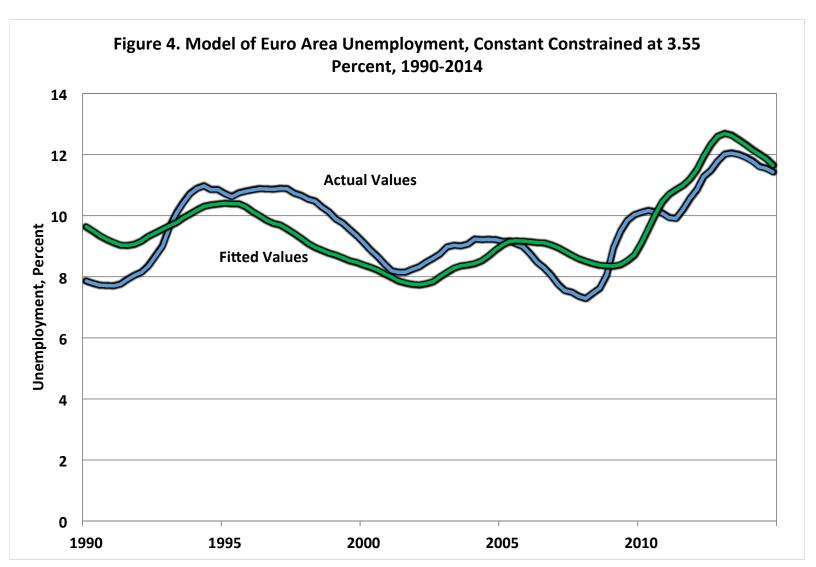
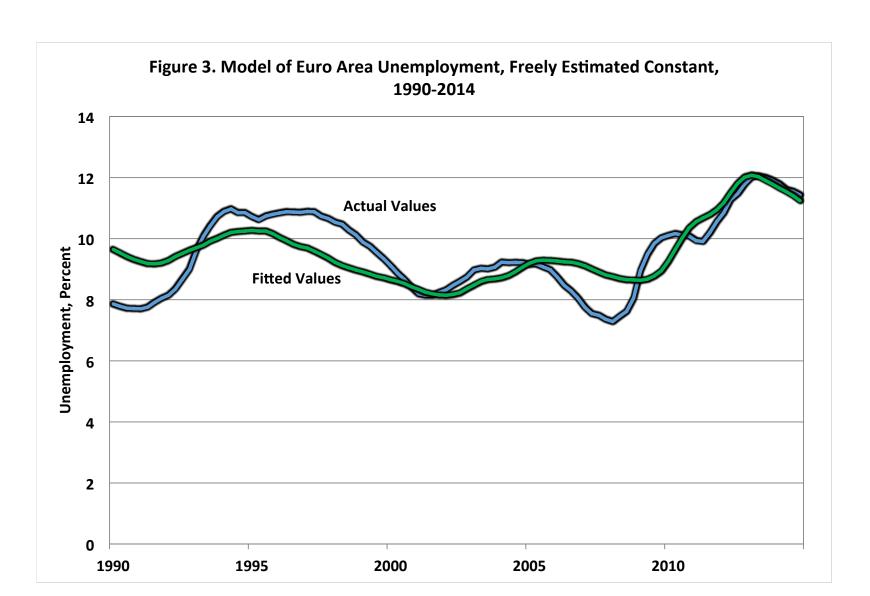



Table 1. ADF Unit Root Tests


Euro area		United States		
1 lag	4 lags	1 lag	4 lags	
-2.03	-1.91	-3.39*	-3.35^{*}	

Note: t-statistics of Augmented Dickey-Fuller tests (with intercept) for the null of a unit root in the unemployment rate. Sample period 1970Q1-2014Q4. Asterisks denote significance at the 5 percent level. Critical values (adjusted for sample size) for the null of a unit root are -2.57 (10%) and -2.87 (5%).


Omit 1970-89

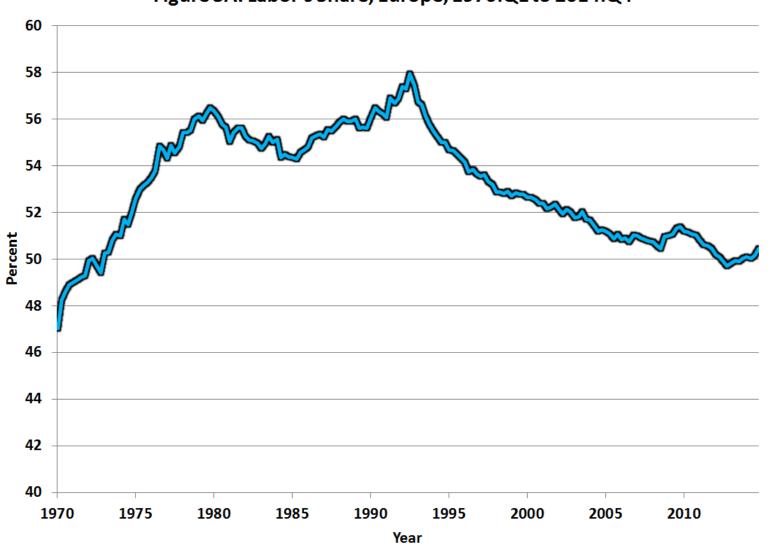
Regressions Euro U on US U, Lags 4 and 12, Constant Fixed at 3.55

Freely Estimated Constant

Augment Table 1 for 1980-2014, Unit Root Rejected for Europe

Table 1. ADF Unit Root Tests, Revised

1970 - 2014		1980 - 2014					
Eur	o area	Unite	d States	Eur	o area	United	States
1 lag	4 lags	1 lag	4 lags	1 lag	4 lags	1 lag	4 lags
-2.04	-1.92	-3.41*	-2.97*	-3.28*	-2.73**	-2.83**	-2.42


Note: t-statistics of Augmented Dickey-Fuller tests (with intercept) for the null of a unit root in the unemployment rate. Sample period 1970Q1-2014Q4 and 1980Q1-2014Q4. Single asterisks denote significance at the 5 percent level, double asterisk at the 10 percent level. Critical values (adjusted for sample size) for the null of a unit root are -2.58 (10%) and -2.89 (5%).

Reasons to Study Inflation (Change in Prices) Instead of Changes in Wages

- Central banks have an inflation target, not a wage change target
- Time series on compensation per hour are noisy
- Productivity growth (ϑ) mediates effect of wage changes on inflation, change in ULC = π^w ϑ
- Inflation equals change in unit labor cost only if labor's share is constant: $\pi^p = change in ULC$
- Reality: Euro's labor share exhibits persistent movement up and then down

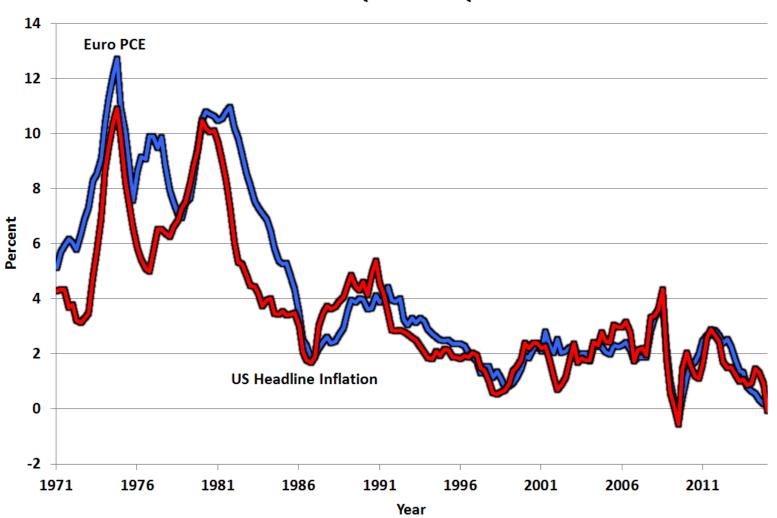

Euro Level of Labor's Share

Figure 3A. Labor's Share, Europe, 1970:Q1 to 2014:Q4

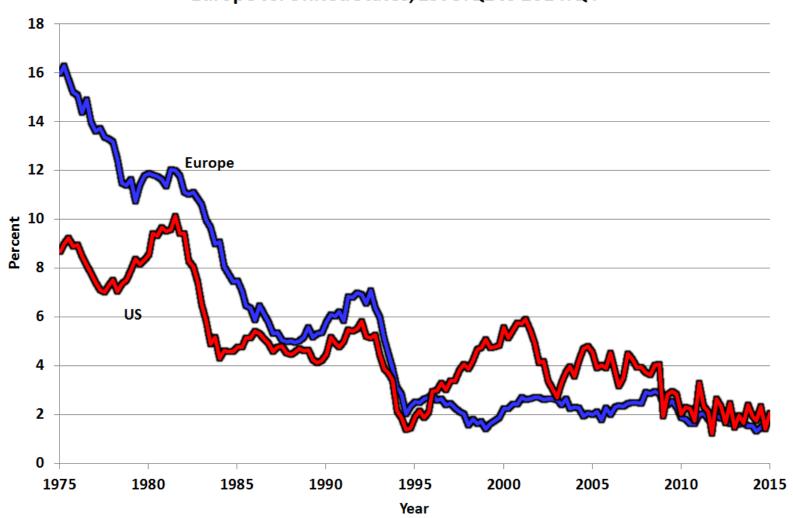

US vs. Euro Inflation Rate, Can You Tell the Difference?

Figure 5. Annual Inflation Rate, Europe vs. United States, 1971:Q1 to 2014:Q4

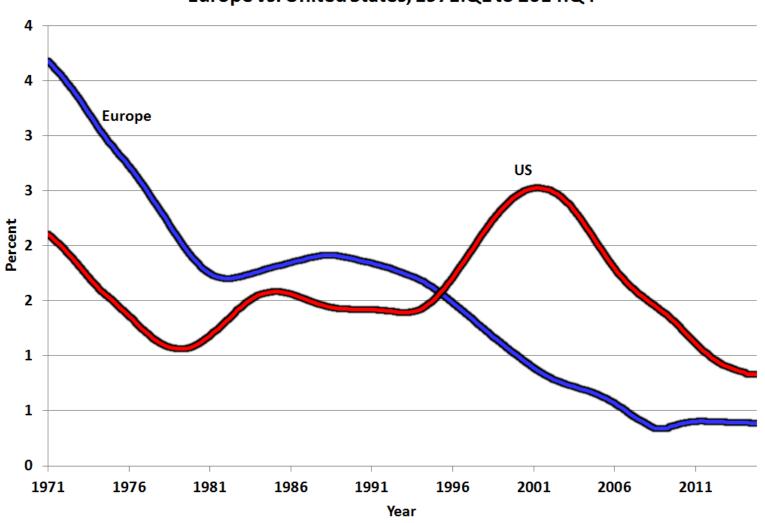

US vs. Euro Wage Change, Major Differences, 1975-2014

Figure 6. Two-Year Growth Rate of Compensation per Hour, Europe vs. United States, 1975:Q1 to 2014:Q4

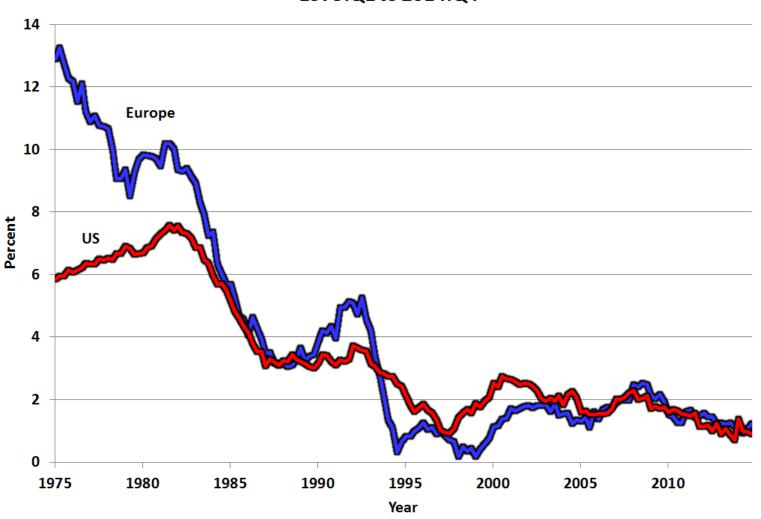

Some of the Difference Explained by Productivity Trends

Figure 7. HP 6400 Trend of Productivity Growth, Europe vs. United States, 1971:Q1 to 2014:Q4

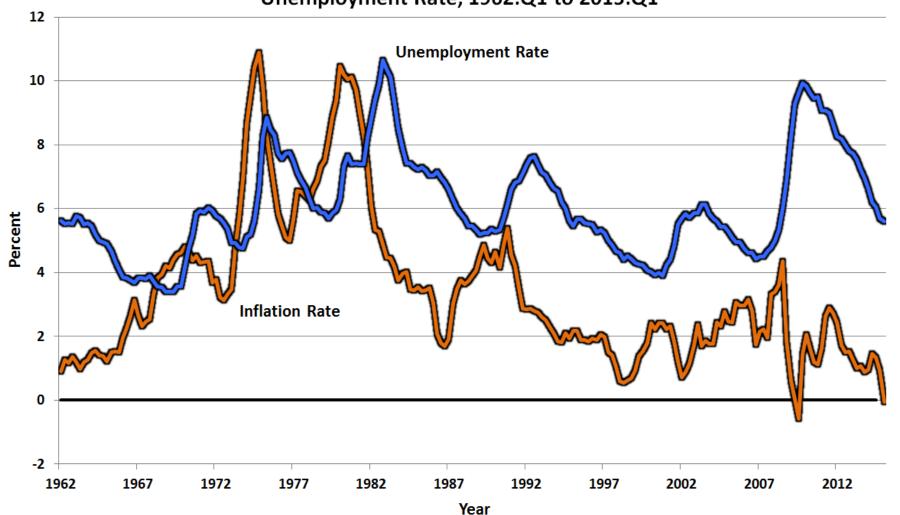
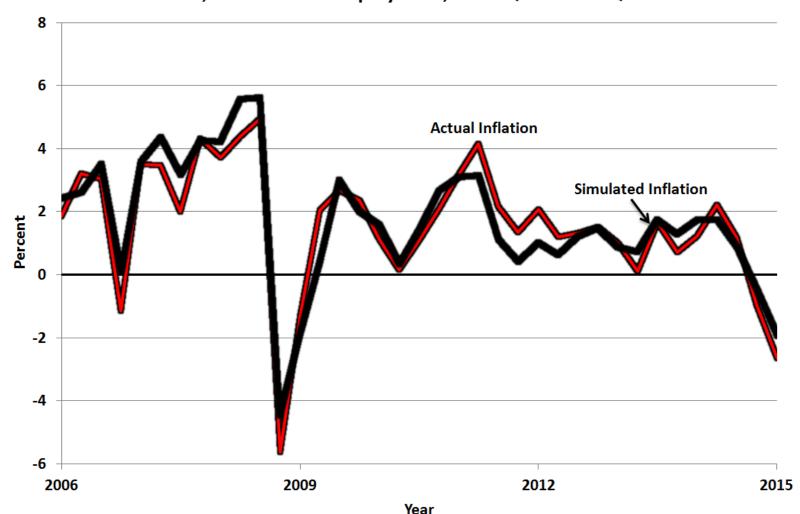

US vs. Euro Change in Trend Unit Labor Cost

Figure 6A. Two-Year Growth Rate of TULC, Europe vs. United States, 1975:Q1 to 2014:Q4

Explaining US Inflation: Demand in the 1960s, Supply in 1970s

Figure 1a. Four Quarter Changes in Headline Inflation Rate vs Total Unemployment Rate, 1962:Q1 to 2015:Q1

Triangle Model Fit to 1962:Q1 to 2006:Q4


Table	e 2			
Estimated Equations for Q	uarterly Chan	ges in the		
Headline PCE Deflator, Short Term Unemployment Rate				
Variable	Lags	1962:Q1 to 2006:Q4		
Lagged Dependent Variable	1-24 ^a	1.00 **		
Unemployment Gap	0-4 (or 0)	-0.71 **		
Four-Quarter Difference	0			
Relative Price of Imports, NFNO	1-4	0.02		
Food-Energy Effect Full Period	0-4	1.18 **		
Food-Energy Effect Late Period	0-4	-0.40 *		
Productivity Trend Change	15	-0.82 **		
Nixon Controls "on"	0	-1.62 **		
Nixon Controls "off"	0	1.97 **		
Adj. R2		0.95		
S.E.E		0.60		
S.S.R		54.88		
Dynamic Simulations				
Mean Error		0.22		
Error in 2015:Q1		0.03		
Root Mean-Square Error		0.76		

a) Lagged dependent variable is entered as the four-quarter moving average for lags 1, 5, 9, 13, 17, and 21, respectively

b) *indicates coefficient or sum of coefficients is statistically significant at the 5 percent level, ** indicates significance at the 1 percent level.

Dynamic Simulation, 2007:Q1 to 2015:Q1

Figure 4. Actual vs Simulated Headline Inflation Rate, 2006:Q4 Sample End, Short Term Uemployment, 2006:Q4 to 2015:Q1

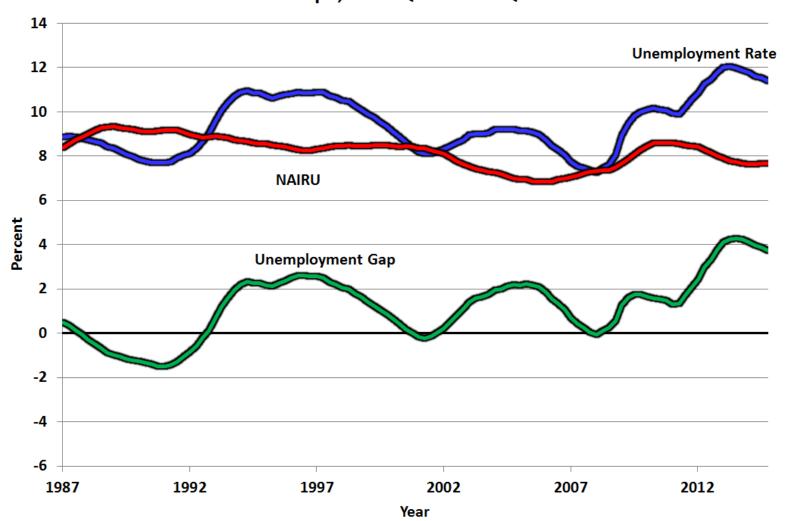

Parallel Inflation Equations, Euro vs. US

	Table 3									
Estimated Equations for Quarterly Changes in the Headline PCE Deflator, Europe vs. United States 1987:Q1 to 2014:Q4										
							Variable	Lags	EU	US
								8		
Lagged Dependent Variable	1-9ª	1.00 **	1.00 **							
Unemployment Gap	0	-0.17 **	-0.24 **							
Food-Energy Effect	0-4	0.80 **	0.51 **							
Adj. R2		0.71	0.91							
S.E.E		0.69	0.50							
S.S.R		49.49	25.79							

- a) Lagged dependent variable is entered as the four-quarter moving average for lags 1, 5, and 9, respectively
- b) *indicates coefficient or sum of coefficients is statistically significant at the 5 percent level, ** indicates significance at the 1 percent level.

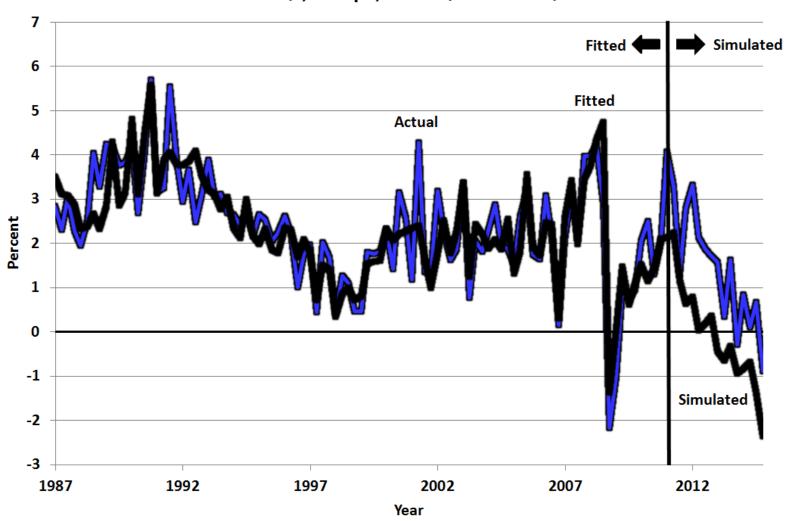

Euro Actual Unemployment, NAIRU, and Unemployment Gap

Figure 8. Unemployment Rate, NAIRU, and Unemployment Gap, Europe, 1987:Q1 to 2014:Q4

The Only Way to Test an Inflation Equation: Dynamic Simulation

Figure 9A. Actual Inflation Rate vs Simulated Inflation Rate, Sample End 2006:Q4, Europe, 1987:Q1 to 2014:Q4

Add the Hysteresis Effect, 4-Quarter Change in Unemployment

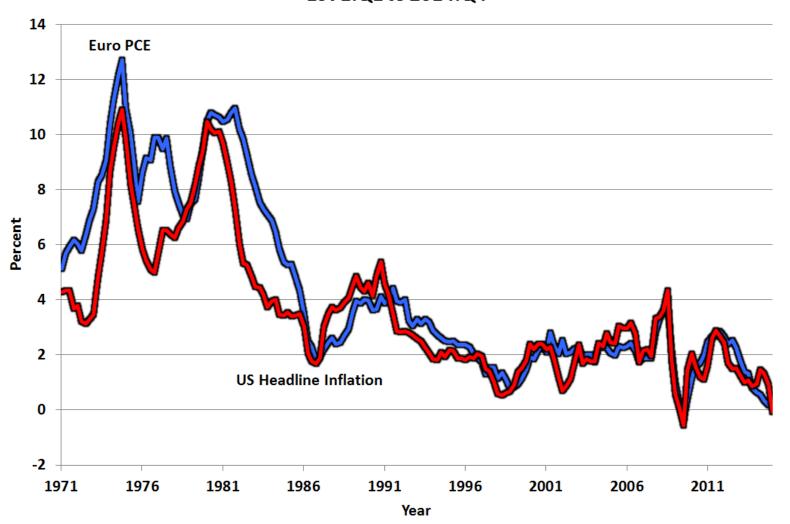
Table 3A										
Estimated Equations for Quarterly Changes in the Headline PCE Deflator, Europe vs. United States 1987:Q1 to 2014:Q4										
							Variable	Lags	EU	US
Lagged Dependent Variable	1-9ª	1.00 **	1.00 **							
Unemployment Gap	0	-0.13 **	-0.22 **							
Four Quarter Difference		-0.19	-0.09							
Food-Energy Effect	0-4	0.66 **	0.47 **							
Adj. R2		0.72	0.91							
S.E.E		0.68	0.50							
S.S.R		47.77	25.55							

- a) Lagged dependent variable is entered as the four-quarter moving average for lags 1, 5, and 9, respectively
- b) *indicates coefficient or sum of coefficients is statistically significant at the 5 percent level, ** indicates significance at the 1 percent level.

Dynamic Simulation Nails the Actual Values in 2014

Figure 9B. Actual Inflation Rate vs Simulated Inflation Rate, Alternate, Sample End 2010:Q4, Europe, 1987:Q1 to 2014:Q4

Comments on Natural Rate Model


- Natural Rate model generates increased unemployment through an exogenous shock to wage markup
- Operates like an oil shock, raising inflation and unemployment, reducing output
- Is wage markup shock a plausible event in data covering the entire Euro area when wage bargaining is still done at the national level?
- In principle the wage mark-up shock is a plausible explanation of the increase in labor's share in the 1970s that contributed to inflation and disinflation

Long-Run Tradeoff Model

- Now the shock is to price target of central bank
- Price adjusts immediately, output and unemployment react slowly
- This is the opposite timing sequence of the real world, where the instrument of the central bank is the interest rate, not the price level.
- A long, slow slog to change inflation rate. Think of the Volcker disinflation of 1980-81. Interest rates rise, AD declines, unemployment rises, and only then does inflation respond

Disinflation 1981-86: High Interest Rates Followed by Decline of Inflation

Figure 5. Annual Inflation Rate, Europe vs. United States, 1971:Q1 to 2014:Q4

Hysteresis Model

- Standard definition: dependence of wage and price change on CHANGE in unemployment rate, not the LEVEL of the unemployment rate
- The model makes wage change depend on the change in employment, not unemployment
- But wage change was roughly constant 1992-2014, whereas employment growth was 0.4 1989-1998, 1.1 1999-2008, then -0.6 2009-2014.
- No significance test of level effect vs. change effect
- Despite these caveats, I think hysteresis in the form of insider-outsider effects and downward wage rigidity is a big part of the European unemployment story

Conclusion: Puzzles About Euro Inflation-Unemployment Process

- Puzzle #1, why was U rate so low pre-1975?
 - This was the period of rebuilding and catching up. Excess demand, rapid productivity growth
 - Rapid labor supply growth from farm to city migration
- Puzzle #2, why U rate rose so much 1975-85?
 - Potent trio of oil shock, labor share wage markup shock, wage indexation → regime of disinflation.
- Puzzle #3, why U rate so high compared to US?
 - Rephrase question. Why is March 2015 U rate 4.8 percent in Germany and 11.3 in Euro area?
 - Answer? Some mix of insider-outsider and structural maladjustment. The Italians were still raising wages in 2011-2012.