# GDP-at-Risk: Research and Policy Agenda

David Aikman

Qatar Centre for Global Banking and Finance, King's College London

29 September 2022

2022 Research Workshop of the Working Group on Stress Testing, ECB

# Outline

- The concept of GDP-at-Risk and its potential use in macroprudential policy
- Two research papers:
  - "Credit, Capital and Crises: A GDP at Risk Approach" with Jonathan Bridges (BoE), Sinem Hacioglu-Hoke (BoE), Cian O'Neill (BoE) and Akash Raja (LSE)
  - —"A Tale of 3 Occasionally-Binding Constraints", with Kristina Bluwstein (BoE) and Sudipto Karmakar (BoE)
- Concluding thoughts on where this literature is heading

# GDP-at-Risk and macroprudential policy

- Macropru as a policy framework is severely hampered by the lack of a quantitative objective
- This was not a problem in the immediate aftermath of the Global Financial Crisis as the direction of policy was clearly to build resilience (Barwell, 2021)
- But a decade plus on from that episode, the countercyclical component of the macroprudential framework is rudderless

# Problems this creates

- Accountability is impeded
- Decision making is poorer
  - -Ambiguity fosters the status quo bias
  - The attention of policymakers may gravitate to more measurable goals like supporting competition and growth
- Imagine the task of Monetary Policy Committees right now if we didn't have inflation targets in place!

## What is GDP-at-Risk?

- GDP-at-Risk is the most promising idea we have developed so far for quantifying the objectives of macroprudential policy
- It's an estimate of the most severe recession we might reasonably expect to experience over a defined period ahead, eg the next 3 years



# Attractive concept for several reasons:

- It provides a numeraire, ie it allows us to express financial stability risks in common units
- GDP is a well understood concept
- The focus on "tail risk" dovetails with the focus of monetary policy on the central outlook
  - A GDP-at-Risk forecast could play a role akin to that of the inflation forecast in monetary policy deliberations

# But it also has drawbacks

- Understanding the relationship between financial sector developments and macro tail risk is a significant challenge – is it beyond our ability?
- As we're seeing, there are many other sources of risk for the real economy beyond financial crises – so a financial stability "target" for GDP-at-Risk doesn't make much sense

# Some key contributions to the literature

- Early literature: Cecchetti (2006), Cecchetti and Li (2008), De Nicolo and Lucchetta (2012)
- Seminal paper: Adrian et al. (2019), "Vulnerable Growth", AER
- Voluminous literature following this contribution:
  - Adrian et al (2019): Term structure of Growth at Risk
  - Duprey and Ueberfeldt (2020): Managing GDP at Risk
  - Kiley (2019): Unemployment Risk
  - Chavleishvili and Manganelli (2020): Quantile VAR
  - Boyarchenko et al (2020)
  - Covi et al (2022)
  - Suarez (2021)
- Plagborg-Moller et al (2020): When is growth at risk? BPEA

# Some of my work in this area

- "Credit, capital and crises: A GDP-at-Risk approach" with Jon Bridges (BoE), Sinem Hacioglu-Hoke (BoE), Cian O'Neill (BoE), Akash Raja (LSE)
- "A tale of three occasionally-binding constraints: a modelling approach to GDP-at-Risk" with Kristina Bluwstein (BoE) and Sudipto Karmakar (BoE)

# Some of my work in this area

- "Credit, capital and crises: A GDP-at-Risk approach" with Jon Bridges (BoE), Sinem Hacioglu-Hoke (BoE), Cian O'Neill (BoE), Akash Raja (LSE)
- "A tale of three occasionally-binding constraints: a modelling approach to GDP-at-Risk" with Kristina Bluwstein (BoE) and Sudipto Karmakar (BoE)

# What this paper does

- This paper examines the relationship between a wide set of macroprudential indicators and GDP-at-Risk
- 2 novelties relative to existing literature:
  - -We include measures of banking system resilience in the analysis, allowing us to account for the impact of Basel 3 on GDP-at-Risk
  - We focus on a horizon 3-5 years ahead, which is arguably the relevant policy horizon for considering prophylactic macroprudential policy actions

#### Data

- Cross-country panel dataset, 16 advanced economies, 1980Q4-2017Q4
- 5 macroprudential indicators:
  - -3-year change in private non-financial sector credit to GDP ratio
  - -3-year growth in real house prices
  - —Current account deficit (% of GDP)
  - -Realised volatility in equity prices
  - -Banking system tangible common equity to total assets ratio
- Macroeconomic controls: policy rate, inflation, lagged GDP growth

### Quantile regression approach

We follow Canay (2011) 2-step approach:

First step: Estimate the following linear pooled panel model by OLS

$$y_{i,t+h} = \alpha_i^h + \gamma^h X_{i,t} + \epsilon_{i,t},$$

where  $y_{i,t+h} = \frac{(Y_{i,t+h}-Y_{i,t})}{h/4}$  and X are conditioning variables

The fixed effects can be estimated as:  $\hat{\alpha}_{i}^{h} = \frac{1}{N} \sum_{i,t} (y_{i,t+h} - \hat{\gamma}^{h} X_{i,t})$ 

# Quantile regression approach

**Second step:** We estimate the quantile regression coefficients:

$$\hat{\beta}_{\tau}^{h} = \operatorname*{argmin}_{\beta^{h}} \sum_{i,t} \rho_{\tau} (y_{i,t+h}^{*} - X_{i,t} \beta_{\tau}^{h})$$

where  $y_{i,t+h}^* = y_{i,t+h} - \hat{\alpha}_i^h$ 

We estimate betas for 1-20 quarters ahead using local projections

Predicted 5<sup>th</sup> percentile of GDP growth = **"GDP-at-Risk"** 

#### GDP-at-Risk response following 1 std increase in:

(A) Credit-to-GDP (3 year pp change)

Note: +-1 standard error confidence intervals



15

#### GDP-at-Risk response following 1 std increase in:

(C) Real house price growth (3 year)

(B) Current account deficit

Note: +-1 standard error confidence intervals



(D) Volatility

## GDP-at-Risk response following 1 std increase in:

Note: +-1 standard error confidence intervals

(E) Bank capital (TCE) ratio



#### Summary of GDP-at-Risk impacts over 3-years



#### Household vs firm credit impact on GDP-at-Risk

(A) Household credit-to-GDP (3 year pp change)

(B) Corporate credit-to-GDP (3 year pp change)



#### Decomposition of GDP-at-Risk 3-years ahead: UK



# Some GDP-at-Risk coefficient estimates are unstable over sub-samples

Credit Volatility House Current Capital 0.8 Acount Prices 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.81992 1997 2002 2007 2012 Full 1992 1997 2002 2007 2012 Full

(average annual growth, pp)

# Some variables change the location rather than the shape of the growth distribution



## Predicted GDP growth density

(A) Forecast from 3 years previously vs. actual outturn

(B) Predicted density (3 years ahead)



# Some of my work in this area

- "Credit, capital and crises: A GDP-at-Risk approach" with Jon Bridges (BoE), Sinem Hacioglu-Hoke (BoE), Cian O'Neill (BoE), Akash Raja (LSE)
- "A tale of three occasionally-binding constraints: a modelling approach to GDP-at-Risk"

with Kristina Bluwstein (BoE) and Sudipto Karmakar (BoE)

# A tale of 3 occasionally-binding constraints

- Hitherto, most studies of GDP-at-Risk have been purely empirical
- Few attempts to provide a more structural interpretation of the concept
- A model of GDP-at-Risk is useful for:
  - —Running "what if" scenarios, eg what's the impact of a persistent inflation shock?
  - -Understanding interaction effects, eg if the economy is further away from the ELB, what does that mean for the vulnerability of the banking system?
  - Analysing policy strategies

# What this paper does

- We build a semi-structural New Keynesian model
- The model incorporates three non-linear constraints:
  - -An effective lower bound on nominal interest rates
  - -A credit crunch in credit supply when bank capital is depleted
  - -Deleveraging by borrowers when debt service burdens become excessive
- We calibrate the model for the UK and use simulations to understand its properties

# The model in words

- The macro block is pretty conventional: IS curve, Phillips curve, Taylor rule
- The financial block includes:
  - Credit demand, linking credit to output and the (spread adjusted) real interest rate
  - -Credit supply, linking credit to the bank capital ratio
  - Bank capital dynamics, via which bank net worth varies autoregressively and depends on the level and change in nominal interest rates plus (procyclical) credit losses

# Nonlinear constraints

**1.** Effective lower bound on policy rate

#### 2. Bank capital constraint

- In normal times, loan supply is insensitive to bank capital
- But when capital ratios drop below a threshold, loan supply falls abruptly and becomes highly sensitive to bank capital

#### **3.** Debt deleveraging constraint

- Borrowers begin deleveraging when their debt service ratios (DSRs) cross a boundary
- Deleveraging is a simultaneous shock to the IS and credit demand equations

# Unconditional distribution of (detrended) GDP

- 5000 simulations of 140 quarters (first 40 discarded)
- GDP-at-Risk: -2.8%
- NB: GDP-at-Risk is
  - -1.7% in the model without constraints
  - -2.9% in the data



## Shapley value contributions to GDP-at-Risk

- Frequency with which constraints bind:
  - -ELB: 11.1%
  - -Credit crunch: 1.8%
  - **—**DSR: 1.9%













# Iso-risk curves

# Iso-risk curves

50 basis point decline in monetary policy headroom requires:

- Additional capital buffers of 1% of assets
- Lower debt service burdens of 2-2.5% pts



# Impact of a persistent inflation shock on GDPat-Risk



# Thoughts on what next for this literature

- 1. We need more empirical work on the reliability of GDP-at-Risk estimates at the policy horizon relevant for macropru: 2-3 years+
- 2. We need richer structural models of GDP-at-Risk, which incorporate a role for macropru policy tools such as the CCyB
- **3.** Is this the right concept or should we focus on a metric of credit supply at risk?
- 4. Whether / how to integrate GDP-at-Risk with macro stress testing and in an integrated policy framework for macropru, ie with a loss function

# Additional slides

#### Model: the macro block

• IS equation extended with spreads [Curdia & Woordford, 2010]:

$$\underbrace{y_{t}}_{Output} = \theta^{y} y_{t-1} - \theta^{r} (\underbrace{r_{t}}_{interest} - \underbrace{\pi_{t-1}}_{inflation} + \underbrace{s_{t}}_{spread}) + \varepsilon_{t}^{y} + \varepsilon_{t}^{d}$$

• Phillips curve extended with spreads:

$$\pi_t = \beta^{\pi} \pi_{t-1} + \beta^{y} y_{t-1} + \beta^{s} s_{t-1} + \varepsilon_t^{\pi}$$

• Taylor rule with effective lower bound:

$$r_t = \max[\overline{r}, (1 - \phi^r)(\phi^{\pi}\pi_t + \phi^y y_t) + \phi^r r_{t-1} + \varepsilon_t^r]$$

- Shocks  $\varepsilon_t^y, \varepsilon_t^{\pi}, \varepsilon_t^r$  are AR(1) processes with iid shocks.
- $\varepsilon_t^d$  is a deleveraging shock

## Model: the financial block

• Credit demand:

$$\underbrace{b_t}_{credit} = \gamma^y y_t + \gamma^b b_{t-1} - \gamma^r (r_t - \pi_{t-1} + s_t) + \varepsilon_t^b + \varepsilon_t^d$$

• Borrowing spreads/Credit supply:

$$s_t = f^s s_{t-1} + f^b b_t - f^{\widetilde{k}b} \underbrace{k_{t-1}}_{capital \ ratio} + \mathcal{E}_t^s$$

• Bank capital ratio evolution:

$$k_t = \delta^k k_{t-1} - \delta^r \Delta r_t + \delta^s (r_{t-1} + s_{t-1}) + \varepsilon_t^k$$

- Shocks  $\varepsilon_t^b, \varepsilon_t^s$  are AR(1) processes with iid shocks.
- The variable  $\varepsilon_t^k$  captures banks' (pro-cyclical) credit losses  $\varepsilon_t^k = v^y y_{t-1} + \rho^k \varepsilon_{t-1}^k + u_t^k$

# Nonlinear constraints



#### FIGURE A.III: Baseline results and single-indicator model



#### Decomposition of GDP-at-Risk 3-years ahead: US

