Lending Pro-Cyclicality and Macro-Prudential Policy: Evidence from Japanese LTV Ratios

Arito Ono, Hirofumi Uchida, Gregory F. Udell and lichiro Uesugi

MaRs Conference, ECB June 23, 2014

Arito Ono Mizuho Research Institute

* Views expressed are those of the authors and do not necessarily reflect the views of the institutions with which they are affiliated

Motivation

- Considerable interest in the efficacy of countercyclical macro-prudential policy levers
- We focus on one policy lever, LTV Caps
- We use a unique large data set on Japanese real estate-based business lending from 1975 to 2009 to examine:
 - whether LTV ratios in business lending were pro-cyclical,
 - whether there is a negative relationship between LTV ratios and firm performance, and
 - whether <u>simple</u> LTV caps would have worked in Japan

- LTV caps are mostly focused on residential housing
- LTV caps could also be applied to many different kinds of loans besides residential mortgages
 - Commercial mortgages (e.g., India, Singapore)
 - Other consumer loans, e.g.,
 - Auto loans
 - RVs
 - Business loans, especially to SMEs
 - Equipment loans
 - Accounts receivable ABL loans (i.e., advance rates)
 - Inventory ABL loans (i.e., advance rates)
 - Real estate-based loans

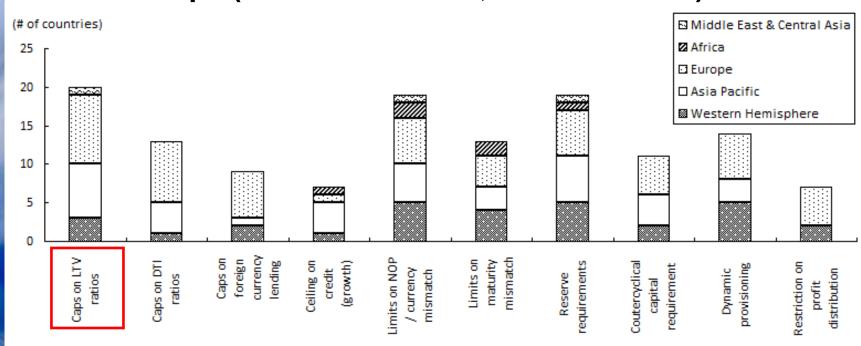
Motivation

- Considerable interest in the efficacy of countercyclical macro-prudential policy levers
- We focus on one policy lever, LTV Caps
- We use a unique large data set on Japanese real estate-based business lending from 1975 to 2009 to examine:

 Short answers: No!
 - whether LTV ratios in business lending were pro-cyclical,
 - whether there is a negative relationship between LTV ratios and firm performance, and
 - whether <u>simple</u> LTV caps would have worked in Japan

Countercyclical Macro-prudential Policy Tools (CMPPT)

- Japanese and the recent global financial crises have prompted a search for countercyclical macro-prudential policy tools (CMPPT) to contain the build-up of system-wide financial risk
 - Quite distinct from micro-prudential (institution-level) policies
 - Institutional risk can be low while systemic risk is rising
- CMPPT "toolkit" contains a number of different tools, including but not limited to (CGFS 2012, Lim et al. 2011):
 - Countercyclical capital buffers (Basel III Capital Framework)
 - Dynamic loan loss provisioning
 - Debt-to-income (DTI) standards
 - LTV caps


Countercyclical Macro-prudential Policy Tools (CMPPT)

- Japanese and the recent global financial crises have prompted a search for countercyclical macro-prudential policy tools (CMPPT) to contain the build-up of system-wide financial risk
 - Quite distinct from micro-prudential (institution-level) policies
 - Institutional risk can be low while systemic risk is rising
- CMPPT "toolkit" contains a number of different tools, including but not limited to (CGFS 2012, Lim et al. 2011):
 - Countercyclical capital buffers (Basel III Capital Framework)
 - Dynamic loan loss provisioning
 - Debt-to-income (DTI) standards

LTV Caps

- LTV caps have been implemented in a number of countries
 - 2010 IMF survey found that 20 out of 49 countries use LTV caps (Crowe et al. 2013, Lim et al. 2011)

- Explicit use of LTV caps rare before the crisis in developed economies
 - Canada and Denmark being the only exception (IMF 2011)
 - LTV caps incentivized through lower capital requirements for low LTV loans (FSB 2011)
- Some countries have introduced new LTV limits since this crisis (Canada, Malaysia, South Korea and Sweden)

- LTV caps are mostly focused on residential housing
- LTV caps could also be applied to many different kinds of loans besides residential mortgages
 - Commercial mortgages (e.g., India, Singapore)
 - Other consumer loans, e.g.,
 - Auto loans
 - RVs
 - Business loans, especially to SMEs
 - Equipment loans
 - Accounts receivable ABL loans (i.e., advance rates)
 - Inventory ABL loans (i.e., advance rates)
 - Real estate-based loans

- As a CMPPT, LTV caps are designed to accomplish two objectives:
 - 1. Dampen the acceleration of asset prices during a bubble period *pricing channel*
 - 2. Limit the build-up of systemic risk in the financial system due to highly leveraged loans
 - risk channel

- As a CMPPT LTV caps are designed to accomplish two objectives:
 - 1. Dampen the acceleration of asset prices during a bubble period *pricing channel*
 - 2. Limit the build-up of systemic risk in the financial system due to highly leveraged loans
 - risk channel

Our Focus

- Effectiveness of LTV caps is unsettled in the theoretical literature (e.g., Suh 2013 vs. Goodhart, Kashyap, Tsomocos, & Vardoulakis 2012)
- Empirically the "effect of LTV ratios ... is difficult to assess due to data limitations" (IMF 2011)
 - "That said, the existing empirical literature tentatively supports the effectiveness of LTV ratios in taming housing booms" (IMF 2011)
 - However, IMF also concludes "that there is no international consensus on the role and the design of limits to LTV and one should use the LTV-ratios with care."

Our Context: Japan

- We look at an alternative (counterfactual) application of LTV ratios in the special case of Japan
 - Business loans secured by real estate
 - Including both entrepreneur's residence and business real estate
 - Excessive real estate-based business lending in 1980s considered one of the primary causes of the bad loans in 1990s
 - Bad loan problems shared many similarities to other countries
 - Ours is first study to analyze LTV ratios in business lending using disaggregated data
 - We focus on the "risk channel" (->)

Data and LTV Definition

- Main dataset constructed from Teikoku Databank (TDB)
 - Largest credit information provider in Japan
 - Detailed info on business loan collateral registered during the period 1975 to 2009
 - TDB gets real estate data from the official real estate registry in Japan
 - Property characteristics (e.g., acreage, land and bldg type)
 - Ownership
 - Security interests and loan amounts when registered

Data and LTV Definition (cont.)

- Prices from Public Notice on Land Prices (PNLP) data compiled by the Japanese government
 - Estimate hedonic model of land prices as a function of property characteristics using observations of about 25,000 places/year
 - Apply coefficients on characteristics to the TDB data to estimate property value *at origination*
- Origination LTV ratios
 - Relevant to the loan underwriting decision
 - Most LTV caps imposed at the time of origination

Data and LTV Definition (cont.)

How do we obtain L (loan amounts)?

【担保権等の設定状態】

```
《根抵当権》
               2点
                            平 2年 2月 4日
          A印
                    登記年月日
                            平 2年 1月31日
                    設定年月日
                            みずほ銀行(銀座)
                            帝国テクノツール(株)
                             2,500,000千円
                    共同担保目録
                             T-1900
《根抵当権》》
          B印
               2 点
                    登記年月日
                            平 4年 9月18日
                    設定年月日
                            平 4年 9月14日
                           三井住友銀行 (銀座)
                            帝国テクノツール (株)
                             300,000千円
                    共同担保目録
                             2-1980
《抵当権》
          CFI
               4点
                    登記年月日
                            平10年10月10日
                    設定年月日
                            平10年10月 5日
                            みずほ銀行(銀座)
                             帝国テクノツール (株)
                             300,000千円
                    利息 (年)
                             3. 000%
                    共同担保目録
                             <-1995
```

Data and LTV Definition (cont.)

 How do we obtain V (value of land)=acreage*estimated unit price?

【物件】		
《所有者》	帝国テクノツール(株)(東京都港区南青山2-5-2	0)
【符号】	【物件の所在地】	(家屋番号)
	【物件の種類・構成】	【面積㎡】
AC	東京都板橋区大谷口上町10(一四)	
	宅地	119.68
D.C.	昭和50年6月20日 売買取得	
ВС	東京都中央区銀座2-1 (一) 宅地	182 10
	平成3年3月3日 売買取得	402.40

Our Analysis

- Three parts
 - 1. LTV Cyclicality (Univariate Analysis):
 - Are LTV ratios pro-cyclical?
 - 2. LTV Cyclicality (Multivariate Analysis):
 - Are LTV ratios pro-cyclical controlling for loan, borrower and lender characteristics?
 - 3. Ex post performance of high-LTV loans (firms):
 - Do high-LTV loans (firms) perform worse?

- Only information on firms in the TDB database between 2008-2010
 - Loans stay in database if unpaid or if permanent W/C lien
 - Survivorship bias (-)
 - Solution → Controls in multivariate analysis
- Control variables only since 1990 (firm characteristics/financials, industry, lender identity)
 - Solution → Multivariate analysis limited to post bubble
- No information on seniority (->)
 - Solution → Use registration date
- No subsequent information on loan performance
 - **Solution** → *Use firm performance*

- Only information on firms in the TDB database between 2008-2010
 - Loans stay in database if unpaid or if permanent W/C lien
 - Survivorship bias (->)
 - Solution → Controls in multivariate analysis
- Control variables only since 1990 (firm characteristics/financials, industry, lender identity)
 - Solution Multivariate analysis limited to post bubble
- No information on seniority
 - Solution → Use registration date
- No subsequent information on loan performance
 - Solution → Use firm performance

- Only information on firms in the TDB database between 2008-2010
 - Loans stay in database if unpaid or if permanent W/C lier
 - Survivorship bias
 - Solution -> Controls in multivariate analysis
- Control variables only since 1990 (firm characteristics/financials, industry, lender identity)
 - Solution → Multivariate analysis limited to post bubble
- No information on seniority
 - Solution → Use registration date
- No subsequent information on loan performance
 - Solution → Use firm performance

- Only information on firms in the TDB database between 2008-2010
 - Loans stay in database if unpaid or if permanent W/C lier
 - Survivorship bias
 - Solution -> Controls in multivariate analysis
- Control variables only since 1990 (firm characteristics/financials, industry, lender identity)
 - Solution Multivariate analysis limited to post bubble
- No information on seniority (->)
 - Solution → Use registration date
- No subsequent information on loan performance
 - Solution → Use firm performance

- Only information on firms in the TDB database between 2008-2010
 - Loans stay in database if unpaid or if permanent W/C lier
 - Survivorship bias
 - Solution -> Controls in multivariate analysis
- Control variables only since 1990 (firm characteristics/financials, industry, lender identity)
 - Solution Multivariate analysis limited to post bubble
- No information on seniority
 - Solution → Use registration date
- No subsequent information on loan performance
 - **Solution** → *Use firm performance*

Sample

- Final sample
 - 420,889 total observations on collateral registrations originated between 1975 to 2009
 - For 297,692 firms from 1990 to 2009
 - Basic firm characteristics, e.g., no. of employees
 - Industry
 - Location
 - Lender identity
 - For subset of 59,125 firms we also have financial statements

Sample

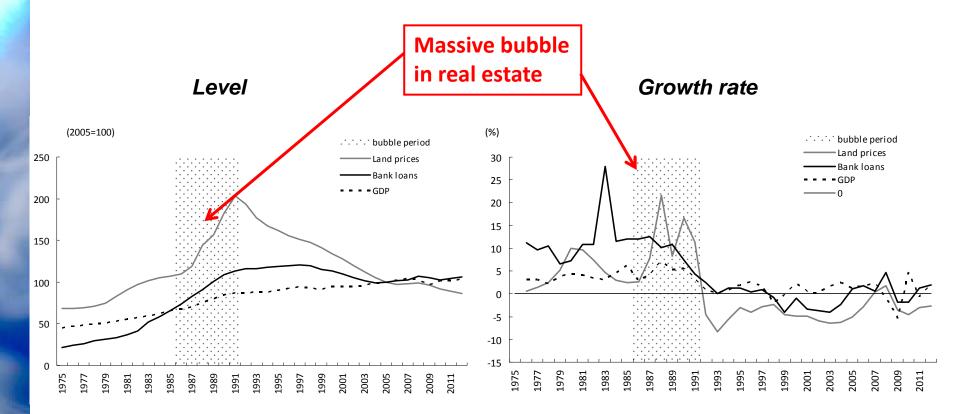
- Final sample
 - 420,889 total observations on collateral registrations originated between 1975 to 2009
 - For 297,692 firms from 1990 to 2009
 - Basic firm characteristics, e.g., no. of employees
 - Industry
 - Location
 - Lender identity
 - For subset of 59,125 firms we also have financial statements

Univariate Analysis

Sample

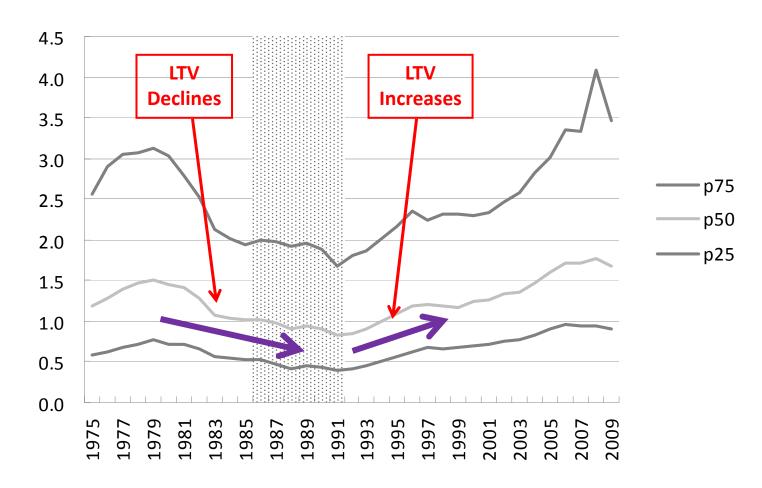
Final sample

- 420,889 total observations on collateral registrations between 1975 to 2009
- For 297,692 firms from 1990 to 2009
 - Basic firm characteristics, e.g., no. of employees
 - Industry
 - Location
 - Lender identity

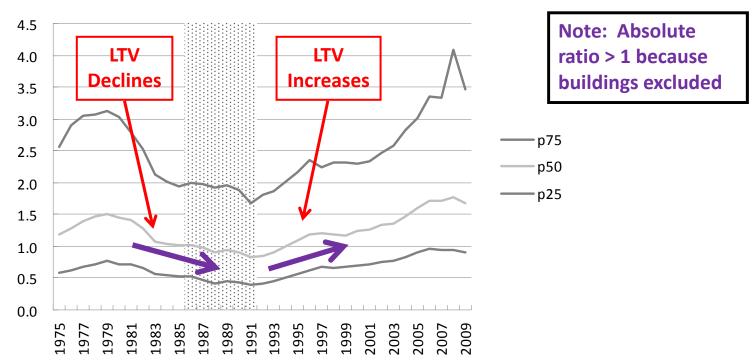

LTV Cyclicality: Multivariate Analysis

For subset of 59,125 firms we also have financial statements

Ex Post Performance


Cyclicality of LTV Ratios

- Background: The business cycle and the bubble in Japan:
 - Real GDP, the average land price, and bank loans outstanding


Cyclicality of LTV Ratios (cont.)

• LTV cyclicality - 25, 50, and 75 percentile of over the business cycle

Cyclicality of LTV Ratios (cont.)

LTV cyclicality - 25, 50, and 75 percentile of over the business cycle

- Finding: counter-cyclicality, at least until early 2000s
 - Increase in L during the bubble more than offset by increase in V
 - Banks' exposure did not increase proportionately during the bubble
 - Simple LTV cap might not have been effective during the bubble.

Cyclicality of LTV Ratios: Multivariate Analysis

- Dependent variable: LTV ratio
- Key independent variables: year dummies (default: 1990)
- Purpose
 - Does counter-cyclicality hold after
 - controlling for a variety factors, and
 - at least partially controlling for survivorship bias?

Note: To the extent that counter-cyclicality disappears, our prior univariate finding was an artifact of differences in loan-, borrower-and/or lender characteristics in different years part of which might have stemmed from survivorship bias.

- Quantile (median) regression
 - Due to data limitations, sample period begins with 1990
 - As robustness: OLS regression w/o 1% tails

Cyclicality of LTV Ratios: Multivariate Analysis (cont.)

Estimation method: Quantile regression	(A) Med	ian (p50)	(B) p	010	(C) p90		
Devendent variable: LTV	Coef.	(Std. Err.)	Coef.	(Std. Err.)	Coef.	(Std. Err.)	
Registration year							
YEAR1991	-0.019	(0.045)	-0.054 **	(0.023)	-0.015	(0.224)	
YEAR1992	0.003	(0.045)	-0.032	(0.023)	-0.157	(0.224)	
YEAR1993	0.055	(0.046)	0.001	(0.023)	0.000	(0.228)	
YEAR1994	0.212 ***	(0.047)	0.070 ***	(0.024)	0.632 ***	(0.233)	
YEAR1995	0.403 ***	(0.046)	0.151 ***	(0.024)	0.870 ***	(0.233)	
YEAR1996	0.531 ***	(0.046)	0.207 ***	(0.023)	0.959 ***	(0.231)	
YEAR1997	0.451 ***	(0.045)	0.213 ***	(0.023)	0.959 ***	(0.226)	
YEAR1998	0.465 ***	(0.044)	0.219 ***	(0.022)	0.890 ***	(0.222)	
YEAR1999	0.506 ***	(0.045)	0.262 ***	(0.023)	0.896 ***	(0.225)	
YEAR2000	0.606 ***	(0.044)	0.283 ***	(0.022)	1.031 ***	(0.222)	
YEAR2001	0.617 ***	(0.043)	0.297 ***	(0.022)	1.275 ***	(0.218)	
YEAR2002	0.690 ***	(0.043)	0.353 ***	(0.022)	1.152 ***	(0.217)	
YEAR2003	0.791 ***	(0.042)	0.362 ***	(0.021)	1.380 ***	(0.214)	
YEAR2004	0.884 ***	(0.043)	0.414 ***	(0.022)	1.947 ***	(0.217)	
YEAR2005	1.030 ***	(0.043)	0.457 ***	(0.022)	1.772 ***	(0.217)	
YEAR2006	1.079 ***	(0.042)	0.490 ***	(0.021)	2.152 ***	(0.215)	
YEAR2007	1.048 ***	(0.042)	0.476 ***	(0.021)	2.253 ***	(0.213)	
YEAR2008	0.995 ***	(0.042)	0.439 ***	(0.021)	2.282 ***	(0.214)	
YEAR2009	0.985 ***	(0.043)	0.434 ***	(0.022)	2.227 ***	(0.216)	

Cyclicality of LTV Ratios: Multivariate Analysis (cont.)

- LTV ratios still exhibit counter-cyclicality
 - Positive after 1994 compared with 1990
 - Simple LTV cap might not have been effective during the bubble
- Robustness (p10, p90)
 - Counter-cyclicality is preserved
 - Larger (smaller) coefficients for p90 (p10)
 - Counter-cyclicality of LTV ratios is amplified for high LTV loans
 - Effectiveness of simple LTV caps is doubtful

Ex Post Performance

- Methodology
 - First step: Construct treatment and control groups
 - Treatment group: Firms that obtained high-LTV loans (4th quartile of entire sample)
 - Control group: 2 alternative procedures
 - 1. Unmatched: firms obtaining non high-LTV loans
 - 2. Matched control group: propensity score matched firms
 - Second step: Compare subsequent performance 1 to 5 years later in DID (difference-in-differences)
 - Firm size
 - Firm profitability
 - Firm risk

Ex Post Performance (cont.)

(1) Unmatched control

High LTV (treatment) better

(1)	Unmatched	contro	l
------------	-----------	--------	---

		(A) Entire sample			(B) 1990 1994			((C) 1995-	1999	(D) 2000-2004			
		Treatmen	Control	DID	Treatmen	Control	DID	Treatmen	Control	DID	Treatmen	Control	DID	
d_F_{EMP}	t+1	0.417	0.217	0.200 ***	1.463	0.673	0.789 ***	-0.022	-0.155	0.133	0.165	0.087	0.078	
	t+2	0.487	0.283	0.204 **	2.070	1.001	1.069 ***	-0.477	-0.575	0.098	0.387	0.288	0.100	
	t+3	0.278	0.137	0.141	2.128	0.817	1.311 ***	-1.497	-1.252	-0.246	0.459	0.486	-0.027	
	t+4	0.194	0.054	0.140	2.074	0.402	1.672 ***	-2.472	-1.857	-0.614 *	0.640	0.809	-0.169	
	t+5	0.108	-0.136	0.244	1.477	-0.337	1.764 ***	-3.009	-2.326	-0.682	0.816	1.042	-0.226	
$d_F_{ln}SALES$	t+1	0.008	0.007	0.001	0.927	0.002	0.025 ***	0.001	0.003	-0.002	0.014	0.019	-0.006	
	t+2	0.010	0.008	0.002	0/031	-0.005	0.036 ***	-0.018	-0.007	-0.011	0.036	0.038	-0.002	
	t+3	0.008	0.009	-0.001	0 .048	-0.004	0.052 ***	-0.043	-0.029	-0.014 *	0.049	0.057	-0.009	
	t+4	0.005	0.008	-0.003	0.047	-0.008	0.055 ***	-0.074	-0.051	-0.023 **	0.059	0.080	-0.021 ***	
	t+5	-0.003	0.002	-0.005	0.029	-0.023	0.052 ***	-0.085	-0.059	-0.026 **	0.042	0.072	-0.030 ***	
d_F_ROA	t+1	-0.005	-0.005	0.000	-0.007	-0.007	0.001	-0.002	-0.003	0.001	-0.003	-0.002	-0.001	
	t+2	-0.005	-0.006	0.001	-0.010	-0.013	0.003 *	-0.001	-0.002	0.001	-0.001	-0.002	0.000	
	t+3	-0.006	-0.008	0.001 **	-0.012	-0.017	0.005 ***	0.000	-0.002	0.002	-0.003	-0.002	-0.001	
	t+4	-0.006	-0.008	0.002 **	-0.014	-0.019	0.005 ***	0.000	-0.002	0.002	-0.003	-0.002	-0.001	
	t+5	-0.007	-0.009	0.003 ***	-0.018	-0.022	0.004 **	0.001	-0.001	0.002	-0.006	-0.006	0.000	
d_F_LEV	t+1	-0.003	-0.002	-0.001	-0.003	-0.001	-0.002 *	0.001	0.000	0.002	0.000	0.000	0.000	
	t+2	0.001	0.002	-0.001	0.001	0.004	-0.003	0.009	0.005	0.004 **	0.004	0.004	0.000	
	t+3	0.006	0.007	-0.001	0.007	0.008	-0.001	0.015	0.012	0.003	0.008	0.008	0.000	
	t+4	0.013	0.013	-0.001	0.012	0.014	-0.002	0.023	0.020	0.003	0.013	0.012	0.000	
	t+5	0.020	0.019	0.001	0.019	0.019	0.000	0.032	0.026	0.006 **	0.018	0.017	0.001	

Ex Post Performance (cont.)

(2) Matched control

High LTV (treatment) better

(2)	Matched	l contro

		(A	(a) Entire s	ample	((B) 1990-1	1994		(C) 1995-1999				(D) 2000-2004			
		Treatmen	Control	DID	Treatmen	Control	DID 🖊	•	Treatmen	Control	DID		Treatmen	Control	DID	
d_F_{EMP}	t+1	0.417	0.257	0.160 *	1.463	0.821	0.642 *	*	-0.022	-0.283	0.261		0.165	0.117	0.048	
	t+2	0.487	0.302	0.185	2.070	1.200	0.870 *	*	-0.477	-0.936	0.458		0.387	0.297	0.091	
	t+3	0.278	0.165	0.113	2.128	1.026	1.103 *	*	-1.497	-1.884	0.386		0.459	0.468	-0.009	
	t+4	0.194	-0.010	0.203	2.074	0.378	1.697 *	**	-2.472	-2.883	0.411		0.640	0.790	-0.150	
	t+5	0.108	-0.316	0.423	1.427	-0.806	2.233 *	**	-3.009	-3.420	0.411		0.816	0.989	-0.173	
$d_F_{ln}SALES$	t+1	0.008	0.004	0.005	0.027	0.005	0.023 *	**	0.001	-0.003	0.003		0.014	0.015	-0.001	
	t+2	0.010	0.005	0.005	0.031	0.001	0.030 *	**	-0.018	-0.013	-0.004		0.036	0.031	0.005	
	t+3	0.008	0.003	0.005	0.048	0.009	0.038 *	**	-0.043	-0.039	-0.004		0.049	0.047	0.001	
	t+4	0.005	0.006	-0.001	0.047	0.003	0.043 *	**	-0.074	-0.065	-0.009		0.059	0.073	-0.014	
	t+5	-0.003	0.000	-0.003	0.029	-0.006	0.035 *	**	-0.085	-0.076	-0.009		0.042	0.052	-0.010	
d_F_ROA	t+1	-0.005	-0.005	0.001	-0.007	-0.006	0.000		-0.002	-0.003	0.001		-0.003	-0.003	0.000	
	t+2	-0.005	-0.005	0.000	-0.010	-0.012	0.002		-0.001	-0.001	0.000		-0.001	0.000	-0.001	
	t+3	-0.006	-0.007	0.001	-0.012	-0.015	0.003		0.000	-0.001	0.001		-0.003	-0.001	-0.002	
	t+4	-0.006	-0.007	0.000	-0.014	-0.017	0.003 *		0.000	-0.001	0.001		-0.003	0.000	-0.003 *	
	t+5	-0.007	-0.008	0.001	-0.018	-0.020	0.002		0.001	0.000	0.001		-0.006	-0.007	0.000	
d_F_LEV	t+1	-0.003	-0.002	-0.001	-0.003	-0.001	-0.002		0.001	0.000	0.001		0.000	-0.001	0.000	
	t+2	0.001	0.002	-0.001	0.001	0.003	-0.002		0.009	0.006	0.004 *	k	0.004	0.004	0.000	
	t+3	0.006	0.007	0.000	0.007	0.007	-0.001		0.015	0.012	0.002		0.008	0.006	0.002	
	t+4	0.013	0.013	0.000	0.012	0.012	0.000		0.023	0.022	0.001		0.013	0.011	0.002	
	t+5	0.020	0.017	0.003	0.019	0.017	0.002		0.032	0.025	0.007 *	**	0.018	0.014	0.004	

Ex Post Performance (cont.)

Results:

- Unmatched DID estimator
 - Some evidence of <u>better</u> performance especially in 1990-94
 - No significant differences after 1994
- Matched DID estimator
 - Similar to unmatched (some <u>better</u> performance but not after 1994)

Implications

- High LTV ratios do not reflect by themselves lax lending standards
- Imposing a simple LTV cap might constrain lending to growing firms

Summary and Conclusion

Main findings:

- 1. LTV ratio exhibits counter-cyclicality, not pro-cyclicality
 - Lower ratios during the bubble period
 - Although L and V exhibit pro-cyclicality
 - Robust to different definitions, controlling for various loan-, borrower-, and lender- characteristics, and to the consideration of survivorship bias
- 2. No worse ex post performance for high LTV firms
 - Rather <u>better</u> performance during the bubble period in terms of firm growth

Summary and Conclusion

Policy Implications:

- The cap on the LTV ratio as a macro prudential measure
 - Proponents
 - "Caps on LTV ratio → risky loans curbed → reduces bank risk"
 - Our findings
 - do not support this view
 - Implication from our findings
 - A simple cap on the LTV ratio would be ineffective in controlling risk and may be harmful for creditworthy borrowers
 - Efficacy of an LTV cap may depend crucially on how it is conditioned

END OF PRESENTATION THANK YOU