
Dynamic Models for Volatility and Heavy Tails
by Andrew Harvey

Discussion by Gabriele Fiorentini
University of Florence

and
Rimini Centre for Economic Analysis (RCEA)

Frankfurt, 4-5 May 2012



I enjoyed the papers and I am looking forward to get the first draft
of the entire book.

Thera are a lot of contributions in several directions.

I will concentrate on DCS specfications which were new to me.



The score of dynamic regression models: general case
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The score of dynamic regression models: particular cases

Gaussian: δt [εt(θ), η] = 1

δt [εt(θ), η] εt(θ) = εt(θ)

δt [εt(θ), η] ε2
t (θ)− 1 = ε2

t (θ)− 1

This expressions motivate the use of PML estimators which remain
consistent (un.su.re. conditions) for θ even if the true distribution
is unknown.
PML forms the basis for semiparametric and sequential estimation
procedures.

Standardized Laplace:

δt [εt(θ), η] εt(θ) =
√

2sign(εt(θ))

δt [εt(θ), η] ε2
t (θ)− 1 =

√
2|εt(θ)| − 1
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The score of dynamic regression models: particular cases

Standardized Student t with1/η dgf: δt [εt(θ), η] =
η+1

1−2η+ηε2(θ)

δt [εt(θ), η] εt(θ) =
η + 1
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ε2
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Andrew’s Beta ut

Discrete Location Scale Mixture of Normals:
δt [εt(θ), η] = ugly∗

Gives an example of the score factors when the conditional
distribution is asymmetric

∗ see FS(2010) “New testing approaches for mean-variance predictability”
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The damping factor δt [εt(θ), η] and DCS models

δt [εt(θ), η] can be regarded as a damping factor that accounts for
the skewness and kurtosis of the conditional distribution, as in the
robust estimation literature.

For example the Student t factor downweights big observations
(outliers) when computing the average score.

DCS models take a step further and include the score factor in the
filters of observation driven models. This choice is well motivated
and it is argued that it has several advantages.

For example, in the DCS Garch model the conditional variance does
not react abruptly to additive outliers.

However, in the DCS model we give up the possibility to partition
model parameters into dynamic and shape parameters.
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QUESTIONS

Isn’t this close link between the shape of the conditional
distribution and the dynamics of conditional moments too binding.
Or, maybe, it is desirable to have it and offers clear advantages.

How could we define a PML estimator that remains CAN even if
the conditional distribution is misspecified.

How could we define an efficient semiparametric estimator.

Could we estimate the model parameters sequentially. There are
many case in which sequential estimation is a reasonable strategy.

What happens if we fix η in the filter. PML is certainly feasible and
we still maintain a flexible nonlinear specification.
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QUESTIONS

How do we test the null of Gaussian innovations against, say,
Student t
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OUTLIERS: If an additive outlier is recognized and modelled
properly (i.e. REGARIMA style) than it causes no problems. A nice
example is Baille and Bollerslev (1989). If instead a “big
observation” is a realization from the heavy tail conditional
distribution than the GARCH variance may react too much and take
a long time to go back the its average level. DCS should help by
dumping the effect of big observations on the conditional variance.

(I couldn’t find Harvey and Luati)
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Testing for ARCH effects

In FS(2010) we develop LM predictability test based on more
realistic distributions than the gaussian.

In a nutshell, we are testing whether past observations can predict
the MD components of the score of the assumed conditional
distribution.

This is the reason why we had figures similar to yours. We plot the
regressands in the T × R2 form of the LM tests.

Importantly those tests have the correct size even under
misspefication and aruguably more power than the normal based
one.
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I considered an LM test for ARCH effects in the DCS
specification

yt = π0 + σt(θ)εt

εt|It−1; π, α, ω, η ∼ i.i.d. D(0, 1, η) with density function f (., η)

σ2
t (θ) = ω(1 − α) + αδt [εt(θ), η] (yt−1 − π)2

The algebra of the LM test works out nicely because the link
disappears under the null. The information matrix under the null is
block diagonal with

Iα,α(φ) =
M2

ss(η)

4
for Student t Iα,α(φ) =

(
ν

ν + 3

)2

We are actually testing if Andrew’s ut−1 can predict Andrew’s ut

The test should have the correct size even under incorrect
distributional specification.
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Latent GARCH processes

I was surprised not to see any discussion about latent GARCH
processes.

A proper latent GARCH is actually an SV model and thus not
observation driven.

If suitably specified it becomes observation driven but the analysis
is difficult (HRS, 1992).


