

The policy perspective: Where do we stand in the Eurosystem?

Stefan W. Schmitz Oesterreichische Nationalbank, Vienna

ECB Workshop: Excessive liquidity and money market functioning Frankfurt/Main, November 19-20, 2012

The opinion of the author does not necessarily reflect that of the OeNB.

Structure

- 1. CRDIV/CRR
- 2. Empirical evidence
- 3. Related literature and research questions
- 4. LCR impact
 - Eurosystem control of EONIA
 - Role of MRR
 - LCR network dynamics & feedback-mechanism
 - LCR impact on policy target
 - LCR impact on structural liquidity deficit
- 5. Crisis impact
- 6. Potential policy reactions

CRD IV/CRR

Deviations from Basel III

European specificities

- ☐ Treatment of intra-group exposure & committments
- □ Perimeter of LCR
- Waivers
 - □ National / cross-border
 - ☐ Institutional protection schemes
- □ CIUs
- Avoide reference to external ratings

Most contested issues

- □ Level 1/Level 2 60/40 cap
- ☐ 75% cap on inflows
- □ 75% run-off rate for non-financial corporates (w/o operational relation)
- □ 100% run-off for liquidity lines for non-fin corporates
- Operational relationship
- 50% roll-over trade finance/SME loans
- ☐ Definition of liquid assets
 - Extremely high credit quality/liquidity & high credit quality/liquidity
- Macro-prudential liquidity tool
 - Systemic liquidity shocks require preventive tools
 - LCR/NSFR, Haircuts

EBA SGL program

- ☐ Too many Technical Standards
 - Many are highly political rather than technical
- ☐ EBA SGL work streams
 - LCR monitoring
 - Voluntary monitoring started in March 2012
 - Currencies with insufficient liquid assets/narrow CB collateral -- ?
 - Deposits with higher run-off rates guideline rather than TS
 - Liquid asset metrics/definition
 - Report (Art. 481 (1) CRR) June 2013
 - Derivatives and margin calls
 - Treatment of intra-group exposure

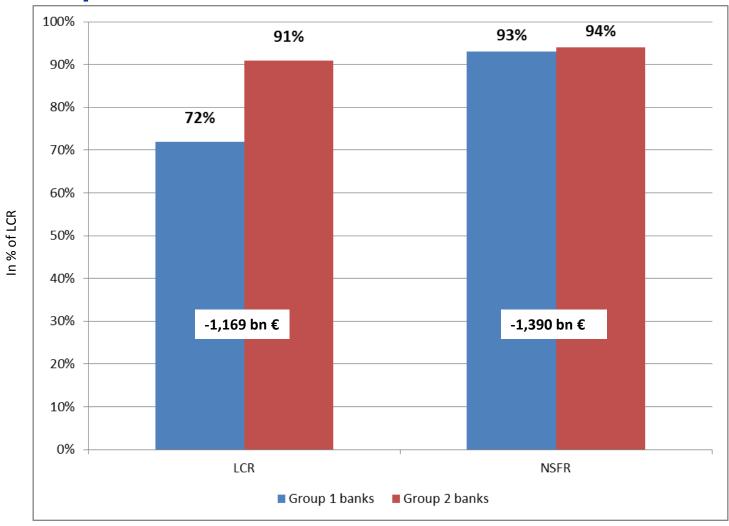
Way forward

Study of LCR impact under Art. 481(1) CRR

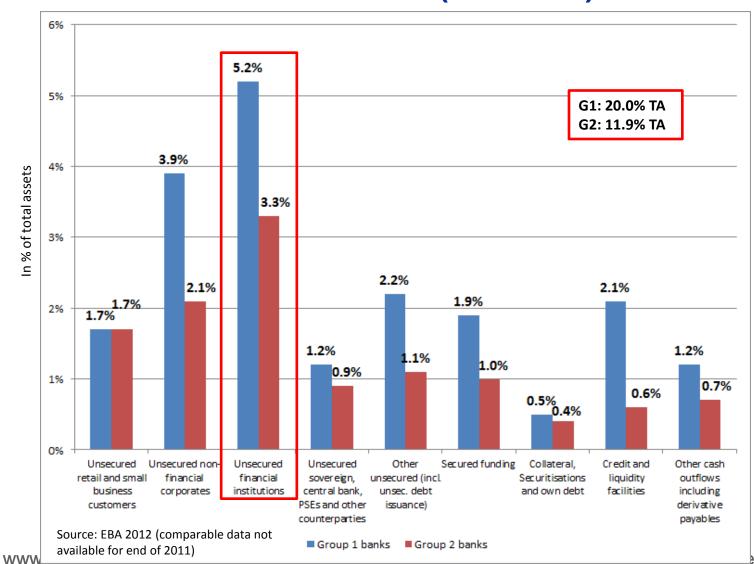
- Macro-economy
- □ SME lending/trade finance
- Business models
- Methods
 - Data based (LCR monitoring)
 - Case studies (CH, NL, SE, UK)
 - Simulation
 - Unintended consequences

Potential impact

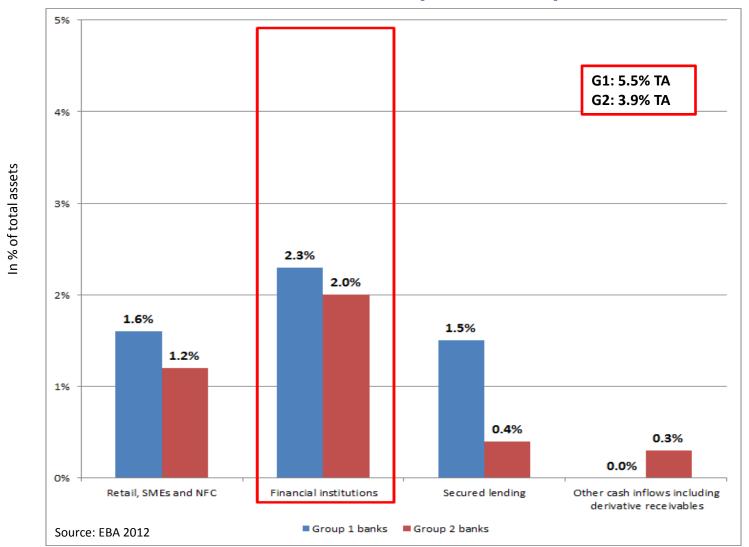
Assumption: LCR binding constraint


- □ Ratios watered down substantially after QIS still binding?
- ☐ Competition for deposits intensivies
 - Loan growth better aligned with deposit growth/net long-term debt issuance
 - Less underpricing of risk more efficient capital allocation
- ☐ Challenges for emerging, fast growing economies
- ☐ Interbank market liquidity insurance, structural li-deficit & monetary policy implementation

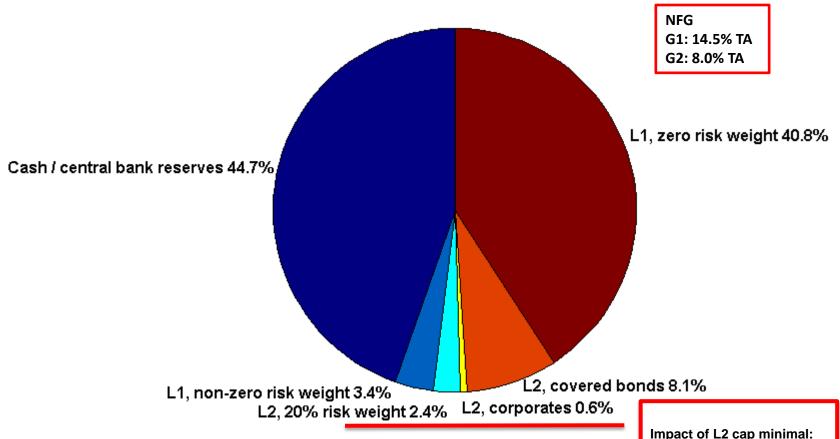
Empirical evidence


Compliance

Source: EBA 2012


Main drivers LCR outflows (end 2011)

hb.info@oenb.at



Main drivers LCR inflows (end2011)

Composition of liquid assets (end 2011)

Impact of L2 cap minimal:

- L2 assets only 13%
- EUR 53 bn excluded due to 40% cap/ 24 banks
- LCR > 100% for 6 banks

Source: EBA 2012

Some progress since 2010*

→ Banks start making use of long transition period

Potential adjustments (LCR)

Banks have a number of options to adjust to the LCR

- Reduction of negative net expsoure on the unsecured interbank market
- Extension & staggering of tenors MM & NFC
- Promotion of deposits w low run-off rates
- Substitution of illiquid by liquide assets & within liquid assets towards those w lower hair-cuts
- Off-balance-sheet: reduction of unused liquidity lines
- Reduction of assets w low interest margin
- QIS data quality low: improvements likely to reduce gap
- → Practical challenge in terms of costs/economic impact low

Related literature

Schmitz, S. W. (2010) *The new Basel liquidity standards and their implementation into EU legislation*, presented at the seminar *Basel II Enhancements*, Bank for International Settlements, Basel, April 28. http://www.univie.ac.at/ivc/mitarbeiter/schmitz/Basel2010.ppt

ECC (2010), The implications of new liquidity regulations for market functioning and central bank operations (internal report)

Schmitz, S. W. (2011) "The Implementation of Basel III Liquidity Standards in CRD IV", The 2011 Forum on Basel III Implementation, July 12, Zurich http://www.univie.ac.at/ivc/mitarbeiter/schmitz/Zurich2011.ppt

Holthausen, C., U. Bindseil (2011) *The new liquidity regulation and the Eurosystem's monetary policy implementation*, presentation at the Governing Council Seminar February 16, 2011, Frankfurt.

Schmitz, S. W. (2011) *The Impact of the Basel III Liquidity Standards on the Implementation of Monetary Policy*, (May 06). Available at SSRN: http://ssrn.com/abstract=1869810

Bindseil, U., J. Lamoot (2011) *The Basel III framework for liquidity standards and monetary policy implementation*, Humboldt-Universität zu Berlin SFB 649 Discussion Paper 2011-041, http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2011-041.pdf

CGFS (2011), System-wide effects of liquidity regulation (internal report)

ECB (2012) The impact of the Basel III liquidity risk regulation on the recourse of banks to Eurosystem monetary policy operations and related effects on financial markets, Joint FSC/MOC Task Force, January 2012 (internal report)

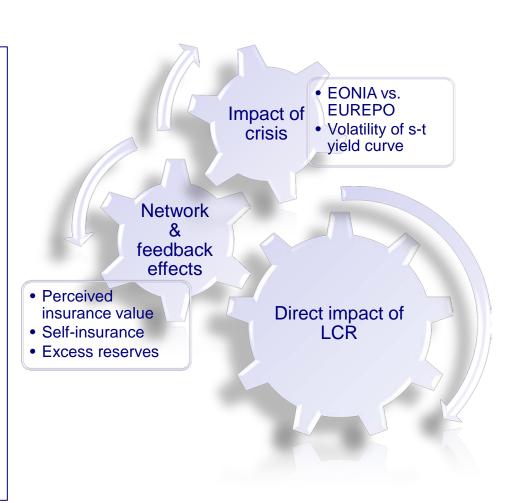
ECC (2012) ECC working group on central banking lending and liquidity regulations, September 2012 (internal report)

Literature summary

Incentives for regulatory	 Submit non-LCR eligible, but CB eligible assets to CB to increase central bank reserves Increasing demand for LTRO
arbitrage via central bank	More direct participation in OMOsMore aggressive bidding
	 Higher risk exposure of central bank Improvement of hair-cut/risk management framework
Impact on unsecured short-term MM (≤ 30 days)	 Liquidity in the unsecured market decreases Role of EONIA diminishes Yield curve steepens at the short-end Spread between secured and unsecured rates increases Short-term rates become more volatile
Policy options	 0% run-off for CB funding Different collateral for MROs and LTROs Increase share of LTROs Consider secured rate

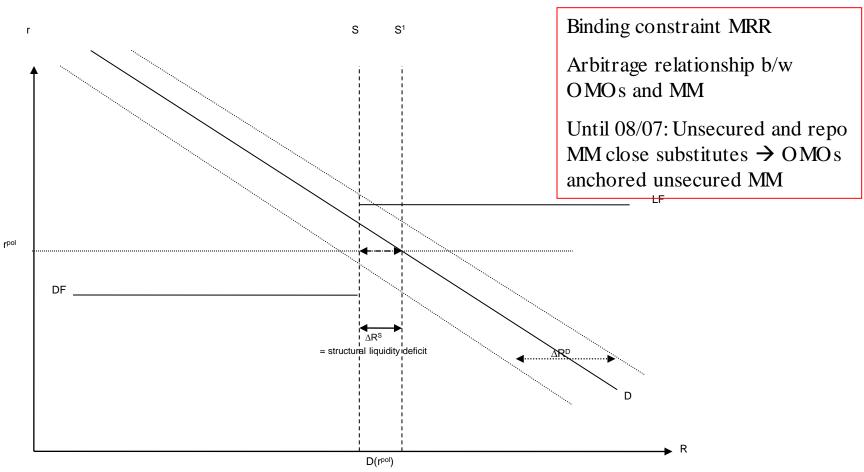
Research questions

Is it sufficient to study


- the direct, mechanical impact of the LCR on the implementation of monetary policy?
- The LCR in isolation of the effects of the crisis itself?

Neglected

- Impact on structural liquidity deficit
- Impact on arbitrage relationship


Hypothesis

 Substantial change in implementation required

Impact of the LCR on monetary policy implementation

How did the Eurosystem control interest rates?

Source: Schmitz (2006) Monetary Policy in a World without Central Bank Money, in: Stefan W. Schmitz, Geoffrey E. Wood (eds.), *Institutional Change in the Payments System and Monetary Policy*, Routledge, London, 131-157

Role of MRR (before August 2007)

- Stabilise demand for CB resreves
 - Stabilise structural liquidity deficit
- OMOs used to have maximum volume
 - Estimated to equal the structural liquidity deficit
 - Structural liquidity deficit = MRR + autonomous factors
 - MRR
 - Backward looking
 - Fully determined by reserve base & applicable mimnimum reserve ratio
 - Autonomous factors
 - Banknotes, government deposits, net of sum of foreign assets, domestic assets and other autonomous factors
 - Estimates quite accurate

LCR: Network dynamics and feedback effects

Unsecured MM

- Feedback effects
 - More participants & higher volume → perceived stability & insurance function
 - For banks a trade-off exists re their investment of short-term excess cash.
 - Expected yield versus liquidity risk
- LCR leads to reversal feedback effect reinforces static impact
 - Self-insurance higher liquidity buffer
 - LCR & arbitrage via CB → excess reserves
 - Lower volume & fewer participants adverse impact of an idiosyncratic shock on any one participant higher
 - Further reduction of perceived insurance value

LCR: Feedback effects

Investment of short-term liquidity surplus (banks)	Ex-ante self-insurance	Ex-post insurance via MM
Portfolio (P _i)	e.g. excess reserves, T-bills	e.g. interbank deposits, senior bank bonds
Expected yield - $E[R(P_i)]$	$E[R(P_{i,Sl})]$ very low (e.g. 0 per cent)	$E[R(P_{i,MM})] > E[R(P_{i,SI})]$
Capital charge - Equity(P _i)	$Equity(P_{iSl}) = RW_{Sl} \times 8\% = 0$	$Equity(P_{iMM}) = RW_{MM} \times 8\% > 0$
Expected opportunity costs of self-insurance $E[OC_{i;SI}]$	$E[OC_{i,Sl}] = \{E[R(P_{i,MM})] - E[R(P_{i,Sl})]\} + \{CoE_i \times Equity(P_{i,Sl})\} - CoE_i \times Equity(P_{i,MM})]\}$	
Expected efficacy $E[E_i]$	$E[E_{i,Si}] \approx 100 \text{ per cent}$	$E[E_{i,MM}]$ < 100 per cent
Drivers of uncertainty wrt efficacy	 ≈ 0 Central bank reserves, T-bills most liquid assets 	 Market price/market liquidity Expected yield of portfolio (incl. credit risk) Fewer lenders on uMM Idiosyncratic loss of access Higher spreads Shorter tenors

LCR: Feedback effects II

Investment of short-term liquidity surplus	Ex-ante self-insurance	Ex-post insurance via MM	
Uncertainty wrt to future liquidity shock	$V_{i,LGap}$		
Expected costs of illiquidity (after insurance)	$E[C_{i,ILSI}] = E\{C_i((1-E[E_{i,Sit+}]) \times E[LGap_i V_{i,LGap}])\}$	$E[C_{i,ILMM}] = E\{C_i ((1-E[E_{i,MMt+}]) \times E[LGap_i V_{i,LGap}])\}$	
Decision problem	$E[OC_{i,Sl}] < E[C_{i,ILMM}] - E[C_{i,ILSl}]$	$E[OC_{i,SI}] \ge E[C_{i,ILMM}] - E[C_{i,ILSI}]$	
Forward looking expectation formation $(E[E_i])$ - hysteresis	$\boldsymbol{E}_t[E_{i,t+}] = \boldsymbol{F}[\boldsymbol{E}_t(E_{i,t})]$		
Feedback effect & intertemporal coordination failure	$E_t[E_{i;t+}] \rightarrow E_t[E_{i;Sl,t+}] >> E_t[E_{i;MM,t+}] \text{ iff } E_i\{E[OC_{i-,Sl}] < E[C_{i-,ILMM}]-E[C_{i-,ILSl}]\} \text{ for sufficient } i-$		
	$E_t[E_{i;t+}] \rightarrow E_t[E_{i;Sl,t+}] \approx E_t[E_{i;MM,t+}]$ iff $E_i\{E[OC_{i-,Sl}] \geq E[C_{i-,lLMM}] - E[C_{i-,lLSl}]\}$ for sufficient i -		
	Floor to feedback effect: non-banks (e.g. MMF) & banks with low li-risk		
Source of intertemporal coordination failure	Future potential lenders cannot credibly, unconditionally commit ex-ante to lend to the market in the future		

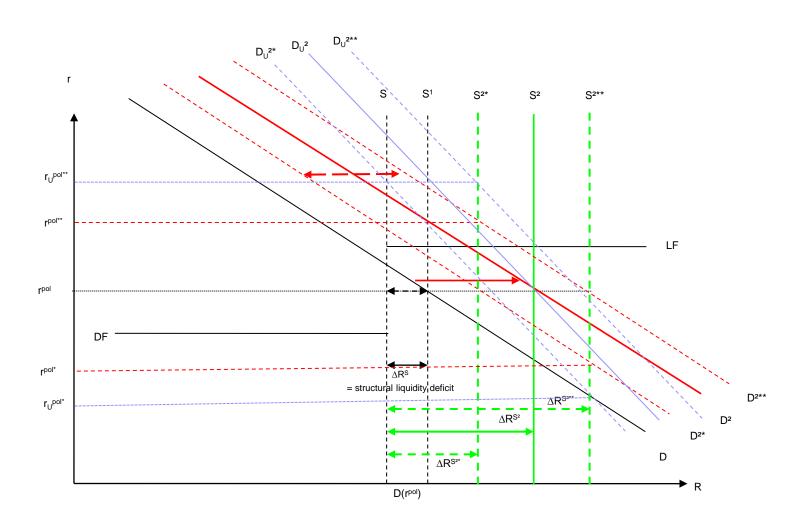
LCR: Feedback effects III

Impact of shocks	Ex-ante self-insurance	Ex-post insurance via MM	
Bad news about a lender - $E[R(P_{i,MM})]$ decreases	$E[OC_{i,ILSi}]$ decreases with $E[R(P_{i,MM})]$ \rightarrow potential lenders withdraw from the market \rightarrow feedback: $E[E_{i,MMt+}]$ decreases		
Bad news about own future liquidity gap - $E[LGap_i V_{i,LGap}]$ increases	$E[C_{i,ILS}] \approx unchanged$ $E\{C_i((1-E[E_{i,SI}])\times E[LGap_i V_{i,LGap}])\} \approx$ 0; No feedback: $E[E_{i,SIt+}]$ unchanged	$E[C_{i,ILMM}]$ increases with $E\{C_i((1-E[E_{i,MM}])\times E[LGap_i V_{i,LGap}])\}$ Feedback: $E[E_{i,MMt+}]$ decreases	
Macro-economic shock (short-term rates drop, yield curve flattens, CoE increase)	$E[OC_{i,Sl}]$ decreases as $E[R(P_{i,MM})]$ decreases and CoE increases Feedback: $E[E_{i,MMt+}]$ decreases		
Example: current environment – DF 0%, EONIA 0,09%, CoE 12%	$\begin{split} E[OC_{i, LS }] &= \{0,009\%\text{-}0\%]\}\text{+}\{0\%\text{-}12\%\times20\%\times8\%\}\text{=-}0,01\% < 0\\ &\rightarrow O/N \text{ lending } - \text{ loss making proposition} \\ &\qquad \qquad Feedback: E_{i}[E_{i;MM,t+}] \text{ decreases} \\ &\qquad \qquad \text{and } E_{i}\{E[OC_{i-, LS }] \geq E[C_{i-, LMM}]\text{-}E[C_{i-, LS }]\} \text{ for all } i,i- \end{split}$		
Impact of the LCR	$E_t[E_{i,t+}]$ decreases \Rightarrow direct static impact on uMM and $E[C_{i,MM}]$ increase due to additional costs of non-compliance Feedback effect: $E[E_{i,MMt+}]$ decreases further		

LCR: Impact on the policy target rate

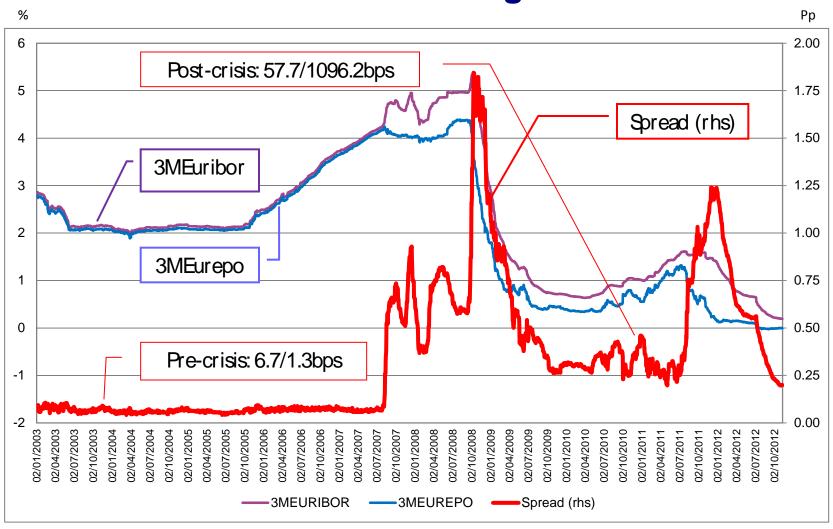
EONIA

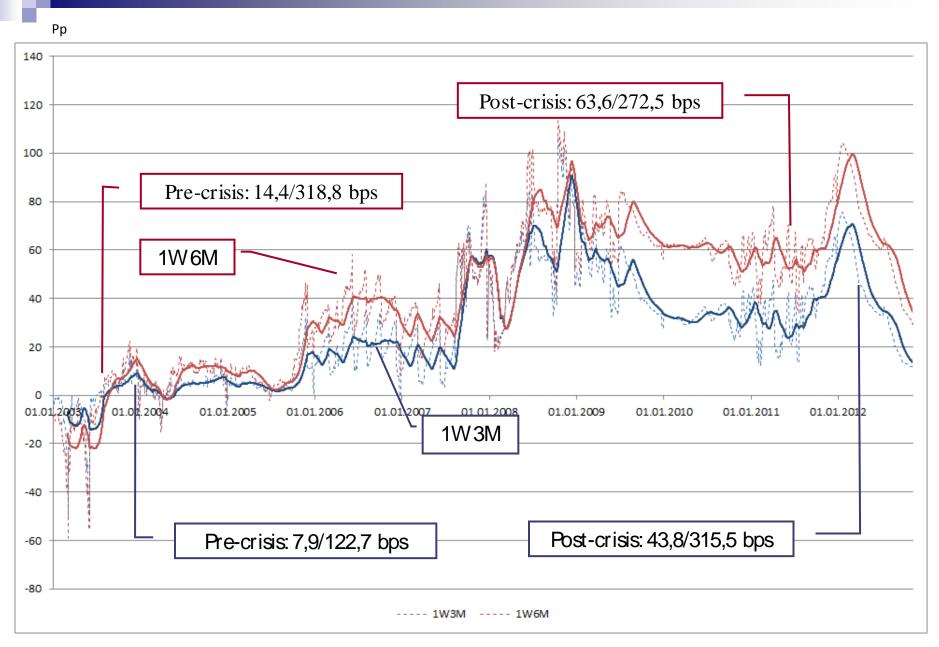
- Before August 2007: reliable indicator of the liquiidty stance of the Euro banking system
 - Expected MRR position/fulfilment path determined demand on unsecured O/N market
 - MRR no longer binding constraint
 - EONIA non longer "marginal funding cost" for banks
- Negative network dynamics & feedback effects
 - Price discovery on O/N market hampered
 - Volatility of EONIA increases



LCR: Impact on the structural liquidity deficit

Structural liquidity deficit


- Until August 2007 determined by MRR
 - Excess reserves virtually 0
- Demand for CB reserves now influenced by higher transaction & precautionary balances
 - Function of banks' perception of
 - future cash-flows E[V_{i,LGap}]
 - idiosyncratic/market liquidity shocks (MM & DCM) E[E_{i,MM}]
 - liquidity risk tolerance E[C_{i-,ILMM}]
- Banks' bidding more volatile & more aggressive
 - More pronounced for LTRO than for MRO
 - uMM not a substitute for OMO anymore
 - Volatility of allotment rate increases & substantial deviation from minimum bid rate


Impact on monetary policy implementation

Crisis: implications for monetary policy implementation

The crisis & OMO/uMM arbitrage

Summary: crisis impact

- Unsecured MM lost role in allocation & distribution of liquidity
 - Price discovery impaired
- Return of banks' reliance on uMM to pre-crisis levels unlikely
 - Role of EONIA as "marginal" funding cost
- Arbitrage relationship between OMOs & uMM severely disrupted
 - Secured & unsecured MM transactions no longer close substitutes
- Slope of the short-term unsecured yield curve
 - Steeper
 - More volatile
- The transmission of monetary policy along the unsecured yields curve prone to shocks and higher volatility

Summary – LCR & crisis

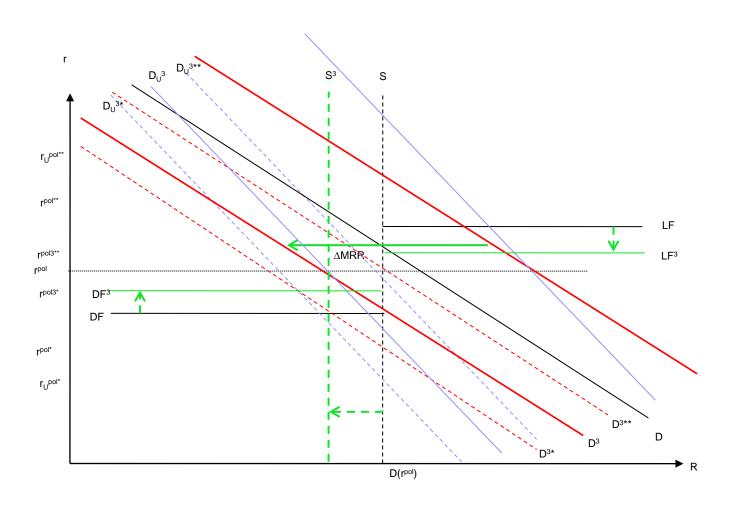
- MRR does not determine structural liquidity deficit anymore
- Structural liquidity deficit → more volative volume & slope
 - Estimation errors increase
 - Frequent FTOs necessary
 - Financial stability implications
 - Hard to distinguish between shift of
 - structural liquidity deficit
 - individual bank bail-out/LCR arbitrage
- Arbitrage relationship between OMOs & unscured MM disappeared
 - More frequent market intervention (FTOs)
- Policy option
 - Much lower MRR & channel approach & secured rate as policy target

Policy options

Policy options

A. Recalibrate CB treatment in LCR

- Consistent treatment across NCOF & HQLA → MRR not HQLA, but <u>related</u> CB repo 0% run-off
- Other CB repo → similar to repo with other counterparties
- B. Policy options within current framework
- Collateral arbitrage → higher, more risk sensitive haircuts
- Higher volatility of structural liquidity deficit → more frequent OMOs/FTOs & shift from MRO to LTRO
- Recalibrate LCR
 - 0% run-off factor for all CB funding → strange incentives
 - Different collateral sets for MROs & LTROs



Policy options II

A. Reform of framework

- MRR not binding → lower MRR (e.g. 50 Bp of reserve base)
 - Lower MRR removes rationale for broad Single List
 - Narrower Single list → reduces arbitrage opportunity
- More volatile short-term rate → channel approach with narrow channel (± 30 Bp)
 - CB role in market increases unavoidably
- EONIA/OMO arbitrage breaks down → target secured rate
 - Narrower Single list → better alignment with repo market

Potential policy reaction: channel approach

Summary

Individual bank

- Net short position on IB market < 30 days requires 100% liquid asset coverage
- Strong
 disincentive to
 borrow unsecured,
 rather repo in
 eligible assets
- Collateral demand increases

Interbank market

- Reduced volume on unsecured interbank market
- EONIA loses relevance & information content
- Market looses insurance function
- Market looses distribution & allocation function

Demand for CB money

- Banks self-insure
- → higher/volatile excess reserves, MIRE ineffective
- More aggressive bidding behaviour
- Structural liquidity deficit more volatile
- New collateral instrument/facility

OMOs

- More banks participate
- Structuralliquidity deficitharder to estimate
- → more volatile allotment rate
- Collateral bias towards less liquid assets → earmaking?

Paper (work in progress): Schmitz, Stefan W., The Impact of the Basel III Liquidity Standards on the Implementation of Monetary Policy (July, 2011). Available at SSRN: http://ssrn.com/abstract=1869810 See also: The Liquidity Coverage Ratio Under Siege, 25. Juli 2012

http://www.economonitor.com/blog/2012/07/the-liquidity-coverage-ratio-under-siege/