Tools for Assessing Macro-prudential Regulatory Instruments

Discussion by **Skander Van den Heuvel** Federal Reserve Board

Concluding Conference of the Macro-prudential Research (MaRs) Network ECB, June 2014

The views expressed here do not necessarily represent the views of the Federal Reserve Board or its staff.

Papers

Capital Regulation in a Macroeconomic Model with Three Layers of Default

Laurent Clerc, Alexis Derviz, Caterina Mendicino, Stephane Moyen, Kalin Nikolov, Livio Stracca, Javier Suarez, Alexandros Vardoulakis

Examples of Macro-prudential Policy Experiments in MAPMOD

Jaromir Benes, Michael Kumhof, Douglas Laxton

Bank Capital Requirements: A Quantitative Analysis Thiên Nguyen

Outline

- 1. Introduction: Getting the level of bank capital requirements right
- 2. 3D Model (Clerc et al.)
- 3. Nguyen
- 4. MAPMOD (Benes, Kumhof, Laxton)

1. Bank Capital Requirements

What is the optimal level of bank capital requirements?

- Capital requirements set minimum level of equity as a fraction of (risk-weighted) assets.
- Theoretical benefits: bank capital can limit the moral hazard involved with deposit insurance/bailouts, or other externalities associated with bank failures.
- Why not set capital requirement = 100%? Fine in a Modigliani-Miller world.
- Possible costs:
 - Reduced lending if MM fails (due taxes, agency problems, special role of bank liabilities in creating liquidity,...)
 - Reduced liquidity creation
 - Activity could shift to shadow banking

An emerging literature: some examples

Paper	Banks' role	M-M failure	GE model	Key result
Clerc et al.	Lending specialness	Equity is scarce + deposit insurance	Stochastic growth model w/housing.	Optimal cap. req. = 10.5%
Nguyen (2014)	Lending specialness	Equity flotation costs + bailouts	Endogenous growth model	Optimal cap. req. = 8%
Van den Heuvel (2008)	Liquidity provision	Liquidity provision + deposit insurance	Neoclassical growth model	Gross welfare cost of 10 p.p. Δ cap. req. = 0.2% of cons.
Begenau (2014)	Liquidity provision + lending specialness	Liquidity + bailouts + dividend smoothing	Stochastic growth model	Optimal cap. req. = 14%

2. Capital Regulation in a Macroeconomic Model with Three Layers of Default

A rich DSGE model with 3 types of defaultable debt:

- 1. Impatient households borrow from banks through **mortgages** to finance housing purchases
- 2. Entrepreneurs borrow from banks to finance capital accumulation (**C&I loans)**
- Banks borrow from patient households through deposits
- All debt is non-state contingent and subject default risk due to idiosyncratic and aggregate shocks.
- Default entails large deadweight costs.

Banks in the 3D Model

- Bank loans are financed with deposits and equity.
- Bank deposits are insured and therefore 'cheap.'
 - \rightarrow Moral hazard: banks may provide excessive credit
- Equity is required to satisfy the capital requirement
 - → Alleviates moral hazard ("skin-in-the-game")
 - → lower bankruptcy costs & potentially better resource allocation.
- But equity is subject to financial frictions: it can only come from *bankers*, whose wealth accumulation is limited by a dividend policy.
 - \rightarrow equity is scarce and costly

Capital Requirements in the 3D Model

Optimal capital requirement trades off the resulting costs and benefits:

- <u>Benefits</u>: Capital requirements limit the moral hazard due to deposit insurance, which can result in excessive lending.
- <u>Costs</u>: Bank capital is costly due to financial frictions, so lending can be reduced too much.

No alternative to bank loans.

Results of the 3D Model

- Model is parameterized to quantify the tradeoff.
- Steady state welfare is maximized at a capital requirement equal to 10.5%.
- A higher capital requirement (lower bank leverage) makes the economy is less responsive to shocks.
 - The model features a financial accelerator that works through asset prices, defaults, and bank capital and borrower balance sheets.
- Starting from the optimal capital requirement, countercyclical adjustment further reduces volatility.

Comments – 3D Model

• This is a well-crafted model that elegantly combines many important elements that one would like to have in a framework for macro-prudential tools.

Some nits to pick:

- Steady state welfare comparison has limitations:
 - Does not take into account transition dynamics
 - Does not take into account effects on business cycle volatility. (Households are risk averse.)

Comments – 3D Model

- What are the key business cycle moments and bankers' return on equity?
- Sensitivity analysis around parameterization.
- Capital conservation buffer and stress testing (CCAR) can limit dividend distributions.
 - Is it possible to analyze changes to the banks' dividend payout policies?

3. Bank Capital Requirements in Nguyen

Nguyen quantifies the benefits and costs of capital requirements in an endogenous growth model --

- <u>Benefits</u>: government bailouts results in risk-shifting (excessively risky loans). Higher capital requirements imply more "skin-in-the-game"
 - \rightarrow less risk shifting

 \rightarrow higher productivity and lower bankruptcy costs.

• <u>Costs</u>: reduced lending and growth. Why? \rightarrow

Bank Capital Requirements in Nguyen

- <u>Costs</u>: reduced lending and growth.
 - Subsidy due to bailouts implies that deposits are cheap.
 This stimulates the volume bank lending.
 - Bank loans are assumed to be essential for investment, so this boosts capital accumulation and growth.
 - In an endogenous growth model, investment is suboptimally low, so the subsidy improves welfare, all else equal.
 - Capital requirements lower the subsidy and thus reduce growth and welfare.
 - In addition, the model features equity flotation costs.

Results – Nguyen

- Model is calibrated to U.S. data to quantify these effects.
- Optimal capital requirement is 8%.
- Asymmetry: a sub-optimally low capital requirement is much more costly than a sub-optimally high capital requirement.

Comments – Nguyen

- This is a well-crafted model with a careful calibration.
- Link between capital regulation and long-run growth rates.
- Dynamic banking model is very rich and sophisticated. Gives rise to pecking order.
 - Does it capture the key M-M failures for banks?
 - Without bailouts, banks would be (nearly) allequity.
 - We did not see this in the U.S. free banking era.

Comments – Nguyen and 3D

- Basel III raises the tier 1 ratio from 4% to 6%.
- Adds a capital conservation buffer of 2.5%.
- 6 + 2.5 = 8.5%.
- Central bankers must have had advance knowledge about this research!
- But we are not done yet.
 - Stress testing requires buffers, SIFI surcharge, countercyclical capital buffer.

Figure A. Tier 1 common ratio of CCAR 2014 BHCs

4. Examples of Macro-prudential Policy Experiments in MAPMOD

The MAPMOD model:

- Capital regulation: penalty for falling short of the capital requirement.
- Imperfect market for bank equity: Raising new bank capital is subject to frictions.

 \rightarrow Bank capital channel; buffer stock of equity

- Non-state contingent loan contracts with nondiversifiable credit risk.
- Small open economy.
- Nonlinear dynamics.

Countercyclical Macroprudential Policy

Comments – MAPMOD

- Focus is on positive, rather than normative analysis -- interesting and relevant scenarios.
- To gauge the impact of financial amplification of real shocks, it would be nice to compare the results to a benchmark with frictionless finance.
- Is there any guidance from the model that would help policymakers "distinguish fundamentally sound ("good") and excessive ("bad") credit expansions and asset price bubbles in real time"?