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1 Introduction

The impact of changing interest rates on banks' interest business is of central importance
for customers and investors on the one hand, and for policy makers and supervisors on the
other hand. Especially during the long low-interest rate environment, it was and still is
key to understand how a signi�cant change in the term structure would a�ect bank interest
rates and banks' net interest margin. When analysing interest rates, the focus often lies on
the interest level, not on other characteristics of the term structure. As an approximation,
this is empirically justi�ed as changes in the interest level account for about 90% of the
variances of the changes in the interest rates. Nevertheless, changes in the steepness of
the term structure make up about 10 percent of the variance of interest rate changes.
Therefore, to gain a fairly complete picture of the impact of term structure movements, it
is advisable to take account of not only changes in the level, but of changes in the steepness
of the term structure as well.

We set out to model the relationship between a bank's net interest income and the term
structure of interest rates, and validate our model with data on the German banking sector.
We think that this sample is particulary relevant, as net interest income is by far the largest
source of income for German banks, not only for small and medium-sized banks, for instance
for saving banks and credit cooperatives, but also for large banks.1 Therefore, net interest
income and the corresponding term structure are important to assess banks' pro�tability.
However, our model is quite general and could also be applied to other jurisdictions.

Considering changes in the steepness of the term structure seems especially important in the
context of banks' interest business, because a substantial part of their net interest income
comes from making use of the usually positive steepness of the term structure, in other
words, banks tend to grant long-term loans and �nance these operations using short-term
deposits, thereby bene�ting from the usually higher interest rates for longer maturities.
It is known that German banks are much engaged in this term transformation; Memmel
(2011) and Busch and Memmel (2016) �nd that the contribution it makes to German
banks' net interest income strongly depends on the time period under consideration and
estimate that this contribution can account for up to around one-third of German banks'
net interest income.

In this paper, we look at the impact of changes in the level and in the steepness of the
term structure on banks' interest margins. We do this with the help of passive investment
strategies to mimic a bank's interest business, where these investment strategies consist
in investing in risk-free par-yield bonds of a certain maturity. These passive investment
strategies are capable of incorporating changes in the level and in the steepness of the term
structure. We check the empirical �t of the modeling with the results of a quantitative
survey among small and medium-sized banks in Germany, known as the low-interest rate
environment survey (LIRES). This survey data is especially suitable for this purpose, as
it not only includes stress scenarios consisting of changes in the interest level, but also a
scenario involving a change in steepness, more precisely a �attening of the term structure.
Moreover, other e�ects that could have an impact on banks' net interest margin can be
eliminated from the survey data.

In our analysis, we �nd that banks' interest business can be approximated by a portfolio
of these passive investment strategies in bonds. We derive this conclusion from three
observations: (i) A portfolio of these trading strategies provides a good theoretical �t to the
concept of a continuing banking business model. (ii) A portfolio of these trading strategies
explains more of the dynamics in banks' net interest margins than other sensible strategies.
(iii) The results of the quantitative LIRES survey can be reasonably well explained by a
portfolio of these trading strategy. In addition, we �nd that the term structure of interest

1In 2020, the share of net interest income with respect to German banks' operating pro�ts was 67.3%;
for savings banks and credit cooperatives, this share was 70.5% and 72.3%, for the large banks still 54.3%.
See Deutsche Bundesbank (2021)
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rates (in Germany) can be reasonably well described by just two parameters, namely its
level and its steepness. This holds true for a period of nearly �fty years, including the
low-interest rate environment.

This paper has two main contributions: �rst, the parsimonious modeling of banks' interest
business while still reproducing empirical features of banks' interest business and, second,
the analysis of the German term structure.

As to the �rst contribution, Memmel (2008) models the banks' interest business as a port-
folio of many di�erent bond portfolios. In this paper, we model the banks' interest business
with one portfolio on the asset side and one portfolio on the liability side. The restriction
to two portfolios makes the model more parsimonious, but still capable of reproducing
some empirical features of banks' interest business, such as the incomplete pass-through
to bank rates, term transformation and market power. Moreover, the restriction to two
portfolios yields expressions for the change in the net interest margin that can be directly
compared to supervisory reporting data.

It is empirically widely found that changes in interest level are positively correlated with
banks' net interest margins (see, for instance, Albertazzi and Gambacorta (2009), Oester-
reichische Nationalbank (2013) and Claessens et al. (2018)), i.e. an increase in the interest
level is associated with higher net interest margins. This is especially true in the low-
interest rate environment. The e�ects of the steepness of the term structure on banks are
rarely investigated. One such study is carried out by English (2002) who analyzes the
e�ect of the steepness of the term structure on banks' net interest margins, and he gets
mixed results. Our parsimonious model is able to reproduce these empirical features.

We do not deal with changes in other determinants of banks' net interest margins, such as
credit risk, credit standards or the exposure to interest rate risk. In the literature (see, for
instance, Ho and Saunders (1981), McShane and Sharpe (1985), and Entrop et al. (2015)),
their impact on the net interest margin is well documented, however we concentrate on
changes in the term structure and assume the other determinants to be time-constant,
knowing that earnings from term transformation and earnings from other determinants
may be interrelated (see Chaudron et al. (2022)).

The empirical data we use in our study, i.e. the di�erent waves of the low-interest rate
environment survey (LIRES), have already been used in several studies to learn about
banks' interest business, see e.g. Busch et al. (2017), Heckmann-Draisbach and Moertel
(2020), Dräger et al. (2021) and Busch et al. (2021).

As to the second contribution, i.e. modeling the term structure, we �nd that level shifts
explain about 91% of the yearly variance in interest rates. This is in line with studies
from the U.S. (see, for instance, Bliss (1997)) and earlier studies for Germany (see, for
instance, Memmel (2014)). Furthermore, about 8 per cent of the variance in interest rates
is explained by changes in the steepness. This shows that while the term structure level
has a major impact, it is important for more accurate modeling to include the steepness
as well.

The paper is structured as follows. In Section 2, we explain the model setup for modeling
the term structure and banks' net interest margin. In Section 3, the empirical data used
in the study is described and, in Section 4, we give the results. Section 5 concludes.

2 Empirical Modeling

2.1 Term structure

We collect risk-free interest rates (zero-bond returns) of di�erent maturities m = m1, ...,M
in the vector Rt, where the index t gives the point in time and m1 to M the maturities of
the interest rates:
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Rt =

 rt(m1)
...

rt(M)

 (1)

This spans, for every point in time, a term structure of interest rates, i.e. a collection
of interest rates that mature after di�erent periods. The vector Rt has two dimensions:
a time dimension and a cross-sectional dimension of the di�erent maturities. To make
the cross-sectional dimension more manageable, Nelson and Siegel (1987) model the term
structure (for each point in time) as a function, depending only on a small number of
parameters (here: four, namely α0,t, α1,t, α2,t and λt > 0):

rNeSit (m) = α0,t + α1,t
1− exp(−λt ·m)

λt ·m
+ α2,t

(
1− exp(−λt ·m)

λt ·m
− exp(−λt ·m)

)
(2)

Svensson (1994) added a further term (similar to the last one, but with a di�erent parameter
λt from that in Equation (2)), yielding a model with six parameters.

Often it is analytically easier to deal with linear relationships, for instance, one can then
estimate the coe�cients with ordinary least squares OLS (see Equation (9)). Diebold and
Li (2006) turned Equation (2) into a linear relationship with three parameters by setting
the parameter λt as time-constant, namely to λ̄ = 12 ·0.0609 (see Equation (8)). Generally,
a linear model for the term structure has the form:

rlin.Model
t (m) = α0,t + α1,t · f1(m) + . . .+ αn,t · fn(m) (3)

The interest rates do not seem to be stationary (see, for instance, Busch and Memmel
(2017)), so we mainly deal with changes in interest rates (where the 4-operator represents
monthly, quarterly or yearly changes). As the functions fi(m) do not depend on time-
varying parameters (like λt in Equation (2)), we obtain:

4rlin.Model
t (m) = β0,t + β1,t · f1(m) + . . .+ βn,t · fn(m) (4)

with βi,t = 4αi,t.
In this paper, we mainly deal with a model for the term structure that includes the level
and the steepness. We choose the following simple model to describe the interest level and
the steepness of the term structure:

rHeMe
t (m) = α0,t + α1,t ·m (5)

In this model, the parameter α0,t corresponds to the short-term interest level in time t
and the parameter α1,t gives the steepness per unit of measurement, for instance months,
quarters or years.2

By way of comparison, we consider the following three linear models, which are special cases
of the model in Equation (3), namely a cross-sectionally constant interest level (leading to
a parallel shift), the model from above in Equation (5) and the model of Diebold and Li
(2006) and compare their explanatory power:

4rParallelt (m) = β0,t (6)

.

4rHeMe
t (m) = β0,t + β1,t ·m (7)

2For the ease of interpretation, we refer to �years� in the tables.
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4rDiLit (m) = β0,t + β1,t
1− exp(−λ̄m)

λ̄m
+ β2, t

(
1− exp(−λ̄m)

λ̄m
− exp(−λ̄m)

)
(8)

We regress the estimated changes 4r̂Model
t (m) of the three models on the true changes

4rt(m), having N = dim(Rt) · TPeriod observations. To determine the parameter vector
βt, we run (for each point in time t) the following OLS estimation for βt = (β0,t) (Equation
(6)), βt = (β0,t, β1,t)

′ (Equation (7)) and βt = (β0,t, β1,t, β2,t)
′ (Equation (8)):

β̂t = (X ′X)−1X ′4Rt. (9)

Depending on the model, the matrix X (of dimension dim(Rt)× c) consists of up to three
columns c, where the �rst column is always composed of ones. In the case of Equation
(7), the second column includes the maturities m1, ...,M . In the case of Equation (8), the
second and third columns include time-constant function values of the maturities m1 to
M .

2.2 Banks' interest business

We model the interest business of a bank as in Dräger et al. (2021): On the asset side, there
are default-free loans (share: φA) that are granted in a revolving manner, i.e. whenever a
loan matures, it is replaced by a new one. These loans have a maturityMA and a coupon ct
equal to the then prevailing par-yield bond rate. The other assets are cash (share: 1−φA).
On the liability side, there are default-free loans (share: φL) with maturity ML that the
bank issues in a revolving manner; the rest of the liabilities consist of non-remunerated
current accounts (share: 1 − θL). Please note that the share φA can also be interpreted
di�erently: Instead of the share of assets that have a pass-through of 100%, it can also be
interpreted as the average pass-through on the asset side. The same reasoning applies to
the liability side.

The interest business of such a bank can be modeled by a portfolio of passive trading
strategies S(m) that consist in investing in par-yield bonds of maturity m in a revolving
manner (see Memmel (2014) for the properties of these strategies). The portfolio of these
trading strategies allows us to determine the consequences of an interest rate shock for
Bank i, thereby taking account of empirical features of banks' interest business:

� The net pass-through is modeled with the variables φA,i and φL,i. If the average
pass-through on the asset side φA,i is larger than the one on the liability side φL,i,
Bank i bene�ts in the long run from an increase in the interest level (i.e. an increase
in the net interest margin (NIM)). Empirically, this is often found (see, for instance,
Albertazzi and Gambacorta (2009) and Claessens et al. (2018)).

� In the short run, it is possible that the net interest margin (NIM) becomes smaller
as a consequence of a positive interest level shock, especially for banks that carry out
a lot of term transformation. In case

φA,i

MA,i
<

φL,i

ML,i
, we have such a situation. This

is found by Alessandri and Nelson (2015) for banks in the UK and by Busch and
Memmel (2017) for banks in Germany.

� Market power is modeled by the pass-through on the liability side, by the variable
φL,i. A low value for the variable φL,i is likely due to low remuneration of a bank's
deposits. Busch and Memmel (2021), for instance, �nd that regional German banks
with only few competitors in their home county pay less for their deposits than banks
with many competitors.

An example may be helpful in understanding this point: Suppose Bank A grants loans
with 4 years of maturity in a revolving manner. Further suppose that this business stands
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for 95% of the balance sheet (5% cash) and the liability side is composed of revolvingly
issued bonds (70%, maturity 2.5 years) and of non-remunerated current accounts (30%).3

Under these assumptions, this bank has a long-run pass-through of 25% (=95%-70%), i.e.
when the interest level goes up by 100 bp, its net interest margin will ultimately increase
by 25 bp. In the short run, however, we will observe a drop in its net interest margin by
4.25 bp (=95bp/4 - 70 bp/2.5) if the interest level goes up by 100 bp.4

One central assumption is that we can model a bank's interest business by portfolios of
the passive trading strategy S(m). We check the empirical validity of this assumption by
running the following regression:

NIMt,i = αi + γt + β · Ft,i
At,i

+ εt,i (10)

where αi are bank �xed e�ects and γt are time �xed e�ects. At,i are Bank i's total assets
and Ft,i are Bank i's earnings from term transformation in the period from t−1 to t under
the assumption of a certain investment strategy, for instance a portfolio of the passive
trading strategy (see Equation (22)). If this assumption is valid, we expect the coe�cient
β to equal one. However, Chaudron et al. (2022) �nd that Bank i's net interest margin
NIM includes other time-varying components that increase when the earnings from term
transformation decrease and vice versa, so that the coe�cient β is less than one; in the
case of their sample (Dutch banks), it is even close to zero.

In the following, we assume that an interest shock takes place at time t = t0, having
an impact on the interest level and on the steepness of the term structure. The variable
T = t− t0 gives the period since the shock happened. In addition, we have the assumption
of a static balance sheet. This and the modeling above allow us to write the (instantaneous)
deviation C.NIMi(T ) of the net interest margin as a consequence of this interest shock
(see also Figure 1) where, in the baseline, we assume that the term structure remains
unaltered. Using the term structure model of Equation (5) and Equation (37) to relate
� in an environment of low interest rates � small changes in the interest level (β0,t) and
in the steepness of the term structure (β1,t) to the coupon of par-yield bonds (ct(m)) of
maturity m, we obtain:

4ct(m) = β0,t + β1,t ·m (11)

The parameter values for β0,t and β1,t given a list of interest rate changes 4rt(m) of
di�erent maturities can be estimated using Equation (9).

C.NIMi(T ) = φA,i ·min
(

T

MA,i
, 100%

)
· (β0,t0 + β1,t0MA,i)

− φL,i ·min
(

T

ML,i
, 100%

)
· (β0,t0 + β1,t0ML,i) (12)

Equation (12), the deviation of the net interest margin from the baseline net interest
margin, can be derived as follows: Only new business (not existing business) is a�ected by
the interest rate shock. Due to the revolving manner of the investment strategy, its share
(on the asset side) corresponds to T/MA,i, capped at 100%. Among the new business, only
the share φA,i counts, i.e. the fraction that is invested in the strategy with the par-yield

3In reality, current accounts are remunerated, but their pass-through is far from 100%; in fact, it is a
bit more than 30%. For regional German banks, Busch and Memmel (2021) �nd that this pass-through is
especially low for banks not exposed to strong competition, providing much service and located in rural
counties.

4The degree of term transformation of the bank in the example is about 2%; the values are roughly in
line with the mean values in Table 3.
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Figure 1: Deviation of the net interest margin (C.NIM) due to an interest shock
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This �gure shows the deviation of a bank's (instantaneous) net interest margin (C.NIM) as a consequence

of a shock to the term structure (β0 = −200bp and β1 = 0.008 in Equation (7), which corresponds to an

upward turn of the term structure at a pivot point of 2.5 years of maturity; concerning the bank features,

we have MA,i = 4, ML,i = 1, φA,i = 0.8 and φL,i = 0.7 which according to Table 1 and Condition (16)

yield positive deviations).
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bonds whose coupons have changed by β0,t0 + β1,t0MA,i. The same is true of the liability
side.

Without loss of generality, we assume MA,i > ML,i > 0, i.e. that the maturity on the
asset-side is larger than the one of the liability-side and that maturities are positive.5

Concerning period T , i.e. the period since the interest shock has happened, we distinguish
three cases:

� Case i): T ≤ML,i

C.NIMi(T ) = T

(
φA,i
MA,i

−
φL,i
ML,i

)
β0,t0 + T (φA,i − φL,i)β1,t0 (13)

� Case ii): ML,i < T ≤MA,i

C.NIMi(T ) =

(
T
φA,i
MA,i

− φL,i
)
β0,t0 + (TφA,i −ML,iφL,i)β1,t0 (14)

� Case iii): MA,i < T

C.NIMi(T ) = (φA,i − φL,i)β0,t0 + (MA,iφA,i −ML,iφL,i)β1,t0 (15)

The results are summed up in Table 1 for di�erent idealized banks, where the short-
term e�ect (the next to last column) is calculated from Equation (13) as Case i) and
the long-term e�ect (last column) is taken from Equation (15) as Case iii). When we
look at the short-term e�ects of an increase in the level of the term structure, we see
that the deviation of the net interest margin is negative (for banks that carry out term
transformation). However, the long-run e�ects are often positive. Empirically, the positive
e�ect of an increase in the interest level is often found; the negative short-term e�ect of
an increase in the interest level is less often documented.

An upward-turning of the term structure is said to be bene�cial for banks. In the term
structure model of Equation (5), this upward-turning is a combination of a decrease in the
level, i.e. β0 < 0, and an increase of the steepness, i.e. β1 > 0 (see Figure 1). Even under
the assumption of a positive net long-run pass-through φA − φL and a negative short-run
e�ect φA

MA
− φl

ML
, it is unclear whether the long-term e�ect is positive (see the cell in the

last row and in the last column of Table 1). This is only the case if in addition

MA,iφA,i −ML,iφL,i
φA,i − φL,i

> −β0,t
β1,t

(16)

Note that the expression −β0,t/β1,t is, according to Equation (7), the pivotal point m∗t of
a turning in the term structure (provided the two coe�cients β0,t and β1,t have di�erent
signs, so that m∗t = −β0,t/β1,t is a positive maturity which is, for instance, the case in
Figure 1) and that, on the left-hand side of condition (16), there are bank characteristics
and, on the right-hand side, there is a term structure characteristic.

Looking at Equation (15), we need two quantities for each bank, namely its long-run
pass-through φA − φL and its extent of term transformation MAφA −MLφL. The term
MA,iφA,i−ML,iφL,i is roughly proportional to the duration of the portfolio to mimic Bank
i's interest business.6 Under the assumption of a low interest level, we obtain for the euro

5As long as the maturities MA and ML are greater than zero, the e�ects can be computed in the
Equations (13) and (14), only the conditions for the cases have to be altered if MA ≤ ML. As to the
simpli�ed central bank in Table 1, the duration on the asset side, MA, is zero, therefore, the short-term
e�ect cannot be computed.

6In the following, we use two concepts of duration, namely the euro duration D¿ and the modi�ed
duration Dmod. The euro duration gives the euro amount of the change as a consequence of a small
interest change and the modi�ed duration is equal to the euro duration over the present value of the
portfolio. As in our model a bank's equity is not explicitly accounted for, the bank's present value is zero,
so that we cannot determine the modi�ed duration of the bank, only its euro duration.
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Table 1: Impact on a bank's net interest margin (NIM)

No.
Bank charactistic Term

structure
C.NIM

φA − φL φA
MA
− φL

ML
MAφA −
MLφL

Example Short-
term

Long-
term

1 1 n.a. 0 Simpli�ed
central
bank

pos. shift n.a. pos.

2 0 neg. (pos.)
Commer-
cial
bank

pos. shift neg. 0
pos. shift +
inc. in steep.

neg. pos.

neg. shift +
inc. in steep.

pos. pos.

3 pos. neg. (pos.)
Tradi-
tional
bank

pos. shift neg. pos.
Pos. shift +
inc. in steep.

? pos.

Neg. shift +
inc. in steep.

pos. ?

This table shows qualitatively the deviation of the net interest margin (C.NIM) for three idealized banks as

a consequence of interest rate shocks. The simpli�ed central bank has on its asset-side loans to banks with

a negligible maturity (MA = 0) and on the liability-side banknotes (φL = 0). The commercial bank has

on both sides loans and bonds with maturity MA > ML and with complete pass-through. The traditional

bank has on its liability-side equity and deposits, so that φA > φL and carries out term transformation,

where we assume that the term transformation e�ect dominates (see the last row, second column with the

entry �neg.�). Entries in brackets �()� mean that they are derived from the assumptions in the two entries

left to them. �?� means that the e�ect is indeterminate.

duration of this bank's assets Ai minus the euro duration for its liabilities Li:
7

D¿
i :=

∂Ai
∂β0
− ∂Li
∂β0

=
1

2
(MA,iφA,i −ML,iφL,i) ·Ai (17)

Banks in Germany have to report a similar value, namely for a shock of 200 bp, together
with the Basel interest rate coe�cient (see Equation (21)). The long-run pass-through
φA− φL can be determined by assigning to each balance sheet position (which is available
for each bank and at monthly frequency) its pass-through as done in Busch et al. (2021)).
The following empirical equation derived from Equation (15) may be estimated:

C.NIMi,k(MA,i) = α+ βk · (φA − φL)i + γk · (MAφA −MLφL)i + εi,k (18)

where k = 1, ...,K stands for the relevant scenarios. The resulting estimates β̂k and γ̂k can
be compared with the scenario parameters.

7To give an intuition for the duration formula: The modi�ed duration of a par-yield bond corresponds
approximately to its maturity, i.e. a par-yield bond with a maturity of �ve years loses approximately
5% of its value if the interest rate level rises by 1 percentage point (actually, this is only exact at an
interest level of 0%). The passive investment strategy S(m) consists in investing in par-yield bonds
with maturity m so that this strategy consists at any time of bonds with a residual maturity equally
distributed from zero maturity to maturity m, which leads to an average residual maturity of m/2, which
is approximately equal to the strategy's modi�ed duration (at an interest level of 2% and a maturitym = 5,
the strategy's duration is Dmod = 2.42 (instead of 2.5). A portfolio consisting of a long position of φA,i ·Ai

of the strategy S(MA,i) and a short position of φL,i · Li of the strategy S(ML,i) has the euro duration
D¿

i = 1
2
(MA,iφA,i −ML,iφL,i) · Ai. Note that, in the model, equity is not explicitly accounted for and

that, therefore, the euro amount of a bank's assets is equal to its liabilities, i.e. Ai = Li.
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Table 2: Summary statistics
Term

structure
Model
parame-

ter

Unit Mean SD 1st perc. Median 99th perc.

Level
Level per cent 3.75 3.24 -0.99 3.82 11.65

Steepness bp per
year

14.09 12.95 -21.39 15.83 39.08

Change (1
month)

Level bp -1.66 29.16 -91.49 -1.29 78.26
Steepness bp per

year
-0.02 2.69 -6.57 -0.16 8.69

Change (3
months)

Level bp -5.12 61.88 -194.48 -2.77 172.11
Steepness bp per

year
-0.07 5.12 -15.64 -0.31 15.04

Change
(12
months)

Level bp -21.79 145.86 -389.77 -13.58 391.51
Steepness bp per

year
-0.18 11.79 -32.5 -0.23 30.78

This table shows summary statistics for the level of and changes in the term structure (Period: 1975-01 to

2021-12). �SD�, �bp�, �1st perc.� and �99th perc.� mean standard deviation, basis points, �rst percentile

and 99th percentile. The summary statistics are based on the model for the term structure of Equation 5.

3 Data

3.1 Term structure

The interest rates are zero-bond rates, based on German government bonds and derived
using the method according to Svensson (1994) with six parameters (see also Schich (1997)
for the application to German data). Note that we are not dealing with single bonds, but
with an already estimated term structure. The period covers nearly �fty years (1975-01
to 2021-12) and we use monthly data; in the paper, we have dim(Rt) = 20 maturities and
TPeriod = 564 monthly observations (47 years), yielding 11 280 observations.

In Table 2, we report summary statistics. As to the average steepness, it is 14.09 bp for each
year (�rst column, second row), meaning that a bond with 10 years of maturity yields on
average 1.41% p.a. more than the short-term interest rate (�rst column, second row). The
99th percentile of yearly changes is about 390 bp (�fth column, seventh row), signi�cantly
more than the 200 bp of the Basel shock, which was informed by yearly changes. However,
the interest rate changes tend to be larger for short maturities and when the interest level
is higher, which was the case in the seventies and eighties of the last century.

3.2 Banks' interest business

Balance sheet data of all German banks is used to determine bank-speci�c weights (wij)
for the di�erent balance sheet positions j. Let wij be the weight of balance sheet position
j of bank i, then

φA,i =
J∑
j=1

wij · φAj (19)

The long-run pass-through of the di�erent balance sheet positions is taken from Memmel
(2018).

The term MA,i could be estimated comparable to φA,i (see Equation (19)). This estimate
would not be as precise as that for φA,i. For instance, o�-balance sheet positions, mainly
interest swaps, can be assumed to have a complete pass-through on the asset side and
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on the liability side, so that they do not alter a bank's net long-run pass-through. By
contrast, they are likely to a�ect the term transformation. Instead of MA,i, we could
estimate the average �xed interest period on the liability side ML,i. However, this would
make it necessary to have an estimate for the duration of deposits, which is di�cult to
obtain (see Kerbl et al. (2019)). To circumvent the problems with the estimation of the
maturities, we set MA = 5, the longest maturity available in our survey.

The termMA,iφA,i−ML,iφL,i is taken from the banks' regular term transformation returns:
Let IRRi be the euro amount of the change in present value due to an interest rate shock
of 4r = 200bp, which is reported quarterly. We approximately obtain:

D¿
i ≈ −

IRRi
4r

(20)

Together with Equation (17), we derive an expression for MA,iφA,i −ML,iφL,i, namely

MA,iφA,i −ML,iφL,i = −100 · IRRi
Ai

(21)

where we use the relationship 100 = 2/4r.
To determine a bank's exposure to interest rate risk, we use the variable IRRt,i as well,
this time to calculate the earnings from term transformation Ft,i in Equation (10):

Ft,i = −50 · Ret (S(m1))−Ret (S(m2))

D¿
t (S(m1))−D¿

t (S(m2))
· IRRt,i (22)

or in case of an investment in zero-bonds:

Ft,i = −50 · rt (m1)− rt (m2)

m1 −m2
· IRRt,i (23)

To get yearly data, we calculate (for the Equations (22) and (23) in the last quarter
of each year) the sum of the current quarter and of the 3 previous quarters, whereby
we make use of the quarterly availability of the interest risk exposure data IRRt,i. As
Chaudron (2018) rightly states, the net duration (here: in Equation (20)) does not give
the durations on the asset or liability side, and hence not the maturities of the passive
trading strategies. We proceed as follows to obtain estimators for the durations on the
asset and liability side: To �nd the combination of the trading strategies with the best �t,
we try out all combinations of (m1,m2) of up to ten years in steps of six months, which
yields 190 meaningful combinations8, and compare the coe�cient of determination R2 of
Equation (10). We obtain the best �t (highest R2 of Equation (10)) for a combination
of the maturities (42, 6) for the passive trading strategy (see Equation (22)), yielding a
coe�cient of 0.66 (which is signi�cantly smaller than the theoretical value of one, but
within the expectations). The �t of this combination is better than the �t for all maturity
combinations of the strategy of redeploying the whole capital in each period (see Equation
(23)). We also challenged the �t against reporting �gures of earnings from structural
contributions, but here again, the model outperforms the data.9 We note that most of the
explanation is due to the inclusion of time dummies in Equation (10) and that no testing
seems possible as a consequence of trying out all combinations.

In Table 3, we report summary statistics for banks' interest business.

8The maturitiesm1 andm2 can each be equal to 20 di�erent values, yielding 400 = 20 x 20 combinations.
We subtract the 20 cases where both maturities are equal and exclude the 190 = 19 x 10 cases where the
�rst maturity is smaller than the second maturity.

9Structural contribution may comprise more than just earnings from term transformation, e.g. earnings
from own funds. To our knowledge, there is no isolated reporting of the earnings from term transformation.
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Table 3: Summary statistics (bank level)
Variable Year Unit Mean SD 1st perc. Median 99th perc. Nobs

IRR 2016 -% per TA 1.96 1.03 -0.54 1.99 4.64 1419

IRR 2018 -% per TA 1.93 1.07 -0.77 1.96 4.76 1383

φA − φL 2016 % per TA 25.05 11.85 -11.86 26.43 49.13 1419

φA − φL 2018 % per TA 26.07 11.74 -12.67 27.71 48.71 1383
This table shows summary statistics at bank level. The data is from the banks' returns just before the wave

of the quantitative survey took place. IRR is a bank's exposure to interest rate risk and the di�erence

φA − φL,, is its long-run net pass-through. �SD�, �1st perc.� and �99th perc.� mean standard deviation,

�rst percentile and 99th percentile.

Table 4: Scenarios in the LIRES waves

Number k Scenario Description
Change in the...
level steepness

0 Baseline Term structure remains
constant

0 0

1 Turn Term structure �attens 125 -11

2 Positive shift All interest rates increase by
200 bp. The steepness does
not change

200 0

3 Negative shift All interest rates decrease by
100 bp. The steepness does
not change

-100 0

This table shows descriptions of the scenarios. �bp� means basis points. All changes take place over night

at the beginning of the �ve year horizon. Values in the two last columns are given in basis points.

3.3 Low-interest rate environment survey

Every other year since 2013, German small and medium-sized banks have been subject to
a quantitative survey.10 The banks have to forecast their interest income and expenses
(and other components of their pro�t and loss statement) for the following 5 years under
various interest rate scenarios. We focus on the data from the 2017 and 2019 surveys, as
these can be considered as established research data and the reporting was to some extent
standardized between these surveys, thus providing comparability.

There are K = 3 scenarios that are relevant to us, namely two scenarios with a level
shift and one scenario that includes a level shift and a �attening of the term structure.
In addition, there is also the scenario of a time-constant term structure, which serves as
reference point. All of these scenarios assume a static balance sheet. Let NIM(T )i,k be
the net interest margin of Bank i in Scenario k at time T . We calculate the deviation of
Bank i's net interest margin as

C.NIMi,k(T ) := NIMi,k(T )−NIMi,0(T ) (24)

where k = 0 is the baseline scenario of a time-constant term structure (see Table 4).

In Table 5, there are some summary statistics of the quantitative survey.

10In 2021, no survey wave took place as a consequence of the COVID-19 pandemic.
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Table 5: Summary statistics (LIRES)
Variable Scenario Wave Mean SD Share >0 Nobs

C.NIM(1) Pos. shift 2017 -10.10 27.93 25.65 1419

C.NIM(1) Pos. shift 2019 -9.93 26.17 27.26 1383

C.NIM(5) Pos. shift 2017 29.08 29.63 90.77 1419

C.NIM(5) Pos. shift 2019 29.32 31.98 88.36 1383
This table shows summary statistics of the deviation of the NIM from the baseline scenario (see Table 4).

Figure 2: PCA: Factor loadings
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This �gure shows the factor loadings for the �rst three components of a principal component analysis

(PCA) of yearly changes in interest rates of di�erent maturities. German government bonds up to 120

months maturity in steps of 6 months. Monthly data; period: 1975-01 to 2021-12.

4 Results

4.1 Term structure

We investigate the term structure with the help of a principal component analysis (PCA)
and determine how much of the variation in the interest rates is explained by the di�erent
components.

In Table 6, the shares of explained variances of this PCA are reported. The results are in
line with the �ndings in the literature (see Litterman and Scheinkman (1991), Knez et al.
(1994) and Bliss (1997)). The factor loadings of the three �rst components are displayed
in Figure 2. The PCA is a completely statistical method, i.e. it is agnostic about possible
structures (live level or steepness shifts) in the data and yet the �rst component (i.e. the
most important one) looks nearly like a parallel level shift (with longer maturities less
a�ected) and the second component resembles a (concave) shift in the steepness.

As to the coe�cient of determination R2 (when regressing the interest rate changes derived
from the models on the true interest rate changes, see Subsection 2.1) of the three di�erent
models (see Table 7), the following can be noted:
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Table 6: Explained Variance of Changes in the Term Structure
Principal
component

Change in the term structure
1 month 3 months 12 months

First 81.87% 81.87% 88.18% 88.18% 90.77% 90.77%

Second 11.43% 93.30% 8.56% 96.74% 7.79% 98.56%

Third 5.25% 98.55% 2.50% 99.24% 1.10% 99.66%
This table shows the fraction of the explained variance of the changes in the term structure, derived from a

PCA. German government bonds up to 120 months maturity in steps of 6 months. Monthly data; period:

1975-01 to 2021-12. For each of the changes, the additional contribution and the cumulative contribution

are reported.

Table 7: Di�erent models: coe�cient of determination
Coe�cient of
determination

Change horizon
1 month 3 months 12 months

Parallel shift (see
Eq. (6))

81.47% 86.73% 88.14%

Two factors (see
Eq.(7))

90.61% 95.49% 97.47%

Three factors (see
Eq. (8))

97.13% 97.80% 98.35%

This table shows the coe�cient of determination of three di�erent interest rate models. German government

bonds up to 120 months maturity in steps of 6 months. Monthly data; period: 1975-01 to 2021-12.

� The parallel shift of the term structure is often applied, for instance in what is
known as the Basel interest rate shock (see Basel Committee on Banking Supervision
(2004)). One reason is the analytical easiness of a �at term structure shift. There is
also an empirical reason: This shift explains up to 88% of the variation (see the �rst
row of Table 7) and is close to the theoretical maximum (see the �rst row of Table
6). The gap between the theoretical maximum and the parallel shift may be due to
the fact that the interest rates of longer maturities are more sluggish and that the
loadings for the �rst factor are not a parallel line, but tend to decrease (see Figure
2).

� The same holds true if we compare the R2 of the two-factor model (in Table 7, second
row) with the theoretical maximum (Table 6, second row, cumulative values). The
model (see Equation (7) ) may not be an exact �t for the real interest rate changes
(see Figure 2, where the second component is not a straight line, but a concave
curve).

� The three-factor model has the highest explained variance (see Table 7). However, the
additional increase in the explained variance (relative to the two-factor model) seems
relatively small, especially for longer change horizons. Note that we are only dealing
with a section of the term structure (for insurance companies, longer maturities may
be relevant); if we looked at the whole term structure (including longer maturities),
the di�erence in explained variances relative to the two-factor model might be more
relevant.

� When we consider shorter horizons of changes in the interest rates (Table 6; 1 month
or, to some extent, 3 months), we see that the third principal component makes a
substantial contribution to explaining the variance. Looking at the one-year shock,
this contribution is only about one per cent.

A comparable result is achieved if use the information criteria AIC and BIC for each month
in our sample period 01/1975 to 12/2021 (which yields 564 observations).
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Table 8: Information criterion AIC
Model for the
Term Structure

Change horizon
1 month 3 months 12 months 24 months

Parallel shift (see
Eq. (6))

0.5% 0.7% 0.7% 0.4%

Two factors (see
Eq.(7))

39.7% 44.5% 49.6% 57.8%

Three factors (see
Eq. (8))

59.8% 54.8% 49.6% 41.8%

This table shows how often the respective factor model for the term structure is the best one according to

the information criterion AIC (the results for the information criterion BIC are available on request).

Taken together, we choose the two-factor term structure model of Equation (5), which relies
on the interest level and the steepness of the term structure in a linear way. Moreover, this
modeling of the term structure makes it possible to derive a closed-form solution for the
coupon of par-yield bonds c(m) given a term structure strictly with positive slope (α1 > 0)
(see Equation (33) in connection with Equation (26)):

c(m) =
1− exp(−α0m− α1m

2)(
Φ
(√

2α1 ·m+ α0√
2α1

)
− Φ

(
α0√
2α1

))
·
√

π
α1
· exp

(
α2
0

4α1

) (25)

where Φ (·) is the cumulative density function of the standard normal distribution.11

Equation (25) makes it possible to compare the exact change in the coupon (4c(m)) with
the approximation in Equation (11). For instance, if we start at α0 = 1% and α1 = 0.0005
(which yields a coupon of c(10) = 1.49% at m = 10 years) and if we add around one
standard deviation of the yearly changes in the parameters (the exact values are 1.46 and
0.0001179, see Table 2), one obtains α0,+ = 2.5% and α1,+ = 0.0006 (which yields a coupon
according to Equation (25) of c+(10) = 3.07%). This yields a di�erence of c+(10)−c(10) =
1.58 percentage points (pp), while Equation (11) yields 0.015 + 0.0001 × 10 = 1.60 pp.
Generally speaking, for a low steepness, the approximation works well; however, for a
pronounced steepness, the approximation becomes less precise.

It should be mentioned that the time-series correlation between β0,t and β1,t is strongly
negative (for the one-year changes, it is -0.7864 for the period 1975-01 to 2021-12), meaning
that an increase in the (short-term) interest level is associated with a decrease in the
steepness.

4.2 Banks' interest business

From the summary statistics and Equation (44) in the Appendix A.3, we can make an
educated guess about banks' average earnings from term transformation. This equation
states that the contribution of term transformation is on average equal to the average
steepness minus half of the trend in the interest level multiplied by banks' exposure to
interest rate risk. According to Table 2, the average steepness is about 14 bp (�Mean�, row
2) and the trend is about -22 bp (�Mean�, row 7). According to Table 3, banks' average
exposure to interest rate risk (measured as the change in present value due to an interest
rate shock of +200 bp, divided by total assets, in percent) was close to 2 in 2016 and 2018;
under the assumption that this exposure has been relatively constant through time, we
set this exposure to 2. We obtain about 50 bp, which is within the range of the results

11For α1 = 0, we obtain a �at term structure and c(m) = α0 (see Equation (33) in connection with
Equation (27)).

12This study includes also the results for 2013, which are even higher as to term transformation.
13This share also includes interest on equity.
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Table 9: Studies on earnings from term transformation
Study Share of NIM Earnings [in

bp per
assets]

Sample

Memmel (2011) 12.3% 26.3 German banks,
2005-2009

Busch and Memmel (2016) 33.6% 73.3 German banks,
201212

Chaudron et al. (2022) 8.3%13 11.4 Dutch banks,
2008Q1-2020Q4

Approximation in this paper - 50 German banks,
1975-2021

Study in this paper 10.1% 18.7 German banks,
2014-2020

This table shows studies on earnings from term transformation. �NIM� stands for �net interest margin�.

�Assets� mean total assets, in the case of Chaudron et al. (2022), it means banking books assets. �bp�

means basis points.

of the studies named in Table 9. Note that the average earnings from this strategy are
much higher than from the strategy of investing all funds in the then current zero bond
and �nancing this operation by issuing short-term zero bonds. This strategy yields an
average steepness of 14 bp. What is more, the risk is doubled, meaning that the average
contribution is 14 bp if the risk of the bank is kept constant (compared to 50 bp). However,
if we estimate the contribution according to Equation (10) and concentrate on the years
where data is available, the contribution is much lower, namely 10.1% of NIM and 18.7 bp
(see Table 9).

We estimate Equation (18) by applying a mild outlier correction by removing the �rst
and 99th percentile of the variables. The results in Table 10 show that modeling banks'
interest business through the assumed bond portfolios captures several features. In this
estimation, �phi� refers to the long-run pass-through φA − φL, and �term� to the degree
of term transformation MAφA −MLφL in Equation (18). The following results can be
highlighted:

� All estimates for the coe�cient of �phi� have the right sign. However, in absolute
terms, the theoretical values are signi�cantly larger than the estimated values. This
can be due to noisy values for the long-run pass-through �phi� (see Appendix A.4,
Equation (50), something known as attenuation bias).

� The coe�cient γ related to the degree of term transformation �term� has the ex-
pected sign in the scenario �turn� of a �attening of the term structure. However, the
estimates for �term� in the two shift scenarios are often signi�cantly di�erent from
zero, the theoretical value in the case of a shift in the term structure (see Table 4).
The cause for this may be that the new equilibrium (see Equation 15) is not reached,
which leads to a systematic bias. In Appendix A.4, it is shown that the coe�cient γ̃
(for term) derived from the observed variables is equal to the sum of the true coef-
�cient γ and a component depending on the correlation between the degree of term
transformation �term� and the uncompleted change in the net interest margin θ (see
Equations (46) and (51)). Uncompleted change should be understood in the sense
that after the survey horizon of Tmax = 5 years, the change in the net interest margin
C.NIM(5) hat not yet attained the end point change C.NIM(MA). The following
considerations may give rise to the belief that this correlation is negative for the sce-
nario of a positive shift. Assume that there are two sorts of banks (indexed by H and
L) that di�er only in the maximal maturity of the bonds on the asset sideMA. Table
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Table 10: Results at bank level
Scenario Wave phi term R^2 Nobs

Turn 2017 17.40*** -8.46*** 13.05 1351

Turn 2017 -4.88 0.05 1351

Turn 2017 -7.93*** 12.41 1351

Pos. Shift 2017 85.53*** -7.12*** 17.34 1350

Pos. Shift 2017 65.61*** 9.00 1350

Pos. Shift 2017 -4.35*** 3.43 1350

Neg. Shift 2017 -22.84*** -1.85*** 2.72 1346

Neg. Shift 2017 -27.90*** 2.02 1346

Neg. Shift 2017 -2.57*** 1.48 1346

Turn 2019 23.65*** -10.95*** 17.67 1318

Turn 2019 -8.43 0.14 1318

Turn 2019 -10.12*** 16.68 1318

Pos. Shift 2019 112.27*** -8.99*** 22.72 1317

Pos. Shift 2019 84.64*** 12.25 1317

Pos. Shift 2019 -4.94*** 3.56 1317

Neg. Shift 2019 -36.91*** -1.10* 4.56 1312

Neg. Shift 2019 -40.22*** 4.32 1312

Neg. Shift 2019 -2.42*** 1.31 1312
This table shows the results of the regression (18), where the deviation in the net interest margin is taken

in the �fth (and last) projection year of the corresponding survey wave (see Table 4). The column R^2 (in

per cent) gives the coe�cient of determination of Equation (18). �Nobs� gives the sample size. *, ** and

*** mean signi�cance at the 10%, 5% and 1% level.

11 in the appendix shows that the correlation between the variables �term� and θ is
negative for the positive shift scenario. This may explain the signi�cantly negative
coe�cients for �term� in the positive shift scenario in Table 10. For a negative shift,
the correlation between �term� and θ is positive.

4.3 Robustness checks

If we use the introduction of the euro (1999-01) as the starting point and keep the end
point (2021-12), we get qualitatively similar results; the di�erence between the three-factor
model and the two-factor model (in Table 7) becomes smaller. Looking at the low interest
rate environment in the euro area (assumed starting point at 2014-06, end point kept at
2021-12), we �nd that term structure modeling that only relies on a parallel shift performs
signi�cantly worse than in other periods, especially for longer change horizons.

As to the modeling of banks' interest business, we challenge our assumptions in Section 3 for
deriving the relevant parameters and use other de�nitions of the long-run pass-through and
the exposure to interest rate risk; this leads to similar results as shown above. Moreover,
we check whether the investment strategy of redeploying the whole capital in each period
yields a better �t for longer maturities (longer than 120 months = 10 years). Indeed, we
�nd that the combination (210 = 17.5 years, 6) yields the best �t. However, this optimal
�t for this strategy (measured by the R2 of Equation (10)) is lower than the best �t of a
portfolio using the passive trading strategy S(m) in Subsection 3.2.

5 Conclusion

In our study, we compare di�erent simpli�ed models of the term structure and analyze the
impact of an interest rate shock on a bank's net interest margin. Using nearly �fty years
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of interest rate data for German government bonds of di�erent maturities, we �nd that
changes in the term structure can be described well by two factors, namely by changes in
its level and in its steepness. Looking at yearly changes, we �nd that level changes account
for nearly 91% of the variances and changes in steepness for a further 8%.

We also �nd that the portfolios of bonds can describe the interest business of banks well.
The portfolios applying a passive trading strategy allow interest business to be modelled
in a parsimonious way and at the same time allow empirical features of German banks'
interest business, namely qualitatively di�erent short-run and long-run net pass-through,
term transformation and market power, to be reproduced. In addition, the model results
�t the results of a quantitative survey and explain the dynamics of banks' net interest
margin better than other plausible reference models. While our analysis focuses on the
German banking sector, the model and setup could be easily transferred to other banking
markets, which might be an interesting extension for future projects.

The modeling described in the paper may be used for stress testing banks' interest business
with respect to changes in the term structure. This is especially relevant for banks with
a signi�cant exposure to interest rate risk, and can be particularly informative in times
where signi�cant changes in the term structure are expected.

A Appendix

A.1 Useful formulae∫ m

0
exp

(
−at− bt2

)
dt =

(
Φ

(√
2b ·m+

a√
2b

)
− Φ

(
a√
2b

))
·
√
π

b
· exp

(
a2

4b

)
(26)

where b > 0 and Φ (·) is the cumulative density function of the standard normal dis-
tribution. The equality of both sides of the equation can be seen by using the follow-
ing relationship:

∫ e
f

1√
2π
exp

(
−1/2z2

)
dz = Φ(e) − Φ(f) and we replace −at − bt2 by

−1/2z2 + a2/(4b) in the left-hand side of Equation (26), and we apply the substitution
method, using z(t) =

√
2b · t + a√

2b
, so that e = z(m) =

√
2b ·m + a√

2b
, f = z(0) = a√

2b

and dt = dz · 1√
2b
.

For δ > 0 and m > 0, we obtain:∫ m

0
exp(−δt)dt =

1− exp(−δm)

δ
(27)∫ m

0
t · exp(−δt)dt =

1

δ2
(1− (1 + δm) exp(−δm)) (28)∫ m

0
t2 · exp(−δt)dt =

1

δ3
(
2−

(
2 + 2δm+ δ2m2

)
exp(−δm)

)
(29)

For m > 0 as an integer, we obtain:

m∑
i=1

i =
m (m+ 1)

2
(30)

Assume that the vector θ (with dimension N) is multivariate normal θ ∼ N(µ;Σ) and
that it is divided into two subvectors with the dimensions N1 and N2:(

θ1
θ2

)
∼ N

((
µ1
µ2

)
;

(
Σ11 Σ12

Σ21 Σ22

))
(31)

then

E (θ1|θ2 = x2) = µ1 + Σ21Σ
−1
22 (x2 − µ2) (32)
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A.2 Coupon of a par-yield bond

Using the de�nition that the present value of par-yield bonds is equal to one, we obtain

1 = c(m) ·
∫ m

0
exp(−r(t)t)dt+ exp(−r(m)m) (33)

where r(m) is the spot rate, c(m) is the coupon of the par-yield bond andm is its maturity.
At a �at term structure, i.e. r(m) = r ∀m, and using the theorem about implicit functions,
we obtain:

∂c(m)

∂αi
=
r2
∫m
0 t · ∂r∂αi

· exp(−rt)dt+ rm · ∂r∂αi
· exp(−rm)

1− exp(−rm)
(34)

with ∂r
∂αi

= fi (·) of Equation (3) and r is the �at level of interest, i.e. r(m) = r = α0

meaning that the respective derivatives are determined at α1, . . . , αn = 0, and c(m) = r.
(For the numerator of Equation (34), we apply Equation (27) to Equation (33)). For
instance, in the case of Equation (5), we get ∂r

∂α0
= 1 and ∂r

∂α1
= m, yielding (applying

Equation (28) to Equation (34)):

∂c(m)

∂α0
= 1 (35)

and (applying Equation (29) to Equation (34))

∂c(m)

∂α1
= 2

1− (1 + r ·m)exp(−r ·m)

r(1− exp(−r ·m))
, (36)

where the derivative is approximately equal to m, i.e. limr→0
∂c(m)
∂α1

= m. For the term
structure model in Equation (5), we obtain, as the limiting case for a small steepness:

c(m) ≈ α0 + α1m (37)

A.3 Return of the passive trading strategy S(m)

The return of the passive trading strategy S(m) is the moving average of the current and
past par-yield coupons (for the notation, see Subsection 2.2):

Ret(S(m)) =
1

m

m∑
i=1

ct−i+1 (38)

For the linear term structure model of Equation (5) and for a small steepness, we can
express the par-yield coupon as in Equation (37) and obtain:

Ret(S(m)) =
1

m

m∑
i=1

α0,t−i+1 +
m∑
i=1

α1,t−i+1 (39)

In the following, we model the interest level α0,t as a constant µ and a time trend γ, blurred
by a noise term η0,t:

α0,t = µ+ γ · t+ η0,t (40)

and, for the steepness α1,t, we assume that it �uctuates around the average st:

α1,t = st+ η1,t (41)
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Using the modeling of Equations (40) and (41), we can rewrite Equation (39):

Ret(S(m)) = µ+m · st+ γ ·
m∑
i=1

(t− i+ 1) + εt

= µ+m · st+ γ · t− γ · m− 1

2
+ εt (42)

where we use Equation (30) to reformulate the sum expression and set εt = 1
m

∑m
i=1 η0,t−i+1+∑m

i=1 η1,t−i+1. Often, we look at the return di�erence of two trading strategies. Using (42),
we obtain for the expectation of the return di�erence:

E (Ret(S(MA))−Ret(S(ML))) =
(
st− γ

2

)
· (MA −ML) (43)

The risk of this return di�erence measured as the euro duration is for a small interest level
and for a small steepness D¿ = 1

2 (MA −ML) and, for a Bank i, it is D¿
i = −50 · IRRi

(see Equation (20)). Therefore:

E

(
NIItermi

Ai

)
= −100 · IRRi

Ai
·
(
st− γ

2

)
(44)

i.e. the average contribution from term transformation, the term E
(
NIItermi

Ai

)
is equal

to Bank i's standardized interest rate risk multiplied with the di�erence of the average
steepness of the term structure and half of the time trend.

A.4 Biases in the estimation

The true model is given by Equation (18), however we estimate (to keep the notation to a
minimum, we drop the index k; we concentrate on the upward-shift scenario):

C.NIM(5)i = α+ β̃ · phii + γ̃ · termi + ε̃i (45)

We assume the following relationships between the theoretical values and their empirical
counterparts.

C.NIM(5)i = C.NIM(MA,i)i + θi (46)

phii = (φA − φL)i + ηi (47)

termi = (MAφA −MLφL)i (48)

To facilitate the calculation, the joint distribution is assumed to be normal, namely:
φA − φL

MAφA −MLφL
ε
η
θ

 ∼ N



µ1
µ2
0
0
δ

 ;


σ21 0 0 0 0
0 σ22 0 0 σ2θ
0 0 σ2ε 0 0
0 0 0 σ2η 0

0 σ2θ 0 0 σ2θ


 (49)

Using the conditional expectation in Equation (32), we obtain for the parameters:

β̃ = β · σ21
σ21 + σ2η

(50)

γ̃ = γ +
σ2θ
σ22

(51)

With the assumptions laid down in Subsection 4.2, one can calculate the covariance between
�term� and θ (see Table 11).
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Table 11: Banks with di�ering maturities
Type of bank H L

share p > 0 1− p > 0

Maturity MH
A > Tmax ML

A < Tmax
term MH

A φA −MLφL ML
AφA −MLφL

θ = C.NIM(Tmax)− C.NIM(MA) θH < 0 θL = 0

share · θ ·
(
term− term

)
pθH

(
MH
A −M

)
φA 0

This table shows components of the covariance between the variables �term� and θ. In this example (which

can be easily generalized), there are two sorts of banks that only di�er in the maturity of the asset side

(the assumptions of Subsection 2.2 are valid).
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